skip to main content
10.5555/2095116.2095147acmotherconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
research-article

Submatrix maximum queries in Monge matrices and Monge partial matrices, and their applications

Published: 17 January 2012 Publication History

Abstract

We describe a data structure for submatrix maximum queries in Monge matrices or Monge partial matrices, where a query specifies a contiguous submatrix of the given matrix, and its output is the maximum element of that submatrix. Our data structure for an n x n Monge matrix takes O(n log n) space, O(n log2 n) preprocessing time, and can answer queries in O(log2 n) time. For a Monge partial matrix the space bound and the preprocessing time both grow by the small factor α(n), where α(n) is the inverse Ackermann function. Our design exploits an interpretation of the column maxima in a Monge matrix (resp., Monge partial matrix) as an upper envelope of pseudo-lines (resp., pseudo-segments).
We give two applications for this data structure: (1) For a set of n points in a rectangle B in the plane, we build a data structure that, given a query point p, returns the largest-area empty axis-parallel rectangle contained in B and containing p, in O(log4 n) time. The preprocessing time is O(nα(n) log4 n), and the space required is O(nα(n) log3 n). This improves substantially a previous data structure of Augustine et al. [arXiv: 1004.0558] that requires quadratic space. (2) Given an n-node arbitrarily weighted planar digraph, with possibly negative edge weights, we build, in O(n log2 n/log log n) time, a linear-size data structure that supports edge-weight updates and distance queries between arbitrary pairs of nodes (where the distance is minimum weight of a path in the graph between the pair of nodes), in O(n2/3 log5/3n) time for each update and query. This improves the O(n4/5 log13/5n)-time bound of Fakcharoenphol and Rao [JCSS 72, 2006]. Our data structure has already been applied in a recent maximum flow algorithm for planar graphs of Borradaile et al. [FOCS 2011], and we believe it will find additional applications.

References

[1]
Aggarwal, A., and Klawe, M. Applications of generalized matrix searching to geometric algorithms. Discret. Appl. Math. 27 (1990), 3--23.
[2]
Aggarwal, A., Klawe, M., Moran, S., Shor, P., and Wilber, R. Geometric applications of a matrix-searching algorithm. Algorithmica 2 (1987), 195--208.
[3]
Aggarwal, A., and Park, J. Notes on searching in multidimensional monotone arrays. In Proc. 29th Annu. Symp. Found. Comput. Sci. (1988), IEEE Computer Society, pp. 497--512.
[4]
Aggarwal, A., and Suri, S. Fast algorithms for computing the largest empty rectangle. In Proc. 3rd Annu. Symp. Comput. Geom. (1987), ACM, pp. 278--290.
[5]
Atallah, M. J., and Frederickson, G. N. A note on finding a maximum empty rectangle. Discret. Appl. Math. 13 (1986), 87--91.
[6]
Augustine, J., Das, S., Maheshwari, A., Nandy, S. C., Roy, S., and Sarvattomananda, S. Querying for the largest empty geometric object in a desired location. CoRR abs/1004.0558 (2010).
[7]
Baird, H. S., Jones, S. E., and Fortune, S. J. Image segmentation by shape-directed covers. In Proc. 10th Int. Conf. on Pattern Recognit. (1990), vol. I, IEEE Computer Society, pp. 820--825.
[8]
Bender, M. A., and Farach-Colton, M. The LCA problem revisited. In Proc. 4th Lat. Am. Symp. Theor. Inform. (2000), G. H. Gonnet, D. Panario, and A. Viola, Eds., vol. 1776 of LNCS, Springer-Verlag, pp. 88--94.
[9]
Boland, R. P., and Urrutia, J. Finding the largest axis-aligned rectangle in a polygon in O(n log n) time. In Proc. 13th Can. Conf. Comput. Geom. (2001), pp. 41--44.
[10]
Borradaile, G., Klein, P. N., Mozes, S., Nussbaum, Y., and Wulff-Nilsen, C. Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear time. In Proc. 52nd Annu. Symp. on Found. of Comput. Sci. (2011). To appear.
[11]
Burkard, R. E., Klinz, B., and Rudolf, R. Perspectives of monge properties in optimization. Discret. Appl. Math. 70 (1996), 95--161.
[12]
Cabello, S. Many distances in planar graphs. Algorithmica, 1--21. To appear.
[13]
Chaudhuri, J., Nandy, S. C., and Das, S. Largest empty rectangle among a point set. J. Algorithms 46 (2003), 54--78.
[14]
Chazelle, B., Drysdale III, R. L., and Lee, D. T. Computing the largest empty rectangle. SIAM J. Comput. 15 (1986), 300--315.
[15]
Chazelle, B., and Guibas, L. J. Fractional cascading: I. A data structuring technique. Algorithmica 1 (1986), 133--162.
[16]
Chen, D. Z., and Xu, J. Shortest path queries in planar graphs. In Proc. 32nd Annu. ACM Symp. Theory Comput. (2000), ACM, pp. 469--478.
[17]
Chew, L. P., and Dyrsdale III, R. L. Voronoi diagrams based on convex distance functions. In Proc. 1st Annu. Symp. Comput. Geom. (1985), ACM, pp. 235--244.
[18]
de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. Computational Geometry: Algorithms and Applications, 3rd ed. Springer-Verlag, Berlin, 2008.
[19]
Djidjev, H. Efficient algorithms for shortest path queries in planar digraphs. In Proc. 22nd Int. Workshop Graph Theor. Concept Comput. Sci. (1997), F. d'Amore, P. Franciosa, and A. Marchetti-Spaccamela, Eds., vol. 1197 of LNCS, Springer-Verlag, pp. 151--165.
[20]
Fakcharoenphol, J., and Rao, S. Planar graphs, negative weight edges, shortest paths, and near linear time. J. Comput. Syst. Sci. 72 (2006), 868--889.
[21]
Feuerstein, E., and Marchetti-Spaccamela, A. Dynamic algorithms for shortest paths in planar graphs. Theor. Comput. Sci. 116 (1993), 359--371.
[22]
Frederickson, G. N. Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16 (1987), 1004--1022.
[23]
Hershberger, J. Finding the upper envelope of n line segments in O(n log n) time. Inf. Process. Lett. 33 (1989), 169--174.
[24]
Hoffman, A. J. On simple linear programming problems. In Proc. Symp. Pure Math., vol. VII. Amer. Math. Soc., 1963, pp. 317--327.
[25]
Hopcroft, J., and Tarjan, R. Efficient planarity testing. J. ACM 21 (1974), 549--568.
[26]
Italiano, G. F., Nussbaum, Y., Sankowski, P., and Wulff-Nilsen, C. Improved algorithms for min cut and max flow in undirected planar graphs. In Proc. 43rd Annu. ACM Symp. Theory Comput. (2011), ACM, pp. 313--322.
[27]
Johnson, D. B. Efficient algorithms for shortest paths in sparse networks. J. ACM 24 (1977), 1--13.
[28]
Klawe, M. M. Superlinear bounds for matrix searching problems. J. Algorithms 13 (1992), 55--78.
[29]
Klawe, M. M., and Kleitman, D. J. An almost linear time algorithm for generalized matrix searching. SIAM J. Discret. Math. 3 (1990), 81--97.
[30]
Klein, P. N. Multiple-source shortest paths in planar graphs. In Proc. 16th Annu. ACM-SIAM Symp. on Discret. Algorithm. (2005), SIAM, pp. 146--155.
[31]
Klein, P. N., and Subramanian, S. A fully dynamic approximation scheme for shortest paths in planar graphs. Algorithmica 22 (1998), 135--249.
[32]
Leven, D., and Sharir, M. Planning a purely translational motion for a convex object in two-dimensional space using generalized voronoi diagrams. Discret. Comput. Geom. 2 (1987), 9--31.
[33]
McKenna, M., O'Rourke, J., and Suri, S. Finding the largest rectangle in an orthogonal polygon. In Proc. 23rd Allerton Conf. Commun. Control Comput. (1985), pp. 486--495.
[34]
Monge, G. Mémoire sur la théorie des déblais et des remblais. In Histoire de l'Académie Royale des Science. 1781, pp. 666--704.
[35]
Mozes, S., and Sommer, C. Exact distance oracles for planar graphs. In Proc. 23rd Annu. ACM-SIAM Symp. on Discret. Algorithm. (2012). To appear.
[36]
Mozes, S., and Wulff-Nilsen, C. Shortest paths in planar graphs with real lengths in O(n log2 n/log log n) time. In Proc. 18th Eur. Symp. Algorithm. (2) (2010), M. de Berg and U. Meyer, Eds., vol. 6347 of LNCS, Springer-Verlag, pp. 206--217.
[37]
Naamad, A., Lee, D. T., and Hsu, W. L. On the maximum empty rectangle problem. Discret. Appl. Math. 8, 3 (1984), 267--277.
[38]
Nandy, S. C., Sinha, A., and Bhattacharya, B. B. Location of the largest empty rectangle among arbitrary obstacles. In Proc. 14th Conf. Found. Softw. Technol. Theor. Comput. Sci. (1994), P. S. Thiagarajan, Ed., vol. 880 of LNCS, Springer-Verlag, pp. 159--170.
[39]
Nussbaum, Y. Improved distance queries in planar graphs. In Proc. 11th Int. Symp. Algorithm. Data Struct. (2011), F. Dehne, J.-R. Sack, and R. Tamassia, Eds., vol. 6844 of LNCS, Springer-Verlag, pp. 642--653.
[40]
Park, J. K. A special case of the n-vertex traveling-salesman problem that can be solved in O(n) time. Inf. Process. Lett. 40, 5 (1991), 247--254.
[41]
Sharir, M., and Agarwal, P. K. Davenport-Schinzel Sequences and their Geometric Applications. Cambridge University Press, New York, NY, USA, 1995.
[42]
Ullman, J. D. Computational Aspects of VLSI. W. H. Freeman & Co., New York, NY, USA, 1984.

Cited By

View all

Index Terms

  1. Submatrix maximum queries in Monge matrices and Monge partial matrices, and their applications

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      SODA '12: Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete algorithms
      January 2012
      1764 pages

      Sponsors

      • Kyoto University: Kyoto University

      In-Cooperation

      Publisher

      Society for Industrial and Applied Mathematics

      United States

      Publication History

      Published: 17 January 2012

      Check for updates

      Qualifiers

      • Research-article

      Conference

      SODA '12
      Sponsor:
      • Kyoto University

      Acceptance Rates

      Overall Acceptance Rate 411 of 1,322 submissions, 31%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 26 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media