skip to main content
10.5555/1357910.1358037acmotherconferencesArticle/Chapter ViewAbstractPublication PagesscscConference Proceedingsconference-collections
research-article

Modeling genetic networks: comparison of static and dynamic models

Published: 16 July 2007 Publication History

Abstract

Biomedical research has been revolutionized by high-throughput techniques and the enormous amount of biological data they are able to generate. Genetic networks arise as an essential task to mine these data since they explain the function of genes in terms of how they influence other genes. Many modeling approaches have been proposed for building genetic networks up. However, it is not clear what the advantages and disadvantages of each model are. There are several ways to discriminate network building models, being one of the most important whether the data being mined presents a static or dynamic fashion. In this work we compare static and dynamic models over a problem related to the inflammation and the host response to injury. We show how both models provide complementary information and cross-validate the obtained results.

References

[1]
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Brown, P. and Botstein, D. (1999) Exploring the new world of the genome with DNA microarrays. Nature Genet., 21 (Suppl.), 33--37.
[2]
Calvano, S. E., Xiao, W., Richards, D. R., Feliciano, R. M., Baker, H. V., Cho, R. J., Chen, R. O., Brownstein, B. H., Cobb, J. P., Tschoeke, S. K., Miller-Graziano, C., Moldawer, L. L., Mindrinos, M. N., Davis, R. W., Tompkins, R. G. and Lowry, S. F. (2005) The Inflammation and Host Response to Injury Large Scale Collaborative Research Program. A Network-Based Analy-sis of Systemic Inflammation in Humans. Nature, 13:437(7061):1032--7.
[3]
Davies, D. L. and Bouldin, W. (1979) A cluster separation measure. IEEE PAMI, 1, 224--227.
[4]
D'haeseleer P., Liang S. and Somogyi R. (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics, 16(8):707--726.
[5]
D'Onia D., Tam L., Cobb J. P., and Zwir I. A hierarchical reverse-forward methodology for learning complex genetic networks. Proceedings of the 3rd International Conference on Systems Biology (ICSB), Stockholm Sweden.
[6]
Duda, R. O., and Hart, P. E. (1973) Pattern Classification and Scene Analysis. John Wiley & Sons, New York, USA.
[7]
Efron, B. (2005). Local false discovery rates. Preprint, Dept. of Statistics, Stanford University.
[8]
Ghosh D., Barette T. R., Rhodes D. and Chinnaiyan A. M. (2003) Statistical issues and methods for meta-analysis of microarray data: a case study in prostate cancer. Funct Integr Genomics, 3(4):180--8.
[9]
Gregory W. (2005) Inferring network interactions within a cell. Bioinformatics, 6: 380--389.
[10]
Guiller A., Bellido A., Coutelle A. and Madec L. (2006) Spatial genetic pattern in the land Helix aspersa inferred from a 'centre-based clustering' procedure. Genet Res., 88(1):27--44.
[11]
Kanehisa M., Goto S., Kawashima S., Okuno Y. and Hattori M. (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res, 1;32(Database issue):D277--80.
[12]
Kishino, H. and Waddell, P. J. (2000) Correspondence analysis of genes and tissue types and finding genetic links from microarray data. Genome Informatics, 11:83--95.
[13]
Opgen-Rhein R. and Strimmer K. (2006) Inferring gene dependency networks from genomic longitudinal data: a functional data approach. REVSTAT 4:53--65.
[14]
Romero-Záliz R., Rubio-Escudero C., Cordón O., Harare O., del Val C. and Zwir I. (2006) Mining Structural Databases: An Evolutionary Multi-Objective Conceptual Clustering Methodology. Proceedings of the 4th European Workshop on Evolutionary Computation and Machine Learning in Bioinformatics. Budapest, Hungary.
[15]
Rubio-Escudero C., Romero-Záliz R., Cordón O., Harari O., del Val C., Zwir I. (2005) Optimal Selection of Microarray Analysis Methods using a Conceptual Clustering Algorithm. Proceedings of the 4th European Workshop on Evolutionary Computation and Machine Learning in Bioinformatics. Budapest, Hungary.
[16]
Schäfer J. and Strimmer K. (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21: 754--764.
[17]
Simon I., Siegfried Z., Ernst J. and Bar Z. (2005) Combined static and dynamic analysis for determining the quality of time-series expression profiles. Nat. Biotechnol., 23(12):1503--8.
[18]
van Someren E. P., Wessels L. F. A., Backer E. and Reinders M. J. T. (2002) Genetic Network Modeling. Pharmacogenomics, 3(4), 507--525.
[19]
Velarde, Cyntia. (2006) Master Thesis in Comp Sci, University of Buenos Aires, Argentina.
  1. Modeling genetic networks: comparison of static and dynamic models

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      SCSC '07: Proceedings of the 2007 Summer Computer Simulation Conference
      July 2007
      1363 pages
      ISBN:1565553160

      Sponsors

      • SCS: Society for Modeling and Simulation International

      In-Cooperation

      Publisher

      Society for Computer Simulation International

      San Diego, CA, United States

      Publication History

      Published: 16 July 2007

      Check for updates

      Author Tags

      1. dynamic models
      2. gene expression
      3. gene networks
      4. high-throughput techniques

      Qualifiers

      • Research-article

      Conference

      SCSC07
      Sponsor:
      • SCS
      SCSC07: 2007 Summer Computer Simulation Conference
      July 16 - 19, 2007
      California, San Diego

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 2,063
        Total Downloads
      • Downloads (Last 12 months)1
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 24 Dec 2024

      Other Metrics

      Citations

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media