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Abstract

The search for reliable and scalable automated methods for finding counterexamples

to termination or alternatively proving non-termination is still widely open. The thesis

studies the problem of proving non-termination of programs and presents new methods

for the same. It also provides a thorough comparison of new methods along with the

previous methods.

In the first method, we show how the problem of non-termination proving can be

reduced to a question of underapproximation search guided by a safety prover. This

reduction leads to new non-termination proving implementation strategies based on

existing tools for safety proving. Furthermore, our approach leads to easy support for

programs with unbounded non-determinism.

In the second method, we show how Max-SMT-based invariant generation can be

exploited for proving non-termination of programs. The construction of the proof of

non-termination is guided by the generation of quasi-invariants - properties such that

if they hold at a location during execution once, then they will continue to hold at that

location from then onwards. The check that quasi-invariants can indeed be reached

is then performed separately. Our technique produces more generic witnesses of non-

termination than existing methods. Moreover, it can handle programs with unbounded

non-determinism and is more likely to converge than previous approaches.

When proving non-termination using known techniques, abstractions that overap-

proximate the program’s transition relation are unsound. In the third method, we in-

troduce live abstractions, a natural class of abstractions that can be combined with the

concept of closed recurrence sets to soundly prove non-termination. To demonstrate the

practical usefulness of this new approach we show how programs with non-linear, non-

deterministic, and heap-based commands can be shown non-terminating using linear

overapproximations.

All three methods introduced in this thesis have been implemented in different



tools. We also provide experimental results which show great performance improve-

ments over existing methods.

4



Acknowledgements

First of all, I would like to thank my primary supervisor Byron Cook for introducing

me to the beautiful world of program termination. His belief that I could succeed was

very encouraging. His support during my PhD has been invaluable. He introduced me

to many researchers along the way and that has been extremely beneficial.

I would also like to thank my secondary supervisor Peter O’Hearn for his sup-

port. His help in formalizing some of my ideas was crucial. I am extremely grateful

to Carsten Fuhs for being a great collaborator, mentor and a very good friend. His

keenness in many of my ideas and help during discussions have been very fruitful.

I am also thankful to my examiners, Andy King and James Brotherston for care-

fully reading the thesis. Their comments have greatly helped in adding a lot more

clarity to the thesis.

I would like to thank all of my collaborators: Hongyi Chen, Daniel Larraz, Albert

Oliveras, Enric Rodrı́guez-Carbonell and Albert Rubio. It’s been a great experience

working with them.

I am also grateful to Robert Nieuwenhuis for giving me an opportunity to work in

his group prior to my PhD. That experience was extremely encouraging and has helped

me build a great level of confidence. I am also thankful to Supratik Chakraborty for

introducing me to formal methods and verification. The time I spent at IIT Bombay

working with him was very precious and motivated me to pursue a PhD.

I am also thankful to my parents, my younger brother, my parents-in-law and my

cousin Teju for their support. Finally I am extremely thankful to my wife, Neha. Her

constant support during my illness, medical treatment and beyond is just invaluable.



Contents

1 Introduction 11

1.1 Non-termination – Key Notions . . . . . . . . . . . . . . . . . . . . . 12

Nested Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Periodic vs Aperiodic Non-termination . . . . . . . . . . . . . . . . . . 14

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 19

Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Preliminaries 21

2.1 Representing a Program using its Control Flow Graph (CFG) . . . . . . 23

CFG loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Recurrence sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Proving Non-termination via Safety 27

3.1 Informal Description of Our Method . . . . . . . . . . . . . . . . . . . 27

3.2 Closed Recurrence Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Underapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Preconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Our Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 42



4 Proving Non-termination Using Max-SMT 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

SMT and Max-SMT . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Simplified CFGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Quasi-invariants and Non-termination . . . . . . . . . . . . . . . . . . 49

4.4 Computing Proofs of Non-termination . . . . . . . . . . . . . . . . . . 52

4.5 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Proving Non-termination with Overapproximation 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Illustrating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Combining over- and underapproximation . . . . . . . . . . . . . . . . 66

5.3 Closed recurrence sets and overapproximation . . . . . . . . . . . . . . 67

5.4 Live abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Classes of Live Abstractions for Automation . . . . . . . . . . . . . . . 71

Abstracting non-linear commands . . . . . . . . . . . . . . . . . . . . 71

Dealing with non-linear guards . . . . . . . . . . . . . . . . . . . . . . 72

Abstracting heap-based commands . . . . . . . . . . . . . . . . . . . . 72

Combining over- and underapproximation . . . . . . . . . . . . . . . . 73

5.6 Finding Closed Recurrence Sets . . . . . . . . . . . . . . . . . . . . . 74

5.7 Our Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Comparison with a method based on invariant . . . . . . . . . . . . . . 80

5.9 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.10 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Experiments 82

6.1 Experimental Results on Programs with Linear Integer Arithmetic . . . 83

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7



6.2 Experimental Results on Programs with Non-linear Integer Arithmetic

and Heap based Commands . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Conclusion 89

Bibliography 90

8



List of Figures

1.1 Nested Loops – Inner Loop Non-terminating . . . . . . . . . . . . . . . 13

1.2 Nested Loops – Outer Loop Non-terminating . . . . . . . . . . . . . . 13

1.3 Aperiodic Non-termination - Single Loop . . . . . . . . . . . . . . . . 15

1.4 Aperiodic Non-termination - Nested Loops . . . . . . . . . . . . . . . 15

2.1 A program in pseudo-code and its CFG . . . . . . . . . . . . . . . . . 24

3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Original instrumented program (a) and its successive underapproxi-

mations (b), (c), (d). Reachability check for the loop (e), and non-

determinism-assume that must be checked for satisfiability (f). . . . . 29

3.3 Procedure PROVER-SAFETY for underapproximation to synthesize a

reachable non-terminating loop. To prove non-termination of P ,

PROVER-SAFETY should be run on all loops L. . . . . . . . . . . . . . 33

3.4 Program with Repeating Counterexamples . . . . . . . . . . . . . . . . 34

3.5 Program showing why we need VALIDATE procedure . . . . . . . . . . 36

3.6 Instrumented program for the program of Figure 1.1 . . . . . . . . . . . 39

3.7 Instrumented program for the program of Figure 1.2 . . . . . . . . . . . 40

3.8 Instrumented program for the program of Figure 1.3 . . . . . . . . . . . 41

3.9 Instrumented program for the program of Figure 1.4 . . . . . . . . . . . 41

4.1 Example program (a) together with its corresponding CFG (b), non-

trivial SCSGs (c) and non-termination analysis (d) . . . . . . . . . . . . 44

4.2 Program involving non-deterministic assignments (a), and its simpli-

fied CFG (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Procedure PROVER-MAXSMT for proving non-termination of a pro-

gram P by analyzing SCSG C . . . . . . . . . . . . . . . . . . . . . . 53



4.4 (a) Simplified CFG for program of Figure 1.1 and (b) the SCSG in-

volved in non-termination . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 (a) Simplified CFG for program of Figure 1.2 and (b) the SCSG in-

volved in Non-termination . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 (a) Simplified CFG for program of Figure 1.3 and (b) the SCSG in-

volved in Non-termination . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 (a) Simplified CFG for program of Figure 1.4 and (b) the SCSG in-

volved in Non-termination . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Non-linear program (a), and its linear abstraction (b). . . . . . . . . . 64

5.2 Non-linear program (a), its underapproximation (b), and the resulting

linear abstraction (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Linear overapproximation of the program in Figure 5.1(a) computed by

our tool using APRON [JM09] . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Lasso (a) with non-linear guards and equivalent lasso (b) with auxiliary

variable with linear guards . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Heap-based program (a) with precondition that p points to a nonempty

cyclic list and linear overapproximation (b) computed by THOR

[MTLT10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Non-linear lasso (a) and its live abstraction (b). . . . . . . . . . . . . . 77

5.7 Our non-termination proving procedure PROVER-OVERAPPROX . . . . 79

6.1 Evaluation success overview, showing the number of problems solved

for each tool. Here (a) represents the results for known non-terminating

examples, (b) is known terminating examples, (c) is (previously) un-

known examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Results (“Res”) and runtimes of ANANT, APROVE, and JULIA on 29

benchmarks with non-linear arithmetic and 4 heap-based benchmarks

from Berdine et al. [BCDO06]. Here X denotes that the tool proved

non-termination, × means that the tool returned without a definite an-

swer, and timeout means that the run was terminated externally after

600 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

10



Chapter 1

Introduction

The problem of whether a given program will terminate on all possible inputs is a

classical undecidable problem in computer science. This problem is not even semi-

decidable [BMS05d]. Nevertheless, in recent years there has been a lot of research

in devising sound, yet incomplete automated methods for proving program termina-

tion [FGKP85, DGG00, CS02, PR04, BMS05a, BMS05b, BMS05c, BMS05d, Cou05,

CPR06, GST06, PR07, BHRC07, CGL+08, CPR09, OBEG10, KSTW10, TSWK11,

BCF13, CSZ13, BCHR13, CKRW13]. This research has resulted in the development

of many automatic termination proving tools that try to find a proof of termination for

a given input program. The main focus of these tools is on finding proofs of termi-

nation and not on finding counterexamples to termination. To date only few tools use

sophisticated methods to find counterexamples to termination.

A user of a verification tool is often interested in knowing that a given program

either always obeys certain property or she is interested in finding a counterexample to

the property. In case of termination provers, as the underlying methods are incomplete,

failure to find a proof of termination does not imply existence of a counterexample.

Thus termination provers need dedicated methods for finding counterexamples.

A counterexample to termination often represents a software bug and its existence

is thus undesired. Automatically finding such counterexamples will be immensely use-

ful to the programmer. The problem of finding counterexamples to termination is par-

ticularly interesting since such a counterexample represents an infinite execution of the

original program and thus cannot be represented by a finite trace. Thus testing can-

not be reliably used to identify them. To tackle this problem we need compact finite

structures that capture infinite traces.



While the problem of proving termination has now been extensively studied, rela-

tively less work has been done on finding counterexamples to termination. The search

for reliable and scalable automated methods for finding such counterexamples is still

widely open. The purpose of this thesis is to bridge this gap by providing some key con-

tributions in the area of automated methods for finding counterexamples to termination

or alternatively proving non-termination of programs. As the underlying problem is

in general not even semi-decidable, the methods for proving non-termination (existing

ones as well as those presented in this thesis) are only sound but incomplete. We now

provide some key concepts related to non-termination, discuss related work and then

explain the key contributions of this thesis.

1.1 Non-termination – Key Notions
A program is said to be non-terminating if there exists an infinite run of that program

from some initial states. A method for proving non-termination analyses a program

and upon finding a successful proof may or may not provide a witness to the user. A

witness of non-termination can include various information like

• Exact initial states from which the program gets into an infinite run.

• Some closed structure (e.g. a loop) of a program’s control flow graph to which an

infinite run gets confined.

• An exact path from an initial program location to such closed structure that then

results in an infinite run.

• A set of program states to which an infinite run gets confined.

Different program features can impose different challenges in proving non-

termination. The main differentiating factors here depend on whether a program

• operates on integers or other data types

• treats integers as bounded (machine integers) or unbounded (mathematical inte-

gers)

• involves linear or non-linear arithmetic operations

12



int i;
`1 : if (i == 10) {
`2 : while (i > 0) {
`3 : i := i − 1;
`4 : while (i == 0)
`5 : skip;
`6 : }
`7 : }
`8 :

Figure 1.1: Nested Loops – Inner Loop Non-terminating

int i, j;
`1 : while (i > 0) {
`2 : i := i + 1;
`3 : j := 2;
`4 : while (j > 0)
`5 : j := j − 1;
`6 : }
`7 :

Figure 1.2: Nested Loops – Outer Loop Non-terminating

• is deterministic or non-deterministic

• includes commands that operate on the heap

• involves nested loops

• includes other program features like arrays, lists

• involves function calls, recursion

Different methods try to handle only some of these features. These methods thus can

be differentiated based on the features they handle and also on the type of witness they

provide to the user.

Nested Loops

Programs with nested loops pose some challenges in proving non-termination. We

provide two simple examples which will be useful to facilitate discussion in section

Section 1.2.

13



Example 1.1. Consider the program in Figure 1.1 with nested loops. Here the outer

loop decreases the value of the variable i 10 times and then it is the inner loop that is

non-terminating.

Example 1.2. Consider the program in Figure 1.2 with nested loops. The inner loop

executes for exactly two iterations in each iteration of the outer loop. However the

outer loop is non-terminating because it keeps incrementing the value of variable i and

the loop condition is always met.

Periodic vs Aperiodic Non-termination

Another key notion is that of periodic vs aperiodic non-termination. A non-terminating

run is said to be periodic if it visits the same fixed sequence of program locations, in

succession and infinitely often. It is said to be aperiodic otherwise. An example of a

periodic non-terminating run would be

`0 → `1 → `2 → `3 → `1 → `2 → `3 → . . .

where `0, `1, `2 and `3 are program locations. Here the fixed sequence of program

locations `1 → `2 → `3 is repeated in succession and infinitely often. An example of

an aperiodic non-terminating run would be

`0 → `1 → `2 → `1 → `2 → `2 → `1 → `2 → `2 → `2 → `1 → . . .

Between every two successive `1 locations there is an increasing sequence of `2

locations and thus there is no fixed sequence of locations that is visited in succession

and infinitely often.

Example 1.3. We revisit Example 1.1. The non-terminating run of this program is

periodic. After the loop condition of the inner loop is met, the sequence of locations

`4 → `5 is visited in succession and infinitely often.

Example 1.4. We revisit Example 1.2. The non-terminating run of this program is

periodic as well. The exact sequence of locations `1 → `2 → `3 → `4 → `5 → `4 →

`5 → `4 → `6 is visited in succession and infinitely often.

14



int i, j, k;
`1 : if (j ≥ 0) {
`2 : while(i ≥ j) {
`3 : k := i − j;
`4 : if (k > 0) {
`5 : i−−;
`6 : }
`7 : else {
`8 : i := 2 × i + 1;
`9 : j++;
`10 : }
`11 : }
`12 : }
`13 :

Figure 1.3: Aperiodic Non-termination - Single Loop

int j, k;
`1 : while (k ≥ 0) {
`2 : k := k + 1;
`3 : j := k;
`4 : while (j ≥ 1)
`5 : j := j − 1;
`6 : }
`7 :

Figure 1.4: Aperiodic Non-termination - Nested Loops

Aperiodic non-termination can arise from single as well as nested loops. We now

provide the examples for the same.

Example 1.5. Consider the program in Figure 1.3 (taken from [BSOG12]). Here the

loop does not terminate if we initially have i ≥ j ≥ 0. For example if i = 1, j = 1 at the

beginning, then after one iteration of the loop we have i = 3, j = 2. In the next iteration

we get i = 2, j = 2. In the next iterations we get i = 5, j = 3; i = 4, j = 3; i = 3, j = 3.

Whenever i equals j, after the else branch we again get i≥ j and thus the loop does not

terminate. Moreover between every two successive visits to the else branches, the if

branch is visited increasingly many times. Thus there is no fixed sequence of program

locations that is visited in succession and infinitely often. Thus the non-terminating

runs of this program are aperiodic.
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Example 1.6. Consider the program in Figure 1.4 with nested loops. In every iteration

of the outer loop the inner loop iterates but always terminates. However if k ≥ 0 at the

beginning then the outer loop simply increments k and thus its loop condition is always

satisfied. Thus the program is non-terminating. Suppose for any chosen iteration of the

outer loop the inner loop makes n iterations. For the next iteration of the outer loop

the inner loop makes exactly n + 1 iterations and this repeats forever. Thus there is no

fixed sequence of locations that is visited in succession and infinitely often. Thus the

non-terminating runs of this program are aperiodic.

1.2 Related Work
While in some trivial cases termination provers can easily disprove termination (e.g.

when variables are not modified in an infinite loop), in practice this is not the focus for

these tools.

Gupta et al. [GHM+08] use a characterisation of non-termination by (open) recur-

rence sets (See Section 2.2). A recurrence set exists iff a program is non-terminating.

To find recurrence sets they provide a method based on constraint solving. Their

method is restricted to programs using linear integer arithmetic and does not support

non-determinism. Additionally the method finds witnesses of non-termination in form

of simple lasso-shaped paths where the same sequence of commands in every itera-

tion of the loop leads to non-termination. Thus their method cannot detect aperiodic

non-termination arising out of single as well as nested loops. Their method can possi-

bly handle nested loops if the non-termination is periodic. For example, their method

can prove non-termination of Example 1.1 and Example 1.2, but it cannot prove non-

termination of Example 1.5 and Example 1.6. The method is implemented in the tool

TNT. Given a program, TNT exhaustively enumerates lassos present in the program

and checks each lasso for a proof of non-termination. As the number of lassos present

in any program with a loop are infinite, TNT may diverge in this process. Thus it may

not be able to detect a non-terminating lasso even if one exists in the program. TNT

can technically handle programs with machine integers but for such programs it can

only detect singleton recurrence sets (i.e. the same program state is visited infinitely

often). In order to find more generic recurrence sets, it needs a restriction to programs

with unbounded integers.
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APROVE [GBE+14] uses SMT solving to prove non-termination of Java pro-

grams [BSOG12]. First non-termination of a loop regardless of its context is proved,

then reachability of the loop with suitable values. The drawback of their technique is

that they require either singleton recurrence sets or that the loop conditions themselves

must be recurrence sets. Their technique in general supports unbounded integers, other

data types, heap based commands and nested loops but for these generic features they

can only detect non-termination with singleton recurrence sets. Their technique can

find generic recurrence sets only in case of unbounded integers with single loops (with-

out any subloops). The reason for this limitation is the following: their technique

requires enumeration of all paths in the loop. This cannot be achieved when there is

a subloop as there can be infinitely many paths inside the outer loop. Thus their tech-

nique can possibly detect non-termination of Example 1.1 as the non-terminating loop

(the inner loop) does not have any subloops. However it cannot detect non-termination

of Example 1.2. Their technique can detect aperiodic non-termination when it comes

from a single loop and cannot detect aperiodic non-termination associated with nested

loops. Thus their technique can possibly detect non-termination of Example 1.5, but

not of Example 1.6.

Velroyen et al. [VR08] present a method for non-termination proving of Java pro-

grams using a combination of theorem proving and generation of plausible invariants.

The method is mainly based on heuristics where a number of plausible invariants are

generated and then for each of them a check is made if the proof tree can be closed. If

the proof tree can be closed then it proves that the invariant is real and the program is

non-terminating. Their method is implemented in the tool INVEL. INVEL is only ap-

plicable to deterministic programs with unbounded integers and can only handle single

loops. The authors claim that their method can be extended in theory to other pro-

gram features and nested loops. It is not clear if their technique can detect aperiodic

non-termination.

Non-termination analysis tools for constraint-logic programs (e.g. [PM09]) can

in cases be used to prove non-termination of imperative programs (e.g. JULIA [PS09]

can show non-termination for Java bytecode programs if the abstraction to constraint-

logic programs is exact, but does not provide a witness like a recurrence set to the

user). The main difficulty here is in the application of the tools to imperative programs,
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as overapproximating abstractions are typically used for converting languages such as

Java and C to e.g. constraint-logic programs. These abstractions are in general unsound

for directly proving non-termination. Our contributions in Chapter 5 of this thesis may

in fact have application in this domain.

Gulwani et al. [GSV08] can prove non-termination in some cases by proving the

exit points of the program unreachable, but use a restriction to linear arithmetic. Their

technique is fairly imprecise in the presence of non-determinism in the input.

Atig et al. [ABEL12] reduce non-termination of multithreaded programs to non-

termination reasoning for sequential programs. Our work complements Atig et al., as

we improve the underlying sequential tools that future multithreaded tools can use.

Tools for proving CTL properties of infinite state programs exist. These tools can

mainly prove CTL properties with universal path quantifiers (i.e. properties that are

valid for all computation paths), e.g., [CKV11], [CCG+05]. Some recent approaches

(e.g. [CK13], [CKP14], [GWC06]) can successfully reason about CTL properties with

existential path quantifiers (e.g. proving whether there exists a particular computation

path). Non-termination is an existential property and can be expressed in CTL as EG

pc 6= END. The tool YASM [GWC06] can prove non-termination in some cases. The

tool is no longer supported and during our experiments we were unable to obtain a

running version of YASM to compare against. The techniques in [CK13], [CKP14] are

based on the idea that existential reasoning can be reduced to universal reasoning if

the program’s state space is appropriately restricted. These techniques require that the

restricted state space is a recurrence set and thus need an off-the-shelf non-termination

prover to prove existence of a recurrence set. The work presented in this thesis may in

fact have applications in this domain.

Finally, several automatic tools exist for proving non-termination of term rewrite

systems (e.g. [EEG12], [GTS05], [Pay08]). However, in non-termination analysis for

term rewriting the entire state space is considered as legitimate initial states for a (pos-

sibly infinite) evaluation sequence, whereas our setting also factors in reachability from

the initial states.
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1.3 Contributions of this Thesis
This thesis presents new methods for proving non-termination. The new methods try to

handle program features which previous methods either could not handle or had very

limited support for. The contributions of this thesis can be summarized as follows.

(I) Chapter 3 provides a new method for proving non-termination which reduces the

problem of non-termination proving to underapproximation search guided by a

safety prover. This reduction leads to new non-termination proving implemen-

tation strategies based on existing tools for safety proving. This approach also

leads to easy support for programs with unbounded non-determinism which is

explored in detail in the chapter. Previous tools either did not support or had

very little support for non-determinism. In this chapter, we introduce closed re-

currence sets which extend the concept of recurrence sets [GHM+08]. We show

that our desired underapproximation contains a closed recurrence set as a witness

of non-termination.

The new method can also handle nested loops and detect aperiodic non-

termination arising from single as well as nested loops.

This contribution has also been published in the conference paper [CCF+14].

The method is implemented in the tool T21. This implementation only considers

programs with linear arithmetic commands on unbounded integers. However the

technique could be extended to support other programming language features.

(II) Chapter 4 provides a new method for proving non-termination based on Max-

SMT-based invariant generation. This method considers strongly connected sub-

graphs of a program’s control flow graph for analysis and thus produces more

generic witnesses of non-termination than existing methods. Moreover, the

method can also handle programs with unbounded non-determinism and is more

likely to converge (i.e. it terminates with a successful proof of non-termination)

than other approaches. The method can also handle nested loops and detect ape-

riodic non-termination arising from single as well as nested loops.

This contribution has also been published in the conference paper [LNO+14].

1The implementation was done by a coauthor of [CCF+14].
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The method is implemented in the tool CPPINV2. This implementation only

considers programs with linear arithmetic commands on unbounded integers.

(III) When proving non-termination using known techniques (e.g. recurrence sets),

abstractions that overapproximate the program’s transition relation are unsound.

In Chapter 5 we introduce live abstractions, a natural class of abstractions that

can be combined with the concept of closed recurrence sets (introduced in Chap-

ter 3) to soundly prove non-termination. To our knowledge, this is the first

method which uses overapproximation for proving non-termination. To demon-

strate the practical usefulness of this new approach we show how programs

with non-linear, non-deterministic and heap-based commands can be shown non-

terminating using linear overapproximations. The method is implemented in the

tool ANANT which is developed completely by the author of this thesis.

This contribution has also been published in the conference paper [CFNO14].

Empirical Evaluation

As described previously the new non-termination proving methods introduced in Chap-

ter 3, Chapter 4 and Chapter 5 have been implemented in the tools T2, CPPINV and

ANANT respectively. In Chapter 6 we compare these tools against each other and

also provide a detailed comparison with the existing tools for proving non-termination.

Our experiments show that the new methods provide great performance improvements

over the existing methods. Particularly T2 and CPPINV are overwhelmingly success-

ful when the input programs contain non-determinism. ANANT is overwhelmingly

successful when the input programs contain non-linear arithmetic or heap-based com-

mands.

Structure of the Thesis

In Chapter 2 we provide the main definitions and basic notations that are used through-

out the thesis. As discussed, Chapter 3, Chapter 4 and Chapter 5 describe the three new

non-termination proving methods. Chapter 6 provides the experimental results and in

Chapter 7 we conclude and discuss some future research directions.

2The implementation was done by a coauthor of [LNO+14].
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Chapter 2

Preliminaries

We now provide the main definitions and basic notations that are used throughout the

thesis.

Definition 2.1 (Transition Systems). A transition system (S,R, I, F ) is defined by a set

of states S, a transition relationR ⊆ S×S, a set of initial states I ⊆ S and a set of final

states F ⊆ S. For a state s with R(s, s′), we say that s′ is a post-state of s and that s is

a pre-state of s′. We also call s′ a successor of s under R. An execution of a transition

system is a sequence of states s0, s1, s2 . . . such that s0 ∈ I and for each pair of

consecutive states, we have R(sj, sj+1). Any execution of a transition system can only

halt in a final state, so every state s /∈ F must have a successor under R, and any final

state f ∈ F has no successors under R. Formally, F = {s | s ∈ S ∧ ¬∃s′. R(s, s′)}.

For a set of states G and a state s, we write G(s) to represent s ∈ G.

Definition 2.2 (Programs). A program is a tuple (v,L, T ,Θ) where v is a tuple of pro-

gram variables, L is a set of locations, and T is a set of transitions and Θ is a formula

in first order logic over v representing the program’s precondition.1 Each transition

τ ∈ T is a triple (`, `′, T ), where `, `′ ∈ L are the pre and post locations respectively,

and T is a program command which must be one of the following.

• A skip command that does not modify values of the program variables.

• A deterministic assignment statement of the form i := exp where i ∈ v and exp

is an expression over program variables v.2

1The intuition behind this definition is to be able to represent a program using its control flow graph.
2Depending on the non-termination proving method under consideration, we specify which expres-

sions are allowed.



• A non-deterministic assignment statement of the following form:

i := nondet();assume(Q); where i ∈ v, nondet() is a non-deterministic

choice and Q is a boolean expression over v representing the restriction that the

nondet() choice must obey.

• A conditional statement encoded using an assume command (from Nel-

son [Nel89]): assume(Q), where Q is a boolean expression over v.3 We re-

quire that if there is a transition (`, `′, assume(Q)), there is a transition (`, `′′,

assume(¬ Q)) with `′′ being the only other post location of `.

We represent by `I ∈ L the initial location of a program. We represent by `F ∈ L

the final location of a program. The final location does not have any outgoing tran-

sitions.4 We represent by `E ∈ L the error location of a program. For the sake of

presentation, we assume that the non-determinism of programs can come only from

non-deterministic assignments of the form i := nondet(), where i ∈ v is a program

variable. Note that, however, this assumption still allows one to encode other kinds of

non-determinism. For instance, any non-deterministic branching of the form if(∗){}

else{} can be cast into this framework by introducing a new program variable k ∈ v

and rewriting into the form k := nondet(); if(k ≥ 0){} else{}.

Definition 2.3 (Memory States and Program States). A memory state σ is defined over

a tuple of variables v and consists of an assignment of a value to each of the variables

in v. We represent by M, the set of all memory states. For instance, for a program

on n integer variables, we have M = Zn. For a memory state σ and a formula Ψ,

we write σ |= Ψ when σ satisfies Ψ. For a transition (`, `′, T ) we represent by RT ⊆

M×M, the relation on memory states induced by the command T in the usual way. We

sometimes abuse the notation RT slightly and use it instead to represent the formula

for the transition relation induced by the command T . This formula RT is over the

program variables v and their primed versions v′, which represent the values of the

variables after the transition. For memory state σ defined over v, memory state σ′

defined over v′ and a formulaRT , we write (σ, σ′) |= RT when (σ, σ′) satisfyRT .

3The assume command does not allow executions to pass unless the condition Q holds. For termi-
nation, we can encode assume(Q) ≡ if ¬ Q then exit(); fi

4Without loss of generality, we assume that there is a unique final location, since all locations without
any outgoing transitions can be represented by a unique final location.
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A program state is a pair (`, σ) consisting of a location ` ∈ L and a memory

state σ. For any pair of program states (`, σ) and (`′, σ′), if there is a transition τ =

(`, `′, T ) ∈ T such that (σ, σ′) |= RT , we write (`, σ)
τ→ (`′, σ′).

Definition 2.4 (Computation). A computation is a sequence of program states (`0, σ0),

(`1, σ1) . . . such that `0 = `I and σ0 |= Θ, and for each pair of consecutive program

states there exists τj ∈ T satisfying (`j, σj)
τj→ (`j+1, σj+1). A program state (`, σ)

is reachable if there exists a computation which contains (`, σ). A location ` ∈ L is

reachable if a program state (`, σ) is reachable for some memory state σ. A program is

terminating if all its computations are finite, and non-terminating otherwise. A program

is said to be safe if `E is not reachable and unsafe otherwise.

Definition 2.5 (Program as a Transition System). Any program (or program fragment)

(v,L, T ,Θ) can be represented as a transition system (S,R, I, F ) where S = L ×

M, I = {(`I , σ) | σ |= Θ}, R = {((`j, σj), (`j+1, σj+1)) | ∃τj ∈ T .(`j, σj)
τj→

(`j+1, σj+1)}, F = {(`, σ) | (`, σ) ∈ S ∧ ¬∃(`′, σ′). R((`, σ), (`′, σ′))}.

Definition 2.6 (Underapproximation). We call a transition system (S,R′, I ′, F ′) an un-

derapproximation of a transition system (S,R, I, F ) iff R′ ⊆ R, I ′ ⊆ I , F ⊆ F ′.

2.1 Representing a Program using its Control Flow

Graph (CFG)
We often represent a program (v,L, T ,Θ) via its CFG. Every node of the CFG repre-

sents a location ` ∈ L. For every transition (`, `′, T ) ∈ T , there exists a corresponding

directed edge from node ` to node `′ in the CFG which is labelled with T . Thus de-

pending on the context, we use the notation (`, `′, T ) to represent either the transition

or the edge in the CFG. Similar to Definition 2.2, by `I , `F and `E , we designate spe-

cial nodes of the CFG where `I is the node representing the initial location, `F is the

node representing the final location and `E is the node representing the error location.

If we have (`, σ)
τ→ (`′, σ′) for any transition τ ∈ T , then we say that (`′, σ′) is a

successor of (`, σ) along the edge representing τ in the CFG. A path π in the CFG is

a sequence of edges (`0, `1, T0) (`1, `2, T1) . . . (`n−1, `n, Tn−1). The composite tran-

sition relation Rπ of the path π is the composition RT0 ◦ RT1 ◦ ... ◦ RTn−1 of the
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if (k ≥ 0)
skip;

else
i := -1;

while (i ≥ 0) {
i := nondet();
}

i := 2;

0

1

2

3

4

5

6

7

8

Error

true

k ≥ 0

k < 0

skip

i := −1

i ≥ 0

i < 0

i := nondet()
assume(true)

i := 2

(a) Simple Program (b) Program’s Control Flow Graph

Figure 2.1: A program in pseudo-code and its CFG

individual relations. We also describe path π by the sequence of nodes it visits, e.g.

`0 → `1 → . . . → `n−1 → `n. For readability, in our example CFGs we often write Q

instead of assume(Q). Without loss of generality, we assume `I has 0 incoming and 1

outgoing edge, labeled with assume(Θ), where Θ represents the program’s precondi-

tion. Additionally `F does not have any outgoing edge.

We define the indegree of a node ` in a CFG to be the number of incoming edges

to `. Similarly, the outdegree of a node ` in a CFG is the number of outgoing edges

from `. A node ` ∈ L \ {`I , `F , `E} must be of one of the following types.

1. A deterministic assignment node: ` has outdegree exactly 1 and the outgoing

edge is labeled with a deterministic assignment statement or skip. Any program

state (`, σ) has a unique successor (`′, σ′) along the edge.

2. A deterministic conditional node: ` has outdegree 2 with one edge labeled

assume(ϕ), the other edge labeled assume(¬ϕ). A program state (`, σ) has

a unique successor (`′, σ′) along one edge and no successor along the other edge.

3. A non-deterministic assignment node: ` has outdegree exactly 1 and the outgoing

edge is labeled with a non-deterministic assignment statement. A program state

(`, σ) may have zero or more successors along the outgoing edge depending on

the condition present in the assume(Q) statement.
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Example 2.1. Consider a simple program in pseudo-code and its CFG from Figure 2.1.

Here we have the initial location `I = 0, the final location `F = 7, and the error location

`E = 8. The nodes 2, 3 and 6 are deterministic assignment nodes, nodes 1 and 4 are

deterministic conditional nodes, and node 5 is a non-deterministic assignment node.

CFG loops

Given a program with its CFG, a loop L in the CFG is a set of nodes such that

• There exists a path from any node of L to any other node of L. In other words,

the subgraph of the CFG containing all nodes of L is strongly connected.

• (W.l.o.g.) we assume that there is only one node h of L s.t. there exists a node

n /∈ L with an edge from n to h. The node h is called the header node of L.

The subgraph of CFG containing all nodes of L is called the loop body of L.

Header h of L is a deterministic conditional node with one edge that is part of the loop

body, the guard edge of L. The other edge of h goes to a node e /∈ L. We call this edge

the exit edge of L and e the exit location of L.

Example 2.2. In Figure 2.1, the only loop is L = {4, 5}, and its header node h is 4.

The exit location of L is 6.

Definition 2.7 (Loop Path). Given a loop L in program P , we define a loop path πL as

any finite path through L’s body of the form (`0 = h)→ `1 → ...→ `n−1 → (`n = h),

where h is the header node of L and ∀p.(0 < p < n)→ `p 6= h.

Definition 2.8 (Loop as a Transition System). We often analyze a loop L in a program

P as a transition system (SL, RL, IL, FL). We analyze a loop as a single body of instruc-

tions with the loop header as a unique location. As there is a single program location,

Definition 2.5 can be simplified by dropping program locations. Formally, SL = M,

the memory states in P . We define the composite transition relation RL of L as

RL(σ, σ′) iff there exists a loop path π s.t. Rπ(σ, σ′). Here RL need not be a non-empty

finite set. It can be an infinite or an empty set. The initial states IL for RL are the set

of reachable states at the loop header before the loop is entered for the first time and

FL = {σ | σ ∈ SL ∧ ¬∃σ′. RL(σ, σ′)}.
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Chapter 4 and Chapter 5 provide methods for proving non-termination based on

constraint solving, which make use of the following theorem from linear algebra.

Theorem 2.1 (Farkas’ Lemma). Let S be a system of linear inequalities Ax ≤ b

(A ∈ Rm×n, b ∈ Rm) over variables xT = [x1 x2 . . . xn]. When S is satisfiable, it

entails a linear inequality cTx ≤ d (c ∈ Rn, d ∈ R) iff there is λ ∈ Rm such that

λ ≥ 0, λTA = cT and λTb ≤ d. Further, S is unsatisfiable iff 1 ≤ 0 can be so

derived.

2.2 Recurrence sets.
A transition system (S,R, I, F ) is non-terminating iff there exists an infinite transition

sequence s0
R−→ s1

R−→ s2
R−→ . . . with s0 ∈ I . Gupta et al. [GHM+08] characterize

non-termination of a relation R by the existence of a recurrence set, viz. a nonempty

set of states G such that for each s ∈ G there exists a transition to some s′ ∈ G. In

particular, an infinite transition sequence s0
R−→ s1

R−→ s2
R−→ . . . itself gives rise to the

recurrence set {s0, s1, s2, . . .}. In this work we extend the notion of a recurrence set to

transition systems. A transition system (S,R, I, F ) has a recurrence set of states G iff

(2.1) and (2.2) hold.

∃s.G(s) ∧ I(s) (2.1)

∀s∃s′.G(s)→ R(s, s′) ∧ G(s′) (2.2)

Theorem 2.2. [GHM+08] A transition system (S,R, I, F ) is non-terminating iff it has

a recurrence set of states.

The notion of a recurrence set is a central idea in non-termination proving. Key

contributions in this thesis are built upon this notion. To differentiate clearly with the

notion of closed recurrence set (defined later in Section 3.2) we sometimes refer to a

recurrence set as an open recurrence set.

2.3 Summary
We have described the main definitions and basic notations that are used in the rest of

the thesis. We have also described the notion of a recurrence set, upon which we build

the main contributions of this thesis.
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Chapter 3

Proving Non-termination via Safety

In this chapter we develop a new method of proving non-termination based on a reduc-

tion to safety proving that leverages the power of existing tools. An iterative method

is developed which uses counterexamples to a fixed safety property to refine an un-

derapproximation of a program. With our approach, existing safety provers can now

be employed to prove non-termination of programs that previous techniques could not

handle. Not only does the new approach perform better, it also leads to non-termination

proving tools supporting programs with non-determinism, for which previous tools had

only little support.

3.1 Informal Description of Our Method
Before discussing our method in a formal setting, we first explain it informally using

an example. Consider a simple program from Figure 3.1.

In this program the command i := nondet() represents non-deterministic value

int i, k;
if (k ≥ 0)
skip;

else
i := -1;

while (i ≥ 0) {
i := nondet();
}

i := 2;

Figure 3.1: Example



introduction into the variable i. The loop in this program is non-terminating when the

program is invoked with appropriate inputs and when appropriate choices for nondet

assignment are made. We are interested in automatically detecting this non-termination.

The basis of our method is the search for an underapproximation of the original pro-

gram that never terminates. As “never terminates” can be encoded as safety property

(defined later as closed recurrence in Section 3.2), we can then iterate a safety prover

together with a method of underapproximating based on counterexamples. We have to

be careful, however, to find the right underapproximation in order to avoid unsound-

ness.

In order to find the desired underapproximation for our example, we introduce

an assume statement at the beginning with the initial precondition true. We

also place assume(true) statements after each use of nondet. We then put an

assert(false) statement at points where the loop under consideration exits (thus

encoding the “never terminates” property). See Figure 3.2(a).

We can now use a safety checker to search for paths that violate this assertion.

Any error path clearly cannot contribute towards the non-termination of the loop. After

detecting such a path we calculate restrictions on the introduced assume statements

such that the path is no longer feasible when the restriction is applied.

Initially as a first counterexample to safety, we might get the path k < 0, i :=

−1, i < 0, from a safety prover. We now want to determine from which states we can

reach assert(false) and eliminate those states. Using a precondition computation

similar to Calcagno et al. [CDOY11] we find the condition k < 0. The trick is to use the

standard weakest precondition rule for assignments, but to use pre(assume(Q), P ) ,

P ∧ Q instead of the standard wp(assume(Q), P ) , Q ⇒ P . This way, we only

consider executions that actually reach the error location. To rule out the states k < 0

we can add the negation (e.g. k ≥ 0) to the precondition assume statement. See

Figure 3.2(b).

In our procedure we try again to prove the assertion statement unreachable, using

the program in Figure 3.2(b). In this instance we might get the path k ≥ 0, skip, i <

0, which again violates the assertion. For this path we would discover the precondition

k ≥ 0 ∧ i < 0, and to rule out these states we refine the precondition assume statement

with “assume(k ≥ 0 ∧ i ≥ 0);”. See Figure 3.2(c).
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assume(true);

if (k ≥ 0)
skip;

else
i := -1;

while (i ≥ 0) {
i := nondet();
assume(true);

}

assert(false);

i := 2;

assume(k ≥ 0);

if (k ≥ 0)
skip;

else
i := -1;

while (i ≥ 0) {
i := nondet();
assume(true);
}

assert(false);

i := 2;

assume(k ≥ 0 ∧ i ≥ 0);

if (k ≥ 0)
skip;

else
i := -1;

while (i ≥ 0) {
i := nondet();
assume(true);

}

assert(false);

i := 2;
(a) (b) (c)

assume(k ≥ 0 ∧ i ≥ 0);

if (k ≥ 0)
skip;

else
i := -1;

while (i ≥ 0) {
i := nondet();
assume(i ≥ 0);
}

assert(false);

i := 2;

assume(k ≥ 0 ∧ i ≥ 0);

if (k ≥ 0)
skip;

else
i := -1;

assert(false);

while (i ≥ 0) {
i := nondet();
assume(i ≥ 0);
}

/* stem begins */
assume(k ≥ 0 ∧ i ≥ 0);
assume(k ≥ 0);
skip;
/* stem ends */

/* loop */
while (i ≥ 0) {

i := nondet();
assume(i ≥ 0);

}

(d) (e) (f)

Figure 3.2: Original instrumented program (a) and its successive underapproximations (b), (c),
(d). Reachability check for the loop (e), and non-determinism-assume that must
be checked for satisfiability (f).

On this program our safety prover will again fail, perhaps resulting in the path

k ≥ 0, skip, i ≥ 0, i := nondet(), i < 0. Then our procedure would stop comput-

ing the precondition at the command i := nondet() (for reasons discussed later). Here

we would learn that at the non-deterministic command the result must be i < 0 to vio-

late the assertion, thus we would refine the assume statement just after the nondet

with the negation of i < 0: “assume(i ≥ 0);” See Figure 3.2(d).

The program in Figure 3.2(d) cannot violate the assertion, and thus we have hope-

fully computed the desired underapproximation to the transition relation needed in or-

der to prove non-termination. However, for soundness, it is essential to ensure that the

29



loop in Figure 3.2(d) is still reachable, even after the successive restrictions to the state-

space. We encode this condition as a safety problem. See Figure 3.2(e). This time we

add assert(false) before the loop and aim to prove that the assertion is violated.

The existence of a path violating the assertion ensures that the loop in Figure 3.2(d) is

reachable. Here the assertion and thus the loop are still reachable. The path violating

the assertion is our desired path to the loop which we refer to as stem. Figure 3.2(f)

shows the stem and the loop.

Finally we need to ensure that the assume statement in the loop of Figure 3.2(f)

can always be satisfied with some i by any reachable state from the restricted pre-state.

This is necessary: since our underapproximations may accidentally have eliminated not

only the paths to the loop’s exit location, but also all of the non-terminating paths inside

the loop. Once this check succeeds we have proved non-termination.

3.2 Closed Recurrence Sets
In this section we define a new concept which is at the heart of our method, called

closed recurrence. Closed recurrence extends the concept of open recurrence from

Section 2.2 in a way that facilitates automation, e.g. via a safety prover.

∃s.G(s) ∧ I(s) (3.1)

∀s∃s′.G(s)→ R(s, s′) (3.2)

∀s∀s′.G(s) ∧R(s, s′)→ G(s′) (3.3)

A set G is a closed recurrence set for a transition system (S,R, I, F ) iff the conditions

(3.1)–(3.3) hold. Notice how, in contrast to open recurrence sets, we now require a

purely universal property: for each s ∈ G and for each of its successors s′, also s′ must

be in the recurrence set (Condition (3.3)). So instead of requiring that we can stay in

the recurrence set, we now demand that we must stay in the recurrence set. This now

helps us to incorporate non-deterministic transition systems too.

There is an additional problem: what if a state s in our recurrence set G has no

successor s′ at all? This would bring our alleged infinite transition sequence to a sud-

den halt, yet our universal formula would trivially hold. To deal with this issue, we
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must impose that each s ∈ G has some successor s′ (Condition (3.2)). But this exis-

tential statement need not mention that s′ must be in G again—our previous universal

statement already takes care of this.

Theorem 3.1 (A Closed Recurrence Set is an Open Recurrence Set). Let G be a closed

recurrence set for a transition system (S,R, I, F ). Then G is also an open recurrence

set for (S,R, I, F ).

Proof. We only need to show Condition (2.2), which follows directly from Condi-

tion (3.2) and Condition (3.3).

If our transition system is deterministic, every open recurrence set is also a closed

recurrence set. In particular, closed recurrence sets characterize non-termination in the

setting of Gupta et al. [GHM+08], which assumes deterministic programs.

Theorem 3.2 (An Open Recurrence Set is a Closed Recurrence Set for a Deterministic

Transition System). Let G be an open recurrence set for (S,R, I, F ) such that for every

state s there exists at most one state s′ with R(s, s′). Then G is also a closed recurrence

set for (S,R, I, F ).

Proof. We only need to show Condition (3.2) and Condition (3.3) for G. Condi-

tion (3.2) is implied by Condition (2.2). For Condition (3.3): Let s, s′ such that G(s)

and R(s, s′). Since R is deterministic, we have ¬∃s′′. R(s, s′′) ∧ s′ 6= s′′. Thus Condi-

tion (2.2) gives us G(s′). Thus we have Condition (3.3) for G.

Underapproximation

We now state and prove the main theorem that gives the rationale behind our proce-

dure. Referring to Definition 2.6 we prove that every non-terminating program contains

a closed recurrence set as an underapproximation (i.e., together with underapproxima-

tion, closed recurrence sets characterize non-termination).

Theorem 3.3 (An Open Recurrence Set always contains a Closed Recurrence Set).

There exists an open recurrence set G for (S,R, I, F ) iff there exist an underapproxi-

mation (S,R′, I ′, F ′) of (S,R, I, F ) and G ′ ⊆ G such that G ′ is a closed recurrence set

for (S,R′, I ′, F ′).
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Proof. “⇐”: Any closed recurrence set G ′ for (S,R′, I ′, F ′) with I ′ ⊆ I , F ⊆ F ′ and

R′ ⊆ R is also an open recurrence set for (S,R, I, F ).

“⇒”: Suppose G is an open recurrence set for (S,R, I, F ). Thus there must exist

an infinite R-path π in G with

π , s0
R−→ s1

R−→ s2
R−→ . . .

and s0 ∈ I such that {si | i ≥ 0} ⊆ G. We now set G ′ = {si | i ≥ 0}, I ′ = {s0}, and

R′ = {(si, si+1) | (si, si+1) ∈ π} and F ′ = { si | si ∈ S ∧¬∃ sj ∈ S.R′(si, sj)}. Thus,

I ′ ⊆ I , R′ ⊆ R and F ⊆ F ′ hold by construction, making (S,R′, I ′, F ′) an underap-

proximation of (S,R, I, F ) and G ′ ⊆ G is a closed recurrence set for (S,R′, I ′, F ′).

Preconditions

When computing preconditions of assume statements we borrow from Calcagno et al.

[CDOY11]: pre(assume(Q), P ) , P ∧ Q, called the “assume as assert trick”. This

lets us interpret assume statements (often from conditional branches) in a way that

allows us to determine in a precondition the states from which an error location can be

reached in a safety counterexample path. The reason is that we want to find out from

which states an execution actually makes it to the error location, not states from which

we only “get stuck” at an assume statement. For assignment statements we will use

the standard weakest precondition [Dij76].

Example 3.1. Note that the weakest precondition of an assignment with non-

determinism is a little subtle. Let i := nondet(); assume(true); be the nondet

statement under consideration. The weakest precondition for the postcondition (i < j)

is false (equivalent to ∀i. i < j). However the weakest precondition for the postcon-

dition (i < j ∨ k > 0) is (k > 0).

3.3 Our Procedure
Our non-termination proving procedure PROVER-SAFETY is detailed in Figure 3.3. Its

input is a program P given by its CFG, and a loop to be considered for non-termination.

To prove non-termination of the entire program P we need to find only one non-

terminating loop L. This can be done in parallel. Alternatively, the procedure can
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PROVER-SAFETY (CFG P , Loop L)
h := header node of L
e := exit node of L in P
P ′ := UNDERAPPROXIMATE(P, e)
L′ := refined loop L in P ′

if ¬ REACHABLE(P ′, h) then
return Unknown, ⊥

fi
Π := {π | π feasible path to h in P ′}
for all π ∈ Π do
P ′ := π :: L′ // concatenation
if VALIDATE(P ′) then

return Non-Terminating, P ′

fi
done
return Unknown, ⊥

UNDERAPPROXIMATE (CFG P , Node e)
κ := [ ]
while REACHABLE(P, e) do
π := feasible path to e in P
κ := π :: κ
P := REFINE(P, π)
if the n most recent paths in κ

are repeating then
P := STRENGTHEN(P, FIRST(κ))

fi
done
return P

REFINE (CFG P , Path π)
(`0, `1, T0)(`1, `2, T1) . . . (`n−1, `n, Tn−1) := π
Calculate WPs ψ1, ψ2 . . . ψn−1 along π

so {ψ1}T1{ψ2}T2 . . . {ψn−1}Tn−1{true}
are valid Hoare-triples.

Find p s.t. ψp 6= false ∧ ∀q < p. ψq = false
P := P |(Tp−1,¬ψp)

return P

STRENGTHEN (CFG P , Path π)
(`0, `1, T0)(`1, `2, T1) . . . (`n−1, `n, Tn−1) := π
Calculate WPs ψ1, ψ2 . . . ψn−1 along π

so {ψ1}T1{ψ2}T2 . . . {ψn−1}Tn−1{true}
are valid Hoare-triples.

Find p s.t. ψp 6= false ∧ ∀q < p. ψq = false
W := {v | v gets updated in subpath

(`p, `p+1, Tp) . . . (`n−1, `n, Tn−1)}
ρp := QE(∃W. ψp)
P := P |(Tp−1,¬ρp)
return P

VALIDATE (CFG P ′)
L′ := the outermost loop in P ′

M := {` | ` is nondet assignment node in L′}
for all ` ∈M do

Calculate invariant inv` at node ` in P ′

let nondet statement at ` be
v := nondet();assume(ϕ);

if inv` → ∃v. ϕ is not valid then
return false

fi
done
return true

Figure 3.3: Procedure PROVER-SAFETY for underapproximation to synthesize a reachable
non-terminating loop. To prove non-termination of P , PROVER-SAFETY should
be run on all loops L.

be implemented sequentially, but then timeouts are advisable in PROVER-SAFETY, as

the procedure might diverge and cause another loop to not be considered.

The subprocedure UNDERAPPROXIMATE performs the search for an underapprox-

imation such that we can prove the loop is never exited. While the loop exit is still

REACHABLE (a.k.a. “unsafe”), we use the subprocedure REFINE to examine paths re-

turned from an off-the-shelf safety prover. Here the notation P |(Ti,ϕ) denotes P with

an additional assume(ϕ) added to the transition Ti. From the postcondition true

(used to indicate success in reaching the loop exit), we use a backwards precondition

analysis to find out which program states will inevitably end up in the loop exit. We

continue this precondition calculation until either we have reached the beginning of
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Figure 3.4: Program with Repeating Counterexamples

the path or until just before we have reached a non-deterministic assignment that leads

to the precondition false. We then negate this condition as our underapproximating

refinement and strengthen the previous transition with this refinement. Thus depending

on where our precondition analysis ends, we either refine the program’s precondition

or the assume statement associated with a non-deterministic assignment.

In some cases our refinement is too weak, leading to divergence. The diffi-

culty is that in cases the same loop path will be considered repeatedly, but at each

instance the loop will be unrolled for an additional iteration. To avoid this prob-

lem we impose a limit n for the number of paths that go along the same locations

(possibly with more and more repetitions). We call such paths repeating. If we

reach this limit, we use the subprocedure STRENGTHEN to strengthen the precondi-

tion, inspired by a heuristic by Cook and Koskinen [CK13]. Here we again calcu-

late a precondition, but when we have found ψp, we quantify out all the variables

that are written to after ψp and apply quantifier elimination (QE) to get ρp. We then

refine with ¬ρp. This leads to a more aggressive pruning of the transition relation. This

heuristic can lead to additional incompleteness.

Example 3.2. Consider the instrumented program in Figure 3.4. Suppose we have

initially ϕ , i ≥ 0. We might get cex1 : 0 → 1 → 2 → 3 → 5 → 1 → 6 as

a first counterexample. The REFINE procedure finds the weakest precondition k ≥

0 ∧ i = 0 at location 1. Adding its negation to ϕ and simplifying the formula gives us

ϕ , (i ≥ 0) ∧ (k < 0 ∨ i ≥ 1). Now we may get cex2 : 0 → 1 → 2 → 3 →

5 → 1 → 2 → 3 → 5 → 1 → 6 as next counterexample, and REFINE updates
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ϕ , (i ≥ 0) ∧ (k < 0 ∨ i ≥ 2). Now we may get cex3 : 0 → 1 → 2 → 3 →

5 → 1 → 2 → 3 → 5 → 1 → 2 → 3 → 5 → 1 → 6 as next counterexample.

Note that cex1, cex2, cex3 are repeating counterexamples and if we just use the RE-

FINE procedure, UNDERAPPROXIMATE gets stuck in a sequence of infinite counterex-

amples. Now STRENGTHEN identifies the repeating counterexamples, considers cex1

and calculates the weakest precondition ψ1 , k ≥ 0 ∧ i = 0. It then existentially

quantifies out variable i as it gets modified later along cex1. We get ∃i. k ≥ 0 ∧ i = 0,

and quantifier elimination yields ρ1 , k ≥ 0. Clearly ψ1 entails ρ1. Adding ¬ρ1
to ϕ and simplifying the formula we get ϕ , i ≥ 0 ∧ k < 0. Now all repeating

counterexamples are eliminated, the program is safe, and we have obtained a closed

recurrence set witnessing non-termination of the original program.

In the UNDERAPPROXIMATE procedure, once there are no further counterexam-

ples to safety of P , we know that in P the loop exit is not reachable. The procedure

returns the final underapproximation (denoted by P ′) that is safe.

When UNDERAPPROXIMATE returns to PROVER-SAFETY, we check if in P ′ the

original loop L after refinements has a closed recurrence set. We refer to the refined

loop as L′. In order to check the existence of a closed recurrence set, we first need to

ensure that L′ is reachable in P ′ even after the refinements. We again pose this problem

as a safety/reachability problem. This time we mark the header node of L′ as an error

location in P ′ and hope that P ′ is unsafe. If P ′ is safe then clearly we have failed

to prove non-termination and we report the result as unknown. If P ′ is unsafe, then

the counterexample to its safety is a path to the header of L′. We enumerate all such

paths to the header of L′ in a set Π (generated lazily in our implementation). For each

such path π ∈ Π we then create a simplified CFG P ′ by concatenating π to L′, thus

eliminating other paths to L′.

At this point, we are sure that the header of L′ is reachable and there is no path that

can reach the exit location of L′. However refinements in UNDERAPPROXIMATE may

have restricted the nondet statements inside L′ by strengthening the assume state-

ments associated with them. Thus a reachable state at the non-deterministic assignment

node may not have a successor along its outgoing edge. This would bring our alleged

infinite execution to a halt. The safety checker cannot detect this since then the path

just gets blocked at this node, and the error location at the exit of L′ cannot be reached.
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Figure 3.5: Program showing why we need VALIDATE procedure

Example 3.3. Consider the instrumented program in Figure 3.5. Suppose initially ϕ ,

true. The original program (without instrumentation) is clearly terminating. Our

algorithm might give cex1 : 0 → 1 → 2 → 3 → 4 → 6 → 1 → 7 as the first

counterexample. The nondet statement at node 2 gets restricted by updating ϕ ,

(j ≤ 3 ∨ i == 9). Now we might get cex2 : 0 → 1 → 2 → 3 → 5 → 6 → 1 → 7 as

the next counterexample. Our algorithm restricts the nondet statement at node 2 by

updating ϕ , (j ≤ 3 ∨ i == 9) ∧ (j ≥ 4 ∨ i == 11).

However now there are no further counterexamples, and the safety checker returns

safe. The state s � i = 10 at node 2 has no successor along the outgoing edge as there

is no way to satisfy the condition ϕ and the execution is halted, so it would be unsound

to report the result as Non-terminating.

Note that at first it may appear that adding another outgoing edge to node 2 with

j := nondet();assume(¬ϕ); and marking the next node as an error node would help

us catch the halted execution. However the problem is that this would discover again

all of the previously eliminated counterexamples as well. Thus we need a special check

by the VALIDATE procedure, which we describe next.
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VALIDATE takes as input the final underapproximation P ′. It first calculates a

location invariant at every non-deterministic assignment node inside the outermost loop

L′ in P ′. Let ` be a nondet. assignment node with: v := nondet(); assume(ϕ); Let

inv be a location invariant at `. VALIDATE then checks if (3.4) is valid.

inv→ ∃v. ϕ (3.4)

This formula checks if for all reachable states at `, a choice can be made for the

nondet assignment obeying ϕ (and thus Condition (3.2) holds). Our implementa-

tion uses APRON’s [JM09] octagon abstract domain [Min06] to calculate this invariant.

VALIDATE returns true iff (3.4) holds for all nondet statements in L′.

Example 3.4. Consider the program in Figure 3.2(f). Using a standard invariant gen-

erator we calculate the invariant i ≥ 0 before line 4. Substituting in (3.4) we get,

i ≥ 0 → ∃i′. i′ ≥ 0. Clearly the formula is valid. Note that in most of the cases even

the weakest invariant true can be sufficient to prove validity of (3.4). In this example

as well we can easily prove that true→ ∃i′. i′ ≥ 0 is valid.

Moreover, consider the program in Figure 3.5. Suppose ϕ , (j ≤ 3 ∨ i == 9) ∧

(j ≥ 4∨ i == 11). Using an invariant generator, we obtain the location invariant i = 10

at location 2. Then (3.4) becomes i = 10 → ∃j. (j ≤ 3 ∨ i = 9) ∧ (j ≥ 4 ∨ i = 11).

Clearly the formula is not valid. In this case VALIDATE returns false.

If VALIDATE returns true, we are sure that every reachable state at the non-

deterministic assignment node in L′ has a successor along the edge. At this point, we

report non-termination and return the final underapproximation P ′ of P as a proof of

non-termination for P : P ′ is a closed recurrence set.

Note that as invariants are overapproximations, we may report unknown in some

cases even when the discovered underapproximation actually does have a closed recur-

rence set. However, the check is essential to retain soundness.

Proof of Correctness

We now provide the proof of correctness of our method. Referring to Definition 2.8,

we can represent L′ in P ′ as a transition system (SL′ , RL′ , IL′ , FL′). Since we have a
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unique path π in P ′ that goes to L′, IL′ is the strongest postcondition after execution of

π. We first prove the following lemma.

Lemma 3.4 (PROVER-SAFETY Finds Closed Recurrence Sets for Loops). Let

P be a program and L a loop in P . Suppose PROVER-SAFETY (P,L) =

Non-terminating, P ′. Then the set of all reachable memory states at the loop header

h of L′ forms a closed recurrence set for (SL′ , RL′ , IL′ , FL′).

Proof. Let Γ ⊆ M represent the set of all reachable memory states at the loop header

h of L′. We need to show Conditions (3.1), (3.2), and (3.3) for Γ.

For Condition (3.1) for Γ: As L′ is reachable via π (because REACHABLE (P ′, h)

holds), we must have ∃σ. IL′(σ). We have IL′ ⊆ Γ. Thus we have ∃σ.IL′(σ) ∧ Γ(σ).

Thus we have Condition (3.1) for Γ.

For Condition (3.2) for Γ: Let σ such that Γ(σ). We need to show that there exists

some σ′ such that RL′(σ, σ
′) holds. As finally the safety check in the UNDERAPPROX-

IMATE loop succeeds, we know that (h, σ) cannot have a successor along the exit edge

of L. (Otherwise the error location would be reachable and the safety checker would

catch it.) By construction of deterministic conditional nodes, the program state (h, σ)

must have a successor along the guard edge of L′.

Every reachable program state at every deterministic conditional node of L must

have a successor along one of its outgoing edges. Similarly, every reachable program

state at every deterministic assignment node of L must have a successor along its out-

going edge. As VALIDATE returns true, every reachable program state at a non-

deterministic assignment node in L′ also has a successor along its outgoing edge. This

ensures that there must be a loop path π from program state (h, σ) to a program state

(h, σ′) going through the loop body such that Rπ(σ, σ′). This ensures that RL′(σ, σ
′).

Thus we have Condition (3.2) for Γ.

For Condition (3.3) for Γ: Let σ, σ′ such that Γ(s) ∧ RL′(σ, σ
′). Clearly σ′ is also

a reachable memory state at the loop header of L′ and the definition of Γ implies Γ(σ′).

Thus we have Condition (3.3) for Γ.

Theorem 3.5 (Correctness of PROVER-SAFETY for Non-termination). Let P be a pro-

gram and L a loop in P . Suppose PROVER-SAFETY (P,L) = Non-terminating, P ′.

Then P is non-terminating.
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int i;
assume(ϕ);
if (i == 10) {
while (i > 0) {
i := i − 1;
while (i == 0)
skip;

}
assert(false);

}

Figure 3.6: Instrumented program for the program of Figure 1.1

Proof. Let L′ be the loop in P ′. Let π be the path to L′ in P ′. Let L be the correspond-

ing loop in P before the refinements.

Note that every refinement in PROVER-SAFETY either restricts the assume state-

ment at the initial node `I representing the precondition for P or restricts the assume

statement associated with a non-deterministic assignment statement. Thus every edge

(`, `′, T ) in P gets refined to the edge (`, `′, T ′) such thatRT ′ ⊆ RT .

Now let σ such that IL′(σ). Then we must have IL(σ), as the memory state σ must

be reachable at the header node of L in P as well. This gives IL′ ⊆ IL. Let σ, σ′ such

that RL′(σ, σ
′). We must have RL(σ, σ′). This gives RL′ ⊆ RL and FL ⊆ FL′ .

From Lemma 3.4 we have that the reachable memory states at the loop header

of L′ form a closed recurrence set for (SL′ , RL′ , IL′ , FL′). We have SL′ = SL. Now

Theorem 3.3 implies the existence of a recurrence set for (SL, RL, IL, FL). This proves

that P is non-terminating.

3.4 Advantages
We now discuss some key advantages of the PROVER-SAFETY procedure.

Clearly the most significant advantage of our procedure is its support for un-

bounded non-determinism. Previous tools either did not support or had very little sup-

port for non-determinism. Additionally our procedure can handle nested loops easily.

That is a part of the beauty of the reduction to safety, as existing safety provers (e.g.

SLAM, IMPACT, etc.) handle nested loops with ease. Note that technically we only

need to consider an outermost loop.
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int i, j;
assume(ϕ);
while (i > 0) {
i := i + 1;
j := 2 ;
while (j > 0)
j := j − 1;

}
assert(false);

Figure 3.7: Instrumented program for the program of Figure 1.2

Example 3.5. Let’s revisit Example 1.1. The instrumented program created by our

procedure is shown in Figure 3.6. Here initially we have ϕ , true. Here the

outer loop decreases the value of i 10 times and then it is the inner loop that is non-

terminating. However, it suffices only to consider the outermost loop for safety as the

assert(false) at the end of the outer loop is not reachable, but the head of the outer

loop is reachable, so that we have proved non-termination.

Example 3.6. Let’s revisit Example 1.2. The instrumented program created by our pro-

cedure is shown in Figure 3.7. Here initially we have ϕ , true. As a first counterex-

ample, we might get a path i ≤ 0, and to eliminate it our procedure updates ϕ , i > 0.

After this refinement assert(false) at the end of the outer loop is not reachable,

but the head of the outer loop is reachable, so that we have proved non-termination.

Our procedure can also prove aperiodic non-termination arising out of single as

well as nested loops.

Example 3.7. Let’s revisit Example 1.5. The instrumented program created by our

procedure is shown in Figure 3.8. Here initially we have ϕ , true. As a first coun-

terexample to safety we might get a path j ≥ 0, i < j. To eliminate this path our

procedure updates ϕ , j < 0 ∨ i ≥ j. After this refinement assert(false) at the

end of the loop is not reachable, but the head of the loop is reachable, so that we have

proved non-termination.

Example 3.8. Let’s revisit Example 1.6. The instrumented program created by our

procedure is shown in Figure 3.9. We have initially ϕ , true.
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int i, j, k;
assume(ϕ);
if (j ≥ 0) {
while (i ≥ j) {
k := i − j;
if (k > 0) {
i−−;
}
else {
i := 2 × i + 1;
j++;
}
}
assert(false);
}

Figure 3.8: Instrumented program for the program of Figure 1.3

int j, k;
assume(ϕ);
while (k ≥ 0) {
k := k + 1;
j := k;
while (j ≥ 1)
j := j − 1;

}
assert(false);

Figure 3.9: Instrumented program for the program of Figure 1.4

As a first counterexample our procedure will find the path: k < 0, resulting in

updating ϕ , k ≥ 0. After this refinement assert(false) at the end of the outer

loop is not reachable, but the head of the outer loop is reachable, so that we have proved

non-termination.

Our implementation later explained in Chapter 6 uses a safety prover for non-

recursive programs with linear integer arithmetic commands. As our method is mainly

based on safety proving, the underlying safety prover determines its applicability to

programs with other features. As there are number of safety provers available that

can handle different programming language features, our method could be extended to

support these features (e.g. heap, recursion).
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3.5 Limitations
Our procedure can only prove non-termination. On terminating programs the procedure

is likely to diverge. Even for a non-terminating loop with several branches or subloops

inside, there could still be potentially infinitely many terminating paths reaching the

loop exit. Our procedure is likely to diverge in such cases. Note that STRENGTHEN

procedure is only a heuristic suggested to mitigate the problem of periodic repeating

paths, but may not be useful in other cases (e.g. aperiodic repeating paths).

3.6 Summary and Outlook
We have introduced a new method of proving non-termination. The idea is to split the

reasoning in two parts: a safety prover is used to prove that a loop in an underapprox-

imation of the original program never terminates; meanwhile failed safety proofs are

used to calculate the underapproximation.

Our technique is not restricted to linear integer arithmetic: Given suitable tools for

safety proving and for precondition inference, in principle our approach is applicable to

any program setting (note that the STRENGTHEN procedure is just an optimization). For

future work, e.g. heap programs are a highly promising candidate for non-termination

analysis via abduction tools for separation logic [CDOY11].
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Chapter 4

Proving Non-termination Using

Max-SMT

4.1 Introduction

In this chapter we present a new method for proving non-termination of non-

deterministic programs that leverages Max-SMT-based invariant generation [LRR13,

LORR13]. Our method analyses each Strongly Connected SubGraph (SCSG) of a pro-

gram’s control flow graph and, by means of Max-SMT solving, tries to find a formula

at every node of the SCSG that satisfies certain properties. First, the formula has to be

a quasi-invariant, i.e., it must satisfy the consecution condition of inductive invariants,

but not necessarily the initiation condition. Hence, if it holds at the node during execu-

tion once, then it continues to hold from then onwards. Second, the formula has to be

edge-closing, meaning that it forbids taking any of the outgoing edges from that node

that exit the SCSG. Now, once we have computed an edge-closing quasi-invariant for

every node of the SCSG, if a program state is reached that satisfies one of them, then

program execution will remain within the SCSG from then onwards. The existence of

such a program state is tested with an off-the-shelf reachability checker. If it succeeds,

we have proved non-termination of the original program, and the edge-closing quasi-

invariants of the SCSG and the trace given by the reachability checker form the witness

of non-termination.

Our approach differs from previous methods in two major ways. First, edge-

closing quasi-invariants are more generic properties than non-termination witnesses

produced by other methods, and thus are likely to carry more information and be more



`0: int i, j;
j := -1;

`1: while (i > 0 ∧ j 6= 0) {
i := i + j;
j := j + 2;

}
`2:

`0

`1 `2

τ1

τ2

τ3

τ5

τ4

Rτ1 : j′ = −1

Rτ2 : i ≥ 1 ∧ j ≤ −1 ∧
i′ = i + j ∧ j′ = j + 2

Rτ3 : i ≥ 1 ∧ j ≥ 1 ∧
i′ = i + j ∧ j′ = j + 2

Rτ4 : i ≤ 0 ∧ i′ = i ∧ j′ = j

Rτ5 : i ≥ 1 ∧ j = 0 ∧ i′ = i ∧ j′ = j

(a) (b)
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For SCSG-3 :

Iteration 1 :
Solution for M`1 : j ≥ 1
Disabled transitions : τ2, τ5
Quasi-invariant Q`1 : j ≥ 1

Iteration 2 :
Solution for M`1 : i ≥ 1
Disabled transitions : τ4
Quasi-invariant Q`1 : j ≥ 1 ∧ i ≥ 1

Reachable path : `0 → `1 → `1

(c) (d)

Figure 4.1: Example program (a) together with its corresponding CFG (b), non-trivial SCSGs
(c) and non-termination analysis (d)

useful in bug finding. Second, our non-termination witnesses include SCSGs, which

are larger structures than, e.g., lassos. Note that the number of SCSGs present in any

CFG is finite, while the number of lassos is infinite in general. Our method does not

suffer from the drawback of divergence of the PROVER-SAFETY procedure described

in Section 3.5 as well. Because of these differences, our method is more likely to

converge than other methods.

Our technique is based on constraint solving for invariant generation [CSS03] and

is goal-directed. Before discussing it formally, we describe it with a simple example.
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Consider the program in Figure 4.1(a). The simplified CFG1 for this program is shown

in Figure 4.1(b). The edges of the CFG represent the transitions between the locations.

For every transition τ , we denote the formula of its transition relation by Rτ (i, j, i′, j′).

The unprimed variables represent the values of the variables before the transition, and

the primed ones represent the values after the transition. By Rτ (i, j) we denote the

conditional part of τ , which only involves the pre-variables. Figure 4.1(c) shows all

non-trivial (i.e. with at least one edge) SCSGs present in the CFG. For every SCSG,

the dashed edges are those that exit the SCSG and hence are not part of it. Note that

SCSG-1 is a maximal strongly connected subgraph, and thus is a strongly connected

component of the CFG. Notice also that τ3 is an additional exit edge for SCSG-2, and

similarly τ2 is an exit edge for SCSG-3. The non-termination of this example comes

from SCSG-3.

Our approach considers every SCSG of the graph one by one. In every iteration of

our method, we try to find a formula at every node of the SCSG under consideration.

This formula is originally represented as a template with unknown coefficients. We

then form a system of constraints involving the template coefficients in the Max-SMT

framework. In a Max-SMT problem, some of the constraints are hard, meaning that any

solution to the system of constraints must satisfy them, and others are soft, which may

or may not be satisfied. Soft constraints carry a weight, and the goal of the Max-SMT

solver is to find a solution for the hard constraints such that the sum of the weights for

the soft constraints violated by the solution is minimized. In our method, essentially

the hard constraints encode that the formula should obey the consecution condition,

and every soft constraint encodes that the formula will disable an exit edge. A solution

to this system of constraints assigns values to template coefficients, thus giving us the

required formula at every node.

Consider the analysis of SCSG-3 (refer to Figure 4.1(d)). Note that there is a

single node `1 and a single transition τ3 in SCSG-3. We denote by E = {τ2, τ4, τ5}

the set of exit edges for SCSG-3. By Q`1(i, j) we denote the quasi-invariant at node

`1. Initially Q`1(i, j) , true. In the first iteration, for node `1 we assign a template

M`1(i, j) : a.i + b.j ≤ c with template coefficients a, b and c over the integers. After we

solve the Max-SMT problem described below, we update Q`1 by conjoining M`1 with

1We define simplified CFGs in Section 4.2
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the template coefficients instantiated with the model found by the solver.

The Max-SMT problem that we form consists of the following system of hard and

soft constraints:

(Consecution) ∀ i, j, i′, j′. M`1(i, j) ∧ Q`1(i, j) ∧ Rτ3(i, j, i
′, j′)→M`1(i

′, j′)

(Edge-Closing) For all τ ∈ E: ∀ i, j. M`1(i, j) ∧ Q`1(i, j)→ ¬Rτ (i, j)

The consecution constraint is hard, while the edge-closing constraints are soft

(with weight, say, 1). The edge-closing constraint for τ ∈ E encodes that, from any

state satisfying M`1(i, j) ∧ Q`1(i, j), the transition τ is disabled and cannot be executed.

In the first iteration, a solution for M`1 gives us the formula j ≥ 1. This formula

satisfies the edge-closing constraints for τ2 and τ5. We conjoin this formula to Q`1 ,

updating it to Q`1(i, j) , j ≥ 1. We also update E = {τ4} by removing τ2 and τ5, as

these edges are now disabled.

In the second iteration, we again consider the same template M`1(i, j) and try to

solve the Max-SMT problem above with updated Q`1(i, j) and E. This time we get a

solution that gives us the formula i ≥ 1, which satisfies the edge-closing constraint for

τ4. We again update Q`1(i, j) , j ≥ 1 ∧ i ≥ 1 by conjoining this new formula. We

updateE = ∅ by removing the disabled edge τ4. Now all exit edges have been disabled,

and thus the quasi-invariant Q`1(i, j) is edge-closing.

In the final step of our method, we use a reachability checker to determine if

some state satisfying Q`1(i, j) at location `1 is reachable. This test succeeds, and a path

`0 → `1 → `1 is obtained. Notice that the path goes through the loop once before we

reach the required state. At this point, we have proved non-termination of the original

program.

4.2 Preliminaries
In this section we discuss some preliminary concepts which are specific to this chapter.

SMT and Max-SMT

Let P be a finite set of propositional variables. If p ∈ P , then p and ¬p are literals.

The negation of a literal l, written ¬l, denotes ¬p if l is p, and p if l is ¬p. A clause

is a disjunction of literals. A propositional formula is a conjunction of clauses. The

problem of propositional satisfiability (abbreviated as SAT) consists of, given a for-
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mula, determining whether or not it is satisfiable, i.e., if it has a model: an assignment

of Boolean values to variables that satisfies the formula.

An extension of SAT is the satisfiability modulo theories (SMT) problem

[BHMW09]: to decide the satisfiability of a given quantifier-free first-order formula

with respect to a background theory. In this setting, a model (which we may also refer

to as a solution) is an assignment of values from the theory to variables that satisfies the

formula. Here we will consider the theories of linear real/integer arithmetic (LRA/LIA),

where literals are linear inequalities over real and integer variables respectively, and the

more general theories of non-linear real/integer arithmetic (NRA/NIA), where literals

are polynomial inequalities over real and integer variables, respectively. We will also

consider the theory of non-linear integer and real arithmetic (NIRA), where literals are

polynomial inequalities over both integer and real variables.

Another generalization of SAT is the Max-SAT problem [BHMW09]: it consists

of, given a weighted formula where each clause has a weight (a positive number or

infinity), finding the assignment such that the cost, i.e., the sum of the weights of the

falsified clauses, is minimized. Clauses with infinite weight are called hard, while the

rest are called soft. Equivalently, the problem can be seen as finding the model of the

hard clauses such that the sum of the weights of the falsified soft clauses is minimized.

Finally, the problem of Max-SMT [NO06] merges Max-SAT and SMT, and is

defined from SMT analogously to how Max-SAT is derived from SAT. Namely, the

Max-SMT problem consists of, given a weighted formula, finding an assignment that

minimizes the sum of the weights of the falsified clauses in the background theory.

Simplified CFGs

Our technique is applicable to sequential non-deterministic programs with integer vari-

ables and commands whose transition relations can be expressed in linear (integer)

arithmetic.

In this chapter, the definition of a program differs from Definition 2.2. Note that

Definition 2.2 restricts a transition to represent a unique program command. In the new

definition a transition can be a composition of several consecutive program commands.

This helps us represent a program using a simplified CFG, and a transition can be

represented by a formula with several conjuncts, which makes application of Max-SMT
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very efficient.

Formally a program is a tuple (v,u,L, T ,Θ) where v is a tuple of program vari-

ables, u is a tuple of non-deterministic variables, L is a set of locations, T is a set of

transitions and Θ is a formula over v representing the program’s precondition. Each

transition τ ∈ T is a triple (`, `′,R), where `, `′ ∈ L are the pre and post locations

respectively, andR is the transition relation: a formula over the non-deterministic vari-

ables u, the program variables v and their primed versions v′, which represent the values

of the variables after the transition. The transition relation of a non-deterministic as-

signment of the form i := nondet(), where i ∈ v, is represented by the formula i′ = u1,

where u1 ∈ u is a fresh non-deterministic variable. Note that u1 is not a program vari-

able, i.e., u1 /∈ v, and is added only to model the non-deterministic assignment. Thus,

without loss of generality on the kind of non-deterministic programs we can model,

we will assume that every non-deterministic variable appears in at most one transition

relation. A transition that includes a non-deterministic variable in its transition relation

is called non-deterministic (abbreviated as nondet). We represent by `I ∈ L and

`F ∈ L, the initial location and the final location of a program respectively.

In what follows we will assume that transition relations are described as con-

junctions of linear inequalities over program variables and non-deterministic variables.

Given a transition relationR = R(v,u, v′), we will useR(v) to denote the conditional

part of R, i.e., the conjunction of linear inequalities in R containing only variables in

v. For a transition system modeling actual programs, the following conditions are true:

For τ = (`, `′,R) ∈ T : ∀v,u ∃v′.R(v)→ R(v,u, v′). (4.1)

For ` ∈ L \ {`F} :
∨

(`,`′,R)

R(v) ≡ true. (4.2)

For τ1 = (`, `1,R1), τ2 = (`, `2,R2) ∈ T , τ1 6= τ2 : R1(v) ∧R2(v) ≡ false. (4.3)

Condition (4.1) guarantees that next values for the program variables always exist if the

conditional part of the transition holds. Condition (4.2) expresses that, for any location

except the final location, at least one of the outgoing transitions from that location

can always be executed. Finally, condition (4.3) says that any two different transitions

from the same location are mutually exclusive, i.e., conditional branching is always
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deterministic.

Example 4.1. This new program definition allows us to create simplified CFGs. Let

us consider the program shown in Figure 4.2(a) and its simplified CFG in Figure 4.2(b)

that follows the new program definition. Every acyclic path in the original program

is represented via a single transition in the CFG using the new program definition.

For example the two loop paths are represented using two separate transitions τ2 and

τ3. Note how the two non-deterministic assignments have been replaced in the CFG

by assignments to fresh non-deterministic variables u1 and u2. We have `0 = `I and

`2 = `F . Condition (4.2) is trivially satisfied for `0, since the conditional part of its

outgoing transition relation is true. Regarding `1, clearly the formula (x ≥ y ∧ x ≥

0) ∨ (x ≥ y∧ x < 0) ∨ (x < y) is a tautology. Condition (4.3) is also easy to check:

the conditional parts of Rτ2 ,Rτ3 and Rτ4 are pairwise unsatisfiable in conjunction.

Finally, condition (4.1) trivially holds since the primed parts of the transition relations

consist of equalities whose left-hand side is always a different variable.

`0: int x, y;
`1: while (x ≥ y)

if (x ≥ 0) {
x := nondet();
y := y + 1;

}
else
y := nondet();

`2:

`0 `1 `2
τ1

τ2

τ3

τ4

Rτ1 : x′=x ∧ y′=y

Rτ2 : x ≥ y ∧ x ≥ 0 ∧
x′=u1 ∧ y′=y + 1

Rτ3 : x ≥ y ∧ x < 0 ∧
x′=x ∧ y′=u2

Rτ4 : x < y ∧ x′=x ∧
y′=y

(a) (b)

Figure 4.2: Program involving non-deterministic assignments (a), and its simplified CFG (b)

The definitions of memory and program states, and computations remain the same

as in Chapter 2: now they are only defined over the new program definition.

4.3 Quasi-invariants and Non-termination
Here we will introduce the core concept of this work, that of a quasi-invariant: a prop-

erty such that, if it is satisfied at a location during execution once, then it continues

to hold at that location from then onwards. The importance of this notion resides in
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the fact that it is a key ingredient in our witnesses of non-termination: if each location

of an SCSG can be mapped to a quasi-invariant that is edge-closing, i.e., that forbids

executing any of the outgoing transitions that leave the SCSG, and the SCSG can be

reached at a program state satisfying the corresponding quasi-invariant, then the pro-

gram is non-terminating (if nondet transitions are present, additional properties are

required, as will be seen below). A constructive proof of this claim is given at the end

of this section.

First of all, let us define basic notation. For a strongly connected subgraph (SCSG)

C of a program’s CFG, we denote by LC the set of locations of C, and by T C the set of

edges of C. We define EC def
= {τ = (`, `′,R) | ` ∈ LC, τ /∈ T C} to be the set of exit

edges of C.

Consider a map Q that assigns a formula Q`(v) to each of the locations ` ∈ LC .

Consider also a map U that assigns a formula Uτ (v,u) to each transition τ ∈ T C , which

represents the restriction that the non-deterministic variables must obey.2 The map Q

is a quasi-invariant map on C with restriction U if:

(Consecution)

For τ = (`, `′,R) ∈ T C : ∀v,u, v′. Q`(v) ∧R(v,u, v′) ∧ Uτ (v,u)→ Q`′(v′) (4.4)

Condition (4.4) says that, whenever a state at ` ∈ LC satisfying Q` is reached and a

transition from ` to `′ can be executed, then the resulting state satisfies Q`′ . This condi-

tion corresponds to the consecution condition for inductive invariants. Since inductive

invariants are additionally required to satisfy initiation conditions [CSS03], we refer to

properties satisfying condition (4.4) as quasi-invariants, hence the name for Q.

Example 4.2. In order to explain the roles of Q and U , consider the program in Fig-

ure 4.2. It is easy to see that if x ≥ y were a quasi-invariant at `1, the program would

be non-terminating (provided `1 is reachable with a state such that x ≥ y). However,

due to the non-deterministic assignments, the property is not a quasi-invariant. On the

other hand, if we add the restrictions Uτ2 := u1 ≥ x + 1 and Uτ3 := u2 ≤ y, which

constrain the non-deterministic choices in the assignments, the quasi-invariant holds

2For the sake of presentation, we assume that Uτ is defined for all transitions, whether they are
deterministic or not. In the former case, by convention Uτ is true.
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and non-termination is proved.

Additionally, our method also needs that Q and U are reachable and unblocking:

(Reachability) ∃ ` ∈ LC. ∃ σ s.t. (`, σ) is reachable and σ |= Q`(v) (4.5)

(Unblocking) For τ = (`, `′,R) ∈ T C : ∀v∃u. Q`(v) ∧R(v)→ Uτ (v,u) (4.6)

Condition (4.5) says that there exists a computation reaching a program state (`, σ)

such that σ satisfies the quasi-invariant at location `.

As for condition (4.6), consider a memory state σ at some ` ∈ LC satisfyingQ`(v).

This condition says that, for any transition τ = (`, `′,R) ∈ T C from `, if σ satisfies

the conditional partR(v), then we can always make a choice for the non-deterministic

assignment that obeys the restriction Uτ (v,u).

The last property we require from quasi-invariants is that they are edge-closing.

Formally, the quasi-invariant mapQ on C is edge-closing if it satisfies all of the follow-

ing constraints:

(Edge-Closing) For τ = (`, `′,R) ∈ EC : ∀v. Q`(v)→ ¬R(v) (4.7)

Condition (4.7) says that, from any state at ` ∈ LC that satisfies Q`(v), all the exit

transitions are disabled and cannot be executed.

The following is the main result of this section:

Theorem 4.1. The existence of Q, U that satisfy (4.4), (4.5), (4.6) and (4.7) for a

certain non-trivial SCSG C of a CFG P imply non-termination of P .

In order to prove Theorem 4.1, we need the following lemma:

Lemma 4.2. Let us assume that Q, U satisfy (4.4), (4.6) and (4.7) for a certain non-

trivial SCSG C. Let (`, σ) be a program state such that ` ∈ LC and σ |= Q`(v). Then

there exists a program state (`′, σ′) such that `′ ∈ LC , σ′ |= Q`′(v) and (`, σ)
τ→ (`′, σ′)

for a certain τ ∈ T C .

Proof. By condition (4.2) (which is implicitly assumed to hold), there is a transition

τ of the form (`, `′,R) for a certain `′ ∈ L such that σ |= R(v). Now, by virtue of

condition (4.7), since σ |= Q`(v) we have that τ ∈ T C . Thus, `′ ∈ LC . Moreover,
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thanks to condition (4.6) and σ |= Q`(v) and σ |= R(v), we deduce that there exist

values ν for the non-deterministic variables u such that (σ, ν) |= Uτ (v,u). Further,

by condition (4.1) (which is again implicitly assumed), we have that there exists a

state σ′ such that (σ, ν, σ′) |= R(v,u, v′). All in all, by condition (4.4) and the fact that

σ |= Q`(v) and (σ, ν, σ′) |= R(v,u, v′) and (σ, ν) |= Uτ (v,u), we get that σ′ |= Q`′(v′),

or equivalently by renaming primed variables in σ′ to their unprimed versions, we get

σ′ |= Q`′(v). So (`′, σ′) satisfies the required properties.

Now we are ready to prove Theorem 4.1:

Proof. [of Theorem 4.1] We will construct an infinite computation, which will serve

as a witness of non-termination. Thanks to condition (4.5), we know that there exist a

location ` ∈ LC and a memory state σ such that (`, σ) is reachable and σ |= Q`(v). As

(`, σ) is reachable, there is a computation π whose last program state is (`, σ). Now,

sinceQ, U satisfy (4.4), (4.6) and (4.7) for C, and ` ∈ LC and σ |= Q`(v), we can apply

Lemma 4.2 to inductively extend π to an infinite computation of P .

4.4 Computing Proofs of Non-termination
In this section we explain how proofs of non-termination are effectively computed. As

outlined in Section 4.1, first of all we exhaustively enumerate the SCSGs of the CFG.

For each SCSG C, our non-termination proving procedure PROVER-MAXSMT, which

will be described below, is called. By means of Max-SMT solving, this procedure

iteratively computes an unblocking quasi-invariant map Q and a restriction map U for

C. If the construction is successful and eventually edge-closedness can be achieved, and

moreover the quasi-invariants of C can be reached, then the synthesizedQ, U satisfy the

properties of Theorem 4.1, and therefore the program is guaranteed not to terminate.

In a nutshell, the enumeration of SCSGs considers a strongly connected compo-

nent (SCC) of the CFG at a time, and then generates all the SCSGs included in that

SCC. More precisely, first of all the SCCs are considered according to a topological

ordering in the CFG. Then, once an SCC S is fixed, the SCSGs included in S are

heuristically enumerated starting from S itself (since taking a strictly smaller subgraph

would imply discarding some transitions a priori arbitrarily), then simple cycles in S

(as they are easier to deal with), and then the rest of SCSGs included in S.

52



PROVER-MAXSMT (SCSG C, CFG P )
For ` ∈ LC , set Q`(v)← true
For τ ∈ T C , set Uτ (v,u)← true
EC ← EC
while EC 6= ∅ do

At ` ∈ LC , assign a template M`(v)
At τ ∈ T C , assign a template N`(v,u)
Solve Max-SMT problem with

hard constraints (4.8), (4.9), (4.10) and soft constraints (4.11)
if no model for hard clauses is found then return Unknown, ⊥ fi
For ` ∈ LC , let M̂`(v) = Solution for M`(v)

For τ ∈ T C , let N̂τ (v,u) = Solution for Nτ (v,u)

For ` ∈ LC , set Q`(v)← Q`(v) ∧ M̂`(v)

For τ ∈ T C set Uτ (v,u)← Uτ (v,u) ∧ N̂τ (v,u)
Remove from EC disabled edges

done
for all ` ∈ LC do

if Reachable (`, σ) in P s.t. σ |= Q`(v) then
let π = reachable path to (`, σ)
return Non-Terminating, (Q, U , π)

fi
done
return Unknown, ⊥

Figure 4.3: Procedure PROVER-MAXSMT for proving non-termination of a program P by
analyzing SCSG C

Then, once the SCSG C is fixed, our non-termination proving procedure PROVER-

MAXSMT (Figure 4.3) is called. The procedure takes as input an SCSG C of the

program’s CFG, and the CFG itself. For every location ` ∈ LC , we initially assign

a quasi-invariant Q`(v) , true. Similarly, for every transition τ ∈ T C , we initially

assign a restriction Uτ (v,u) , true. The setEC keeps track of the exit edges of C that

have not been discarded yet, and hence at the beginning we have EC = EC . Then we

iterate in a loop in order to strengthen the quasi-invariants and restrictions till EC = ∅,

that is, all the exit edges of C are disabled.

In every iteration we assign a template M`(v) ≡ m`,0 +
∑

v∈v m`,v · v ≤ 0 to each

` ∈ LC . We also assign a templateNτ (v,u) ≡ nτ,0+
∑

v∈v nτ,v ·v+
∑

u∈u nτ,u ·u ≤ 0 to
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each τ ∈ T C .3 Then we form the Max-SMT problem with the following constraints:4

• For τ = (`, `′,R) ∈ T C :

∀v,u, v′. Q`(v) ∧M`(v) ∧R(v,u, v′) ∧ Uτ (v,u) ∧Nτ (v,u)→M`′(v′) (4.8)

• For ` ∈ LC : ∃v. Q`(v) ∧M`(v) ∧
∨

τ=(`,`′,R)∈T C
R(v) (4.9)

• For τ = (`, `′,R) ∈ T C :

∀v∃u. Q`(v) ∧M`(v) ∧R(v)→ Uτ (v,u) ∧Nτ (v,u) (4.10)

• For τ = (`, `′,R) ∈ EC : ∀v. Q`(v) ∧M`(v)→ ¬R(v) (4.11)

The constraints (4.8), (4.9) and (4.10) are hard, while the constraints (4.11) are soft.

The Max-SMT solver finds a solution M̂`(v) for every M`(v) for ` ∈ LC and a

solution N̂τ (v,u) for every Nτ (v,u) for τ ∈ T C . M̂`(v) and N̂τ (v,u) are the same as

M`(v) and Nτ (v,u) respectively, but with the template coefficients instantiated using

the model found by the Max-SMT solver. This solution satisfies the hard constraints

and as many soft constraints as possible. In other words, it is the best solution for

the hard constraints that disables the maximum number of transitions. We then update

Q`(v) for every ` ∈ LC by strengthening it with M̂`(v), and update Uτ (v,u) for every

τ ∈ T C by strengthening it with N̂τ (v,u). We then remove all the disabled transitions

from EC and continue the iterations of the loop with updated Q, U and EC . Note that,

even if none of the exit edges is disabled in an iteration (i.e. no soft constraint is met),

the quasi-invariants found in that iteration may be helpful for disabling exit edges later.

When all exit transitions are disabled, we exit the loop with the unblocking edge-

closing quasi-invariant map Q and the restriction map U .

Finally, we check whether there exists a reachable program state (`, σ) such that

` ∈ LC and σ |= Q`(v) with an off-the-shelf reachability checker. If this test succeeds,

we report non-termination along with Q,U and the path π reaching (`, σ) as a witness

of non-termination.

The next theorem formally states that PROVER-MAXSMT proves non-

termination:

3Actually templates Nτ (v,u) are only introduced for nondet transitions. To simplify the presenta-
tion, we assume that for other transitions, Nτ (v,u) is true.

4For clarity, the leftmost existential quantifiers over the unknowns of the templates are implicit.
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Theorem 4.3. If procedure PROVER-MAXSMT terminates on input SCSG C and CFG

P with Non-Terminating, (Q, U , π), then program P is non-terminating, and (Q, U ,

π) allows building an infinite computation of P .

Proof. Let us prove that, if PROVER-MAXSMT terminates with Non-Terminating,

(Q, U , π), then the conditions of Theorem 4.1, i.e., conditions (4.4), (4.5), (4.6) and

(4.7) are met.

First of all, let us prove by induction on the number of iterations of the while loop

that conditions (4.4) and (4.6) are satisfied, and also that for τ = (`, `′,R) ∈ EC − EC ,

∀v. Q`(v)→ ¬R(v).

Before the loop is executed, for all locations ` ∈ LC we have that Q`(v) , true

and for all τ ∈ T C we have that Uτ (v,u) , true. Conditions (4.4) and (4.6) are

trivially met. The other remaining condition holds since initially EC = EC .

Now let us see that each iteration of the loop preserves the three conditions. Re-

garding (4.4), by induction hypothesis we have that for τ = (`, `′,R) ∈ T C ,

∀v,u, v′. Q`(v) ∧R(v,u, v′) ∧ Uτ (v,u)→ Q`′(v′).

Moreover, the solution computed by the Max-SMT solver satisfies constraint (4.8), i.e.,

has the property that for τ = (`, `′,R) ∈ T C ,

∀v,u, v′. Q`(v) ∧ M̂`(v) ∧R(v,u, v′) ∧ Uτ (v,u) ∧ N̂τ (v,u)→ M̂`′(v′).

Altogether, we have that for τ = (`, `′,R) ∈ T C ,

∀v,u, v′.(Q`(v)∧ M̂`(v))∧R(v,u, v′)∧ (Uτ (v,u)∧ N̂τ (v,u))→ (Q`′(v′)∧ M̂`′(v′)).

Hence condition (4.4) is preserved.

As for condition (4.6), the solution computed by the Max-SMT solver satisfies

constraint (4.10), i.e., has the property that for τ = (`, `′,R) ∈ T C ,

∀v∃u. (Q`(v) ∧ M̂`(v)) ∧R(v)→ (Uτ (v,u) ∧ N̂τ (v,u)).
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Thus, condition (4.6) is preserved.

Regarding condition (4.7), note that the transitions τ = (`, `′,R) ∈ EC that satisfy

the soft constraints (4.11), i.e., such that

∀v. (Q`(v) ∧ M̂`(v))→ ¬R(v)

are those removed from EC . Therefore, this preserves the property that for τ =

(`, `′,R) ∈ EC − EC ,

∀v. Q`(v)→ ¬R(v).

Now, if the while loop terminates, it must be the case that EC = ∅. Thus, on exit of the

loop, condition (4.7) is fulfilled.

Finally, if Non-Terminating, (Q, U , π) is returned, then there is a location ` ∈ LC

and a state satisfying σ |= Q`(v) such that configuration (`, σ) is reachable. That is,

condition (4.5) is satisfied.

Hence, all conditions of Theorem 4.1 are fulfilled. Therefore, P does not ter-

minate. Moreover, the proof of Theorem 4.1 gives a constructive way of building an

infinite computation by means of Q, U and π.

Note that constraint (4.9):

For ` ∈ LC : ∃v. Q`(v) ∧M`(v) ∧
∨

τ=(`,`′,R)∈T C
R(v)

is not actually used in the proof of Theorem 4.3, and thus is not needed for the cor-

rectness of the approach. Its purpose is rather to help PROVER-MAXSMT to avoid

getting into dead-ends unnecessarily. Namely, without (4.9) it could be the case that

for some location ` ∈ LC , we computed a quasi-invariant that forbids all transitions

τ ∈ T C from `. Since PROVER-MAXSMT only strengthens quasi-invariants and does

not backtrack, if this situation were reached the procedure would probably not succeed

in proving non-termination.

Now let us describe how constraints are effectively solved. Although it is not

necessary, we restrain the coefficients of templates M`(v) and Nτ (v,u) to take integer

values. This allows us to exploit efficient non-linear solving techniques [BLN+09].
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The formula in constraint (4.9) is an existentially quantified formula in NIA and can

be directly handled by a Max-SMT solver. The constraints (4.8) and (4.11) are univer-

sally quantified over integer variables. Following the same ideas of constraint-based

linear invariant generation [CSS03], these constraints are soundly transformed into an

existentially quantified formula in NIRA by abstracting program and non-deterministic

variables and considering them as reals, and then applying Farkas’ Lemma. The Farkas

multipliers are reals but the template coefficients are imposed to be integers (i.e., only

values from the domain of integers are allowed) and thus this formula is in NIRA. As

regards constraint (4.10), the alternation of quantifiers in

∀v∃u. Q`(v) ∧M`(v) ∧R(v)→ Uτ (v,u) ∧Nτ (v,u)

is dealt with by introducing a template Pu,τ (v) ≡ pu,τ,0 +
∑

v∈v pu,τ,v · v for each u ∈ u

and skolemizing. This yields5 the formula

∀v. Q`(v) ∧M`(v) ∧R(v)→ Uτ (v, Pu,τ (v)) ∧Nτ (v, Pu,τ (v)),

which implies constraint (4.10), and to which Farkas’ Lemma can be applied as above.

Note that, since the Skolem function is not symbolic but an explicit linear function

of the program variables, potentially one might lose solutions. Also note that, the

coefficients of the templates Pu,τ (v) are imposed to be integers. Since program vari-

ables have integer type, this guarantees that only integer values are assigned in the

non-deterministic assignments of the infinite computation that proves non-termination.

Thus the resulting formula is also in NIRA.

Finally, after these transformations, a weighted formula in NIRA containing hard

and soft clauses is obtained and the resulting problem is handled by a Max-SMT(NIRA)

solver [NO06, BLN+09, LORR14].

There are some other issues about our implementation of the procedure that are

worth mentioning. Regarding how the weights of the soft clauses are determined, we

follow a heuristic aimed at discarding “difficult” transitions in EC as soon as possible.

Namely, the edge-closing constraint (4.11) of transition τ = (`, `′,R) ∈ EC is given a

5Again, existential quantifiers over template unknowns are implicit.
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weight which is inversely proportional to the number of literals in R(v). Thus, transi-

tions with few literals in their conditional part are associated with large weights, and

therefore the Max-SMT solver prefers to discard them over others. The rationale is

that for these transitions there may be more states that satisfy the conditional part, and

hence they may be more difficult to rule out. Altogether, it is convenient to get rid of

them before quasi-invariants become too constrained.

Finally, as regards condition (4.3), our implementation can actually handle transi-

tion systems for which this condition does not hold. This may be interesting in situa-

tions where, e.g., non-determinism is present in conditional statements, and one does

not want to introduce additional variables and locations as was done in Section 4.2 for

presentation purposes. The only implication of overriding condition (4.3) is that, in

this case, the properties that must be discarded in soft clauses of condition (4.11) are

not the transitions leaving the SCSG under consideration, but rather the negation of the

transitions staying within the SCSG.

4.5 Advantages

We now discuss some key advantages of the PROVER-MAXSMT procedure.

Similar to the PROVER-SAFETY procedure, PROVER-MAXSMT procedure can

handle unbounded non-determinism. As described in Section 3.5 the PROVER-SAFETY

procedure needs to eliminate each and every terminating path through a loop and thus

it may diverge on many loops. Other techniques like [GHM+08] are also very likely

to diverge due to reasons explained in Section 1.2. The PROVER-MAXSMT procedure

does not suffer from such drawbacks and is more likely to converge.

The procedure can handle nested loops easily, as the following examples show.

Example 4.3. Let’s revisit Example 1.1. The CFG for this example is shown in Fig-

ure 4.4(a). During the analysis of the SCSG shown in Figure 4.4(b), our procedure

finds an edge-closing quasi-invariant i = 0 at `4. This quasi-invariant is reachable and

thus we have proved non-termination.
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`1 `2 `4

`8

τ1

τ2 τ3

τ4

τ8

τ6

τ7

τ5 Rτ1 : i = 10 ∧ i′ = i

Rτ2 : i ≤ 9 ∧ i′ = i

Rτ3 : i ≥ 11 ∧ i′ = i

Rτ4 : i ≥ 1 ∧ i′ = i− 1

Rτ5 : i = 0 ∧ i′ = i

Rτ6 : i ≤ −1 ∧ i′ = i

Rτ7 : i ≥ 1 ∧ i′ = i

Rτ8 : i ≤ 0 ∧ i′ = i

(a)

`4
τ6

τ7

τ5

(b)

Figure 4.4: (a) Simplified CFG for program of Figure 1.1 and (b) the SCSG involved in non-
termination

`1 `4

`7

τ1

τ2
τ4

τ3
Rτ1 : i ≥ 1 ∧ i′ = i + 1 ∧ j′ = 2

Rτ2 : i ≤ 0 ∧ i′ = i ∧ j′ = j

Rτ3 : j ≥ 1 ∧ j′ = j− 1 ∧ i′ = i

Rτ4 : j ≤ 0 ∧ i′ = i ∧ j′ = j

(a)

`1 `4

τ1

τ2

τ4

τ3

(b)

Figure 4.5: (a) Simplified CFG for program of Figure 1.2 and (b) the SCSG involved in Non-
termination

Example 4.4. Let’s revisit Example 1.2. The CFG for this example is shown in Fig-

ure 4.5(a). During the analysis of the SCC shown in Figure 4.5(b), our procedure finds

a quasi-invariant i ≥ 1 at both `1 and `4. The quasi-invariant at `1 is edge-closing for

the SCC and is also reachable. Thus we have proved non-termination.
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`1 `2

`13

τ1

τ2

τ4

τ3

τ5

Rτ1 : j ≥ 0 ∧ j′ = j ∧ i′ = i ∧ k′ = k

Rτ2 : j ≤ −1 ∧ j′ = j ∧ i′ = i ∧ k′ = k

Rτ3 : i ≥ j ∧ i− j ≥ 1 ∧ i′ = i− 1 ∧ j′ = j ∧ k′ = i− j

Rτ4 : i ≥ j ∧ i− j ≤ 0 ∧ i′ = 2× i + 1 ∧ j′ = j + 1 ∧ k′ = i− j

Rτ5 : i ≤ j− 1 ∧ i′ = i ∧ j′ = j ∧ k′ = k

(a)

`2

τ4

τ3

τ5

(b)

Figure 4.6: (a) Simplified CFG for program of Figure 1.3 and (b) the SCSG involved in Non-
termination

As the following examples show, the PROVER-MAXSMT procedure can also han-

dle aperiodic non-termination arising from single as well as nested loops.

Example 4.5. Let’s revisit Example 1.5. The CFG for this example is shown in Fig-

ure 4.6(a). During the analysis of the SCC shown in Figure 4.6(b), our procedure finds

an edge-closing quasi-invariant i ≥ j at `2. Moreover, it is also reachable. Thus we have

proved non-termination.

Example 4.6. Let’s revisit Example 1.6. The CFG for this example is shown in Fig-

ure 4.7(a). During the analysis of the SCC shown in Figure 4.7(b), our procedure finds

a quasi-invariant k ≥ 1 at both `1 and `4. The quasi-invariant at `1 is edge-closing for

the SCC. Moreover, it is also reachable. Thus we have proved non-termination.

4.6 Limitations
The PROVER-MAXSMT is limited to programs with linear integer arithmetic com-

mands. Extending the technique to programs with non-linear arithmetic commands or

to programs with other features (e.g. heap based commands or real variables) is cer-

tainly non-trivial. As described in Section 4.4, the abstraction of integer variables to
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`1 `4

`7

τ1

τ2
τ4

τ3 Rτ1 : k ≥ 0 ∧ k′ = k + 1 ∧ j′ = k + 1

Rτ2 : k ≤ −1 ∧ k′ = k ∧ j′ = j

Rτ3 : j ≥ 1 ∧ j′ = j− 1 ∧ k′ = k

Rτ4 : j ≤ 0 ∧ k′ = k ∧ j′ = j

(a)

`1 `4

τ1

τ2

τ4

τ3

(b)

Figure 4.7: (a) Simplified CFG for program of Figure 1.4 and (b) the SCSG involved in Non-
termination

reals to facilitate the application of Farkas’ Lemma, restricting template coefficients to

integers and skolemization of non-deterministic variables can potentially lose solutions.

This leads to additional incompleteness.

4.7 Summary and Outlook
We have presented a novel Max-SMT-based technique for proving that programs do

not terminate. The key notion of the approach is that of a quasi-invariant, which is a

property such that if it holds at a location during execution once, then it continues to

hold at that location from then onwards. The method considers one SCSG of the control

flow graph at a time, and thanks to Max-SMT solving, generates a quasi-invariant for

each location. Weights of soft constraints guide the solver towards quasi-invariants that

are also edge-closing, i.e., that forbid any transition exiting the SCSG. If an SCSG with

edge-closing quasi-invariants is reachable, then the program is non-terminating. This

last check is performed with an off-the-shelf reachability checker.

As regards future research, an important improvement would be to couple the

reachability checker with the quasi-invariant generator, so that the invariants synthe-

sized by the former in unsuccessful attempts are reused by the latter when producing

quasi-invariants. Another line for future work is to combine the termination technique

in [LORR13] and the non-termination technique presented here. Following a simi-
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lar approach to [BCF13], if the termination analyzer fails, it can communicate to the

non-termination tool the transitions that were proved not to belong to any infinite com-

putation. Conversely, when a failed non-termination analysis ends with an unsuccessful

reachability check, one can pass the computed invariants to the termination system, as

done in [HLNR10].
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Chapter 5

Proving Non-termination with

Overapproximation

5.1 Introduction
A program is terminating iff its transition relation (when restricted to reachable states)

is well-founded. Because every subrelation of a well-founded relation is itself well-

founded, if we prove an abstraction that overapproximates the program to be terminat-

ing, then we have proved the concrete program terminating. The reverse, unfortunately,

is not true: the existence of a non-terminating overapproximating abstraction does not

imply that the original concrete program is non-terminating. Thus, when proving non-

termination, we currently cannot make use of the many techniques from program anal-

ysis that overapproximate programs.

In this chapter we revisit the notion of a closed recurrence set and describe a

method to prove non-termination that makes use of overapproximation. As proved

in Chapter 3, the existence of a closed recurrence set for a program implies that the

program does not terminate. Curiously, the existence of a closed recurrence set for

an overapproximating abstraction (meeting certain restrictions, which we formalize as

live abstractions) also implies non-termination of the original concrete program. Thus,

when combined with our technique, we can now use overapproximating abstractions

when attempting to prove non-termination.

To demonstrate the usefulness of our approach we describe an experimental eval-

uation where non-linear, non-deterministic, and heap-based programs are proved to be

non-terminating using off-the-shelf overapproximating linear abstractions.



int i, j, k;
assume (j ≥ 1 ∧ k ≥ 1);
while (i ≥ 0) {
i := j × k;
j := j + 1;
k := k + 1;

`: skip;
}

int i, j, k;
assume (j ≥ 1 ∧ k ≥ 1);
while (i ≥ 0) {
i := nondet();
j := j + 1;
k := k + 1;

`: assume (i ≥ 1);
}

(a) (b)

Figure 5.1: Non-linear program (a), and its linear abstraction (b).

As discussed in detail in the chapter: not all overapproximating abstractions are

compatible with our approach. We address this problem by describing the conditions

on abstractions that make the abstraction sound for our approach, as the notion of live

abstractions. Many of the known abstractions indeed meet these conditions. Addition-

ally, closed recurrence sets are not complete, i.e. in some cases a closed recurrence set

will not exist for non-terminating programs. In these situations our approach can still

help in combination with previous techniques to disprove termination (e.g. underap-

proximation) in cases where existing techniques alone could not.

Similar to the tool TNT [GHM+08], our tool can compute the proofs of non-

termination only for simple lasso-shaped paths. Furthermore, as done in TNT, when

disproving termination of real programs with complex control-flow graphs, we must

first search for candidate lassos before applying our approach. Like TNT, our tool also

exhaustively searches the program’s control flow graph for candidate lassos. Alterna-

tively, candidate lassos can be obtained from a termination prover when it fails to prove

termination. Thus our technique can be combined with a termination prover.

5.2 Illustrating Example
Before formally introducing our approach, we first describe the idea informally using

an example. Imagine that we want to show non-termination of the toy program in

Figure 5.1(a).

We are looking to find initial values for i, j and k from which an infinite run is

possible. Indeed, such a run is possible: from the state (i = 1, j = 1, k = 1) the

program can perform a sequence of loop iterations via the states (i = 1, j = 2, k = 2),
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(i = 4, j = 3, k = 3), (i = 9, j = 4, k = 4), . . . leading to an infinite run. This set of

states G = {(i = 1, j = 1, k = 1), (i = 1, j = 2, k = 2), (i = 4, j = 3, k = 3), (i = 9, j =

4, k = 4), . . .} meets the criterion of a recurrence set.

Now the question is, how can we automatically find such a proof of non-

termination? The difficulty here is the non-linear assignment i := j× k: most automatic

formal verification techniques struggle to support non-linear arithmetic in a scalable

fashion. An arbitrary overapproximation of this program will not help in this context.

The problem is that if we prove non-termination of the overapproximation we still have

not proved non-termination of the original concrete program. The reason is that—due

to the nature of overapproximation—a non-terminating execution in the overapproxi-

mation need not correspond to any execution in the concrete program.

To avoid this problem we can use an overapproximating abstraction of our pro-

gram such that the abstraction satisfies certain conditions. We call such an abstraction

a live abstraction. See Section 5.3. Such an abstraction is shown in Figure 5.1(b). This

abstraction uses non-deterministic choice (i.e. nondet) to abstract away the non-linear

command and also uses a linear location invariant at location ` from the original pro-

gram (i ≥ 1). Note that in Figure 5.1(b) we do not alter the loop condition from the

original program but only overapproximate the transitions that can take place inside

the loop. This abstraction is a live abstraction and is thus a safe abstraction for our

approach. Later in Section 5.3 we give the necessary conditions for an abstraction to

be a live abstraction. Most of the abstractions used in the termination literature satisfy

the properties of a live abstraction.

Our approach is based on the following insight: if we can prove existence of a

set of states G at the loop head in the live abstraction meeting the following conditions

then we know that both the abstraction and the original concrete program are non-

terminating: a) G is nonempty and at least one state in G is reachable, b) every state

in G has at least one transition, and c) all transitions from G in the abstraction only

lead to G. In other words, G meets the conditions of a closed recurrence set defined

in Section 3.2. This now allows us to use tools on the overapproximating abstraction

rather than the original program to establish non-termination. Here such a set could be

given by G = {s | s |= i ≥ 1}.
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int i, j, k, m;
assume (j ≥ 1 ∧ k ≥ 1);
while (i ≥ 0 ∧ m ≥ 0) {
i := j × k;
j := j + 1;
k := k + 1;
m := nondet();
}

int i, j, k, m;
assume (j ≥ 1 ∧ k ≥ 1);
while (i ≥ 0 ∧ m ≥ 0) {
i := j × k;
j := j + 1;
k := k + 1;
m := nondet();
assume (m ≥ 0);
}

(a) (b)

int i, j, k, m;
assume (j ≥ 1 ∧ k ≥ 1);
while (i ≥ 0 ∧ m ≥ 0) {
i := nondet();
j := j + 1;
k := k + 1;
m := nondet();
assume (m ≥ 0);
assume (i ≥ 1);

}

(c)

Figure 5.2: Non-linear program (a), its underapproximation (b), and the resulting linear ab-
straction (c).

Combining over- and underapproximation

Sometimes closed recurrence sets are alone not enough: we may still require the use of

underapproximation. However, even then, our approach facilitates the mixture of over-

and underapproximation to make more powerful non-termination proving tools.

Consider the program in Figure 5.2(a). Here it is difficult to find a useful linear

overapproximation directly because of the non-deterministic assignment to the vari-

able m. However if an underapproximation of a program is non-terminating, then

the original program itself is non-terminating as well. Here we can use known tech-

niques to automatically find an underapproximation that rules out the unwanted transi-

tions. Consider the program in Figure 5.2(b), an underapproximation of the program

in Figure 5.2(a) restricting the choice for non-deterministic assignment to the vari-

able m. Using our approach we can now easily find a useful linear overapproximation

that is a live abstraction for this program. The program in Figure 5.2(c) is a linear
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overapproximation of the underapproximation in Figure 5.2(b). Here, we can find a

closed recurrence set G = {s | s |= i ≥ 1 ∧m ≥ 0} for the program in Figure 5.2(c),

which proves non-termination of the program in Figure 5.2(b), which in turn proves

non-termination of the program in Figure 5.2(a). Note that it is unsound to first over-

approximate and then underapproximate: as in this example we must first underap-

proximate and then overapproximate. Also note that for overapproximations we only

consider live abstractions.

5.3 Closed recurrence sets and overapproximation
We start with an example which will help us facilitate the discussion in this section.

Example 5.1. Consider the example in Figure 5.1(a). Using Definition 2.8 we can

describe the loop and its initial condition as a transition system (S,R, I, F ) where any

state s is basically a tuple (i, j, k) of values of variables and S = Z3, R = {(s, s′) |

s, s′ � i ≥ 0 ∧ i′ = j × k ∧ j′ = j + 1 ∧ k′ = k + 1}, I = {s | s � j ≥ 1 ∧ k ≥ 1},

F = {s | s � i < 0}.

We now discuss closed recurrence sets and their relationship to overapproxima-

tion. We first revisit the definition of recurrence sets from Section 2.2. A transition

system (S,R, I, F ) has a recurrence set (or open recurrence set) of states G iff

∃s.G(s) ∧ I(s), (2.1)

∀s∃s′.G(s)→ R(s, s′) ∧ G(s′). (2.2)

Quantifier alternation as in Condition (2.2) can be a headache for automation. To

avoid this problem Gupta et al. [GHM+08] restrict the transition relation to determin-

istic programs only. In this case we can represent the post-state s′ using a unique

expression in terms of the pre-state s. Thus the existential quantifier can be eliminated

by instantiating it with the expression for the post-state.

Example 5.2. For the loop from Figure 5.1(a), we can have a recurrence set G = {(i =

1, j = 1, k = 1), (i = 1, j = 2, k = 2), (i = 4, j = 3, k = 3), (i = 9, j = 4, k = 4), . . . }.

We now revisit the definition of closed recurrence sets from Section 3.2. A set G
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is a closed recurrence set for a transition system (S,R, I, F ) iff

∃s.G(s) ∧ I(s) (3.1)

∀s∃s′.G(s)→ R(s, s′) (3.2)

∀s∀s′.G(s) ∧R(s, s′)→ G(s′) (3.3)

This definition of closed recurrence sets has several advantages. Note that in con-

trast to open recurrence sets, the closed recurrence condition (3.3) is purely universal.

Without quantifier alternation, Farkas’ Lemma can now be applied directly. This now

helps us to incorporate non-deterministic transition systems too. Secondly, as we shall

see in Section 5.4, the interaction with overapproximation is improved. The downside

is that the condition can be too strong.

The existential quantifier in Condition (3.2) refers only to the (known) transition

relation R and, as we shall see in the Section 5.6 on automation, the condition can be

easily automated in spite of quantifier alternation when we search for a closed recur-

rence set G.

Example 5.3. For the loop from Figure 5.1(b), we can have a closed recurrence set

G = {s | s � i ≥ 1}. G satisfies all the conditions of a closed recurrence set.

5.4 Live abstractions
We now describe generic conditions on abstractions that are sufficient to establish

soundness for non-termination proving using our approach, in the form of live abstrac-

tions.

We assume that an abstraction of T = (S,R, I, F ) is a system Tα =

(Sα, Rα, Iα, Fα), with a concretion (or meaning) function [[·]] : Sα → P(S).

Definition 5.1 (Live Abstraction). An abstraction Tα = (Sα, Rα, Iα, Fα) is live iff

∀s∀s′∀a.R(s, s′) ∧ s ∈ [[a]]→ ∃a′.Rα(a, a′) ∧ s′ ∈ [[a′]] (Simulation)

∀f∀g. f ∈ F ∧ f ∈ [[g]]→ g ∈ Fα (Upward Termination)
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The Simulation (or, ‘up simulation’) condition is a standard one for overapprox-

imation: it says that any steps we can take in the concrete transition system can be

overapproximated in the abstract transition system. The Upward Termination condi-

tion says that for every final state in the concrete transition system, any corresponding

abstract state is also a final state in the abstract transition system. Together Simulation

and Upward Termination imply that for every terminating run in the concrete transition

system, also any corresponding run in the abstract transition system is terminating.

The connection of these conditions to disproving termination then is: if there is an

initial state a0 from which all computations in the abstract program are non-terminating

and there is an initial state s0 in the concrete program such that s0 ∈ [[a0]], then all

computations in the concrete program starting from s0 are non-terminating (i.e., for

live abstractions, closed recurrence carries over from the abstract to the concrete).

Theorem 5.1 (Soundness). Consider a live abstraction (Sα, Rα, Iα, Fα) for a transition

system (S,R, I, F ). Suppose Gα is a closed recurrence set for (Sα, Rα, Iα, Fα) and for

some a0 we have Gα(a0) ∧ Iα(a0) ∧ ∃s0.( s0 ∈ [[a0]] ∧ I(s0) ). Then there also exists a

closed recurrence set G = {s | ∃a.Gα(a) ∧ s ∈ [[a]]} for (S,R, I, F ).

Proof. We need to prove Conditions (3.1), (3.2), and (3.3) for G.

For Condition (3.1) for G: We have for some a0, Gα(a0) ∧ Iα(a0) ∧ ∃s0.( s0 ∈

[[a0]] ∧ I(s0) ). Thus for such s0 we have I(s0) and the definition of G implies G(s0).

Thus we have Condition (3.1) for G.

For Condition (3.2) for G: Let s such that G(s). We now prove that s /∈ F by

contradiction. Suppose s ∈ F . The definition of G implies ∃a.s ∈ [[a]] ∧ Gα(a).

Condition (3.2) for Gα implies ∃a′.Rα(a, a′). However Upward Termination implies

a ∈ Fα, which implies ¬∃a′Rα(a, a′). Thus we have a contradiction. Thus we must

have s /∈ F . This gives Condition (3.2) for G.

For Condition (3.3) for G: Let s, s′ such that G(s) ∧ R(s, s′). The definition of G

implies ∃a.s ∈ [[a]] ∧ Gα(a). Moreover, the Simulation condition gives ∃a′.Rα(a, a′) ∧

s′ ∈ [[a′]]. Condition (3.3) for Gα implies Gα(a′). The definition of G gives G(s′) and

thus we have Condition (3.3) for G.

Note that similar to what many abstractions do, a live abstraction can overap-

proximate the concrete initial states. For a live abstraction to be useful for proving
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non-termination using closed recurrence sets, we only need a0 ∈ Sα and s0 ∈ S that

satisfy the conditions of the soundness theorem.

Example 5.4. Recall Figure 5.1(a) and its abstraction in Figure 5.1(b). We can repre-

sent the abstraction as a transition system:

Iα = {a | a � j ≥ 1 ∧ k ≥ 1} Fα = {a | a � i < 0}

Sα = Z3 Rα = {(a, a′) | (a, a′) � i ≥ 0 ∧ i′ ≥ 1

∧ j′ = j + 1 ∧ k′ = k + 1}

Here a and a′ represent states of the abstract transition system. The abstraction contains

i′ ≥ 1 in the transition relation of the loop instead of the non-linear update i′ = j × k.

Here the abstraction has not changed the state space, the set of initial states and the set

of final states, but it has weakened the transition relation of the loop. Note that this

abstraction fulfills all criteria for a live abstraction.

Example 5.5. Consider again the examples from Figure 5.1(a) and (b). Here we have

the closed recurrence set Gα = {s | s � i ≥ 1} for the loop in our abstraction in

Figure 5.1(b). This implies existence of a closed recurrence set G for the loop in the

concrete program in Figure 5.1(a) and hence its non-termination.

Example 5.6. To see why we need the Upward Termination condition for the ab-

straction, consider the following transition system (S,R, I, F ) and its abstraction

(Sα, Rα, Iα, Fα):

S = {s0, s1, s2, s3} I = {s0} F = {s1}

R = {(s0, s1), (s2, s3), (s3, s0)}

Sα = {{s0}, {s1, s2}, {s3}} Iα = {{s0}} Fα = ∅

Rα = {({s0}, {s1, s2}), ({s1, s2}, {s3}), ({s3}, {s0})}

Here an abstract state is a subset of the set of all concrete states, where we have

“merged” the states s1 and s2 to a single state. The abstraction satisfies the Simu-

lation condition but not Upward Termination because s1 is a final state in the con-
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crete transition system, but the corresponding abstract state {s1, s2} is not a final

state in the abstract transition system. The abstraction has a closed recurrence set

{{s0}, {s1, s2}, {s3}}, but the concrete transition system has no recurrence set.

5.5 Classes of Live Abstractions for Automation
As mentioned earlier, in our automation we focus on program fragments of a special

shape: lassos.

Definition 5.2 (Lasso). A lasso is a program fragment that contains a sequence of

commands called a stem followed by a simple loop with guarded updates. The guard of

a simple loop is a conjunction of atomic conditions. Formally a lasso L is a transition

system (S,Rloop, Iloop, Floop) where S is the set of states in the domain, Rloop is the

transition relation of the loop, and Iloop is the set of initial states for the loop. Iloop

represents the strongest postcondition after execution of the stem. Floop is a set of final

states for the loop such that for every final state there is no transition inside the loop.

Abstracting non-linear commands

We describe the abstraction that our tool uses to abstract non-linear commands present

in the lassos. In our abstraction non-linear assignment commands are abstracted, but

loop guards are kept unchanged.

Towards the purpose of abstracting assignments we first compute a linear loca-

tion invariant at the end of the loop (using APRON’s [JM09] octagon abstract domain

[Min06] in our implementation). We then replace the non-linear update command with

a non-deterministic choice and add an assume statement with the invariant at the end of

the loop. Instead of octagons, here also dedicated disjunctive analyses for non-linearity

(e.g. the technique by Alonso et al. [ABAG11]) can be used to increase precision of the

overapproximation. However, as our experiments show, here we can already get quite

far using standard octagons.

Consider the non-linear lasso in Figure 5.1(a) and its linear abstraction in Fig-

ure 5.3 that our tool computes. Here, i−1 ≥ 0∧ i+ j−3 ≥ 0∧ i− j+1 ≥ 0∧ i+k−3 ≥ 0

is the invariant computed at location ` of the original lasso from Figure 5.1(a) by the

APRON library using the octagon abstract domain.
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int i, j, k;
assume (j ≥ 1 ∧ k ≥ 1);
while (i ≥ 0 {
i := nondet();
j := j + 1;
k := k + 1;

`: assume (i − 1 ≥ 0 ∧ i + j − 3 ≥ 0 ∧
i − j + 1 ≥ 0 ∧ i + k − 3 ≥ 0);

}

Figure 5.3: Linear overapproximation of the program in Figure 5.1(a) computed by our tool
using APRON [JM09]

Mapping non-linear assignments to non-deterministic assignments is clearly an

overapproximation. This abstraction of assignments satisfies the Simulation condition

of live abstraction because it adds extra abstract transitions only when a concrete tran-

sition (the assignment) is already possible. Since we do not alter loop guards, Upward

Termination holds as well because all the final states of the original lasso are final states

in the abstract lasso too. Clearly this abstraction satisfies the conditions of a live ab-

straction. Formally for a concrete lasso with a transition system (S,Rloop, Iloop, Floop)

our tool computes an abstract lasso with a transition system (Sα, Rα
loop, I

α
loop, F

α
loop)

where Sα = S,Rloop ⊆ Rα
loop, I

α
loop = Iloop, F

α
loop = Floop and the concretion func-

tion is essentially the identity, i.e., ∀a ∈ Sα. [[a]] = {a}.

Dealing with non-linear guards

We use a simple trick to get rid of non-linearity in guards. Consider Figure 5.4. We

remove non-linearity present in the guards by adding an auxiliary variable v. The rest

of the analysis proceeds as before.

This approach yields non-linear commands in the stem of our lassos. The stem

commands enter our constraints only existentially (as we will see in Section 5.6). Thus

constraint solvers can deal with such constraints efficiently.

Abstracting heap-based commands

Magill et al. [MTLT10] propose an overapproximating abstraction from programs op-

erating on the heap to purely arithmetic programs. The abstraction is obtained by in-

strumenting a memory safety proof for the program. Since in general memory safety

only holds under certain preconditions, the user can specify the shape of the heap data
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assume (...);
assume (...);
while (i × j ≥ 0) {
i := ...
j := ...
......
}

assume (...);
assume (...);
v := i × j;
while (v ≥ 0) {
i := ...
j := ...
......
v := i × j;
}

(a) (b)

Figure 5.4: Lasso (a) with non-linear guards and equivalent lasso (b) with auxiliary variable
with linear guards

structures by user-defined predicates in separation logic [ORY01]. We can use Magill’s

tool THOR [MTLT10] to abstract heap-based C programs into linear arithmetic pro-

grams operating over the integers. This is exemplified in Figure 5.5. In the arithmetic

program the variable k tracks the length of the list segment from p to null, and the other

variables are temporaries used in the update of k.

Magill’s PhD thesis [Mag10, Def. 29] describes the notion of stuttering simula-

tion and proves (in his Thm. 18) that the abstraction satisfies the properties of stuttering

simulation. In stuttering simulation for a transition in the concrete system, the corre-

sponding transition in the abstract system may contain a sequence of steps and vice

versa. An abstraction satisfying stuttering simulation obeys standard simulation con-

dition and additionally for stuttering simulation to hold, the Upward Termination con-

dition is needed. Thus Magill’s abstraction satisfies the properties of a live abstraction

and thus is safe for our approach of non-termination proving.

We could also abstract linked-list programs via the results connecting lists and

counter automata [BBH+12]. These results are in fact stronger, a bisimulation rather

than a simulation, for lists.

Combining over- and underapproximation

As previously mentioned, closed recurrence sets must in some cases be used in con-

junction with underapproximation. Here we can use existing techniques for underap-

proximation in combination with our own. Note that as proved in Theorem 3.3 every

non-terminating program also has an underapproximation with a closed recurrence set.

Thus closed recurrence sets form a complete method when combined with underap-
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while (p 6= null) {
p := p→next;
}

int k, l, m, n;
while (k ≥ 1) {
assume (k > 1);
l := nondet();
assume (l ≥ 1 ∧ k = l + 1);
m := nondet();
assume (m = l + 1);
n := nondet();
assume (n = l + 1);
k := n;

}
(a) (b)

Figure 5.5: Heap-based program (a) with precondition that p points to a nonempty cyclic list
and linear overapproximation (b) computed by THOR [MTLT10]

proximation.

5.6 Finding Closed Recurrence Sets
In the previous section we showed how it is possible to prove non-termination of a

program by proving the existence of a closed recurrence set for an abstraction of the

program. Here we address the problem of how to find a closed recurrence set for the

abstracted program, i.e., a program over linear integer arithmetic. We will search for a

closed recurrence set G described by a conjunction of linear inequalitiesQx ≤ q.

We adapt the Farkas-based approach used in TNT to find closed recurrence sets

rather than recurrence sets. In our application the restriction to deterministic relations

from TNT can be lifted. This is particularly important when working with abstractions

of programs, which can introduce non-determinism even when the concrete program is

deterministic. It is also essential for treating the heap, because THOR [MTLT10] often

introduces non-determinism in the abstractions while handling concrete programs with

heap-based commands (e.g. malloc).

In this section it will be convenient to phrase our discussion in terms of lassos

expressed in linear arithmetic, as such lassos are convenient for automation. In the

domain of linear arithmetic, a state s is just a vector x that represents the valuation

of program variables. A lasso L in linear arithmetic can be expressed as a transition

system (S,Rloop(x,x
′), Iloop(x), Floop(x)). In terms of programs, Iloop(x) represents

the strongest postcondition of a path leading to the loop body, with precondition ‘true’
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from which the program starts, and Rloop(x,x
′) is the transition relation corresponding

to the composition of a sequence of (possibly non-deterministic) assignment statements

in the loop body, guarded by a condition. Floop(x) represents the set of final states such

that no loop transition can take place from any final state. As we are working in linear

arithmetic, we can represent the transition relation of the loop by systems of inequalities

Rloop(x,x
′) , Gx ≤ g ∧Ux+U ′x′ ≤ u

whereGx ≤ g describes the guards andUx+U ′x′ ≤ u the updates. HereG,U and

U ′ are matrices, g and u are vectors. We make the following assumption:

∀x∃x′.Gx ≤ g → Ux+U ′x′ ≤ u. (5.1)

The assumption says that whenever the guards of a lasso can be satisfied we are guar-

anteed to have a next state given by the updates. This holds in a lasso with a satisfiable

transition system when every row in U ′ contains a non-zero coefficient, which corre-

sponds to an update of the variables.

We are in search of a predicate G expressed as a system of inequalities using

coefficients, i.e. G ≡ Qx ≤ q, where Q is a matrix and q a vector of existentially

quantified variables. The number of rows in Q and q then corresponds to the number

of inequalities which we use.

We wish to employ a constraint solver (e.g. Z3 [JdM12]) to find the coefficients

Q and q. A difficulty in doing so is that these conditions contain mixtures of existential

and universal quantifiers: Q and q are existentially quantified at the top-level, and both

(3.2) and (3.3) use universals. Many constraint solvers struggle to solve problems such

as these. Similar to the approach used in Chapter 4, we apply Farkas’ lemma to convert

the problem into a purely existential one that is easier for existing solvers.

In the remainder of this section we describe a Farkas-based reduction to au-

tomate the search for closed recurrence sets. To find a closed recurrence set for

(S,Rloop(x,x
′), Iloop(x), Floop(x)) we must find Q and q such that the following con-

ditions are satisfied (here we have substitutedQx ≤ q for G in Conditions (3.1), (3.2),
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and (3.3)):

∃x.Qx ≤ q ∧ Iloop(x) (5.2)

∀x∃x′.Qx ≤ q → Rloop(x,x
′) (5.3)

∀x∀x′.Qx ≤ q ∧Rloop(x,x
′)→ Qx′ ≤ q (5.4)

In order to apply Farkas’ lemma we must eliminate the ∀∃ alternation in Condition

(5.3).1 Assumption (5.1) lets us remove the existential quantifier in (5.3),2 which now

becomes:

∀x.Qx ≤ q → Gx ≤ g (5.5)

Next, although it is not essential, because of (5.5) we can drop Gx ≤ g from

Rloop(x,x
′) in (5.4), thus giving us a simpler constraint to solve:

∀x∀x′.Qx ≤ q ∧Ux+U ′x′ ≤ u→ Qx′ ≤ q (5.6)

Conditions (5.2), (5.5), and (5.6) are sufficient constraints for finding a closed

recurrence set. Furthermore, (5.5) and (5.6) are now in a form which facilitates appli-

cations of Farkas’ lemma to eliminate the universal quantifiers, and we obtain:

∃Λ1 ≥ 0. Λ1Q = G ∧Λ1q ≤ g (5.7)

and

∃Λ2 ≥ 0. Λ2

 Q

U

 = 0 ∧Λ2

 0

U ′

 = Q ∧Λ2

 q

u

 ≤ q (5.8)

Here Λ1 and Λ2 are matrices. The constraints that we finally generate are (5.2),

(5.7), and (5.8). These conditions are readily solved by off-the-shelf constraint solving

tools. A satisfying assignment for these constraints gives us values of coefficients inQ

and q, thus giving us the closed recurrence set.

1When Gupta et al. [GHM+08] search for recurrence sets, they also need to eliminate the ∀∃ alter-
nation in their constraints for automation. They do so by instantiating the existential variable explicitly
with the value of the update. The price for this is that the update must be deterministic. We do not have
this restriction.

2The statements (5.1) ∧ (5.3) and (5.1) ∧ (5.5) are equivalent.
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int a, b, k, c;
assume (a ≥ 0);
assume (b ≥ 0);
c := nondet();
k := nondet();
while (k ≥ c) {

k := a × b;
` : skip;

}

int a, b, k, c;
assume (a ≥ 0);
assume (b ≥ 0);
c := nondet();
k := nondet();
while (k ≥ c) {

k := a × b;
` : assume (a ≥ 0 ∧ a + b ≥ 0 ∧

b ≥ 0 ∧ a + k ≥ 0 ∧
b + k ≥ 0 ∧ k ≥ 0);

}
(a) (b)

Figure 5.6: Non-linear lasso (a) and its live abstraction (b).

Note that if the constraints are unsatisfiable, like Gupta et al. [GHM+08] we use

Q and q with increasingly many rows (and hence inequalities) inQx ≤ q. In this way,

we increase the precision of our method further.

Example 5.7. Consider the lasso in Figure 5.6(a) and its live abstraction in Fig-

ure 5.6(b). For the live abstraction, we have

Rloop(a,b, c, k,a′,b′, c′, k′) ≡ k ≥ c ∧ a′ = a ∧ b′ = b ∧ c′ = c ∧ a′ ≥ 0∧

a′ + b′ ≥ 0 ∧ b′ ≥ 0 ∧ a′ + k′ ≥ 0 ∧ b′ + k′ ≥ 0 ∧ k′ ≥ 0.

Iloop(a,b, c, k) ≡ a ≥ 0 ∧ b ≥ 0.

We get following matrices and vectors.

x =


a

b

c

k

 , G =
[
0 0 1 −1

]
, g =

[
0
]
,
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U =



1 0 0 0

−1 0 0 0

0 1 0 0

0 −1 0 0

0 0 1 0

0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



, U ′ =



−1 0 0 0

1 0 0 0

0 −1 0 0

0 1 0 0

0 0 −1 0

0 0 1 0

−1 0 0 0

−1 −1 0 0

0 −1 0 0

−1 0 0 −1

0 −1 0 −1

0 0 0 −1



, u =



0

0

0

0

0

0

0

0

0

0

0

0



.

We initially try with a single inequality for the closed recurrence set. With this, the

system of constraints described above, i.e., the conjunction of (5.2), (5.7), and (5.8) is

unsatisfiable, which means that no closed recurrence set exists with a single inequality.

We then try with two inequalities for the closed recurrence set. This time we have,

Q =

α1 β1 γ1 δ1

α2 β2 γ2 δ2

 , q =

η1
η2

 ,

Λ1 =
[
λ11 λ21

]
, Λ2 =

λ12 λ22 . . . λ142

λ13 λ23 . . . λ143

 .
This time the system of constraints is satisfiable and we get the following model

from the solver.

Q =

2 1 1 0

0 0 1 −1

 , q =

0

0

 ,

Λ1 =
[
0 1

]
, Λ2 =

1 0 0 2 0 1 0 1 0 0 0 0 0 0

1 0 0 2 0 1 0 1 2 0 1 0 0 1

 ,
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PROVER-OVERAPPROX (Lasso L)
L := UNDERAPPROXIMATE (L).
Create a live abstraction in linear arithmetic Lα of L.
Solve the problem with constraints (5.2), (5.7), and (5.8).
if the problem is unsatisfiable then

return Unknown
fi
return Non-Terminating

Figure 5.7: Our non-termination proving procedure PROVER-OVERAPPROX

x =


0

0

−1

1

 .

Note that x in the model above represents the model for constraint (5.2). Thus we

get 2.a + b + c ≤ 0 ∧ c − k ≤ 0 as the closed recurrence set. This proves non-

termination of the lasso in Figure 5.6(b), which in turn proves non-termination of the

lasso in Figure 5.6(a).

5.7 Our Procedure
Based on the concepts developed in this chapter, the non-termination proving procedure

PROVER-OVERAPPROX that our tool implements is given in Figure 5.7. Its input is

a lasso L that is to be checked for non-termination. For an entire program P , we

need a lasso generator that exhaustively enumerates lassos in P and calls the PROVER-

OVERAPPROX procedure on each of them.

Our procedure first uses a suitable underapproximation strategy if necessary. Any

valid underapproximation is legitimate in this process. Our tool uses an underapprox-

imation strategy as follows. If a lasso under consideration contains a loop variable

with a non-deterministic update that also appears in the loop guard, our tool adds an

assume-statement at the end of the loop body that enforces the loop guard (as done for

variable m in Figure 5.2(b)).

For every lasso L our procedure creates a live abstraction Lα in linear arithmetic.

Our tool particularly uses abstractions for heap and non-linear commands described in

Section 5.3. We then try to solve a problem with constraints (5.2), (5.7), and (5.8) for

the transition system of Lα. If the problem is unsatisfiable, we return Unknown; else
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we have found a closed recurrence set for Lα which in turn proves non-termination of

L. We provide more details about our tool in Chapter 6.

5.8 Advantages
We now discuss some key advantages of the PROVER-OVERAPPROX procedure.

It is the first method that we know of which soundly uses overapproximation for

proving non-termination. The procedure can handle programs with features like non-

linear arithmetic and heap-based commands which other methods either do not support

or have difficulty dealing with. Although the procedure uses specific underapproxima-

tions and live abstractions, technically any valid underapproximations and live abstrac-

tions can be used. This highlights the flexibility provided by the procedure and provides

new research directions to identify suitable underapproximation strategies and classes

of live abstractions.

Comparison with a method based on invariant

Consider the program in Figure 5.1(a). Here i ≥ 1 is an invariant at location `. Every

reachable state at ` must satisfy the invariant. This invariant implies the loop guard

i ≥ 0. What this means is, for every reachable state at location `, the loop guard always

holds. Thus if there exists a state at location ` that is reachable, we have proved non-

termination. This method for proving non-termination was suggested by Brotherston

[Bro15]. The main advantage of this method is that, we do not need overapproximation

for proving non-termination.

The PROVER-OVERAPPROX procedure is more powerful than the method de-

scribed above. For example, consider the program in Figure 5.6(a). Using the octagon

abstract domain [Min06], we can compute the invariant a ≥ 0 ∧ a + b ≥ 0 ∧ b ≥

0∧ a + k ≥ 0∧ b + k ≥ 0∧ k ≥ 0 at location `. This invariant does not imply the loop

guard k ≥ c. Thus the method described above cannot prove non-termination of this

example. However the PROVER-OVERAPPROX procedure can prove non-termination

as shown in Example 5.7.

5.9 Limitations
We now discuss some key limitations of the PROVER-OVERAPPROX procedure. Simi-

lar to the method of [GHM+08], the procedure can only prove non-termination of lassos
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and thus suffers from similar drawbacks. PROVER-OVERAPPROX cannot be useful in

detecting aperiodic non-termination. As the number of lassos in a program are infinite

the procedure can often diverge. Additionally many of the lassos can in fact be ter-

minating, but the procedure will spend significant amount of time in analysing them.

However technically the procedure can be combined with a termination prover where

the procedure can be invoked only for lassos on which the termination prover fails to

find a termination argument.

5.10 Summary and Outlook
Overapproximation is the workhorse of program analysis. Unfortunately, overapprox-

imation can invalidate conventional techniques for disproving termination. We have

introduced the notion of a live abstraction to show how overapproximation can help,

not hinder non-termination proving. The idea is to prove the existence of a closed re-

currence set rather than simply a recurrence set. This modification in strategy allows

us to use off-the-shelf overapproximating abstractions, leading to a new set of methods

for disproving termination of real programs.

The restriction to lassos was mainly imposed for the sake of automation, as lassos

are very convenient to deal with. However technically any live abstraction is sound for

proving non-termination if we aim to find closed recurrence sets. For future work it

will be interesting to check if this restriction can be lifted. Additionally, we have only

demonstrated simple ways of getting live abstractions. Another research direction can

aim at identifying more useful classes of live abstractions.
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Chapter 6

Experiments

In this chapter we provide the experimental results and compare the non-termination

proving procedures of Chapter 3, Chapter 4 and Chapter 5. These procedures have been

implemented in the following tools.

1. T2: The PROVER-SAFETY procedure of Chapter 3 is implemented within the

tool T2 [CSZ13, BCF13]. As described previously, although the PROVER-

SAFETY procedure could be extended to support other programming language

features (e.g. heap, recursion), this implementation only considers non-recursive

programs with integer variables and linear expressions. As underlying safety-

proving backend, we use the interpolating safety prover IMPACT [McM06] im-

plemented in T2. The version of T2 that implements the PROVER-SAFETY

procedure for non-termination proving is currently not available in the public

domain. However it is expected to be made available in the next source code

release of T2.

2. CPPINV: The PROVER-MAXSMT procedure of Chapter 4 is implemented
within the tool CPPINV. As a reachability checker it uses CPA [BK11]. This im-
plementation also only considers non-recursive programs with integer variables
and linear expressions. The tool is available at the following URL:

www.lsi.upc.edu/˜albert/cppinv-CAV.tar.gz

3. ANANT: The PROVER-OVERAPPROX procedure of Chapter 5 is implemented

in the tool ANANT. Given a program’s CFG, ANANT exhaustively searches for

candidate lassos.1 For every lasso the tool applies the PROVER-OVERAPPROX

1ANANT uses the same syntax for transition systems as the termination prover T2 [BCF13]. For
heap-based programs in C syntax, the lasso extraction is currently conducted manually.

www.lsi.upc.edu/~albert/cppinv-CAV.tar.gz


procedure, using Z3 [dMB08] with the procedure of [JdM12] as the constraint

solver.

We make ANANT available for download along with its source code at the fol-
lowing URL:

http://www0.cs.ucl.ac.uk/staff/K.Nimkar/live-abstraction

6.1 Experimental Results on Programs with Linear In-

teger Arithmetic
In this section we provide experimental results on non-recursive programs with integer

variables and linear expressions. We have compared T2, CPPINV and ANANT against

following tools.

• TNT [GHM+08], the original TNT tool was not available, and thus we have

reimplemented its constraint-based algorithm with Z3 [dMB08] as the SMT

backend.

• APROVE [GBE+14], via the Java Bytecode frontend, using the SMT-based non-

termination analysis by Brockschmidt et al. [BSOG12].

• JULIA [SMP10], which implements an approach via a reduction to constraint

logic programming described by Payet and Spoto [PS09].

Like Brockschmidt et al. [BSOG12], we were unable to obtain a working version

of the tool INVEL [VR08]. Note that in the empirical evaluation by Brockschmidt et

al. [BSOG12], the APROVE tool (which we have compared against) subsumed INVEL

on INVEL’s data set.

As a benchmark set, we used a set of 492 benchmarks for termination analysis

from a variety of applications also used in prior tool evaluations (e.g. Windows device

drivers, the APACHE web server, the POSTGRESQL server, integer approximations of

numerical programs from a book on numerical recipes [PTVF89], integer approxima-

tions of benchmarks from LLBMC [MFS12] and other tool evaluations).

Of these, 81 are known to be non-terminating and 254 terminating. For 157 ex-

amples, the termination status is unknown. These examples include a program whose
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(a) (b) (c)
Nonterm TO No Res Nonterm TO No Res Nonterm TO No Res

CPPINV 70 6 5 0 16 238 113 35 9
T2 51 0 30 0 45 209 82 3 72
ANANT 26 7 48 0 58 196 40 15 102
TNT 19 3 59 0 48 206 32 12 113
APROVE 0 61 20 0 142 112 0 139 18
JULIA 3 8 70 0 40 214 0 91 66

Figure 6.1: Evaluation success overview, showing the number of problems solved for each tool.
Here (a) represents the results for known non-terminating examples, (b) is known
terminating examples, (c) is (previously) unknown examples.

termination would imply the Collatz conjecture, and the remaining examples are too

large to render a manual analysis feasible. About 18% of these benchmarks are purely

deterministic and rest contain some form of non-determinism. On average a CFG in

our test suite has 18.4 nodes (max. 427 nodes) and 2.4 loops (max. 120 loops).

Unfortunately each tool requires a different machine configuration, and thus a

direct comparison is difficult. T2 was run on a dualcore Intel Core 2 Duo U9400 (1.4

GHz, 2 GB RAM, Windows 7). CPPINV, ANANT and TNT were run on Intel Core i5-

2520M (2.5 GHz, 8 GB RAM, Ubuntu Linux 12.04). We ran APROVE on Intel Core

i7-950 (3.07 GHz, 6 GB RAM, Debian Linux 7.2). For JULIA, an unknown cloud-

based configuration was used. All tools were run with a timeout of 60s. When a tool

returned early with no definite result, we display this outcome in the table in the special

column named “No Res”.

We ran three sets of experiments: (a) all the examples previously known to be

non-terminating, (b) all the examples previously known to be terminating, and (c) all

the examples where no previous results are known. With (a) we assess the efficiency

of the procedures, (b) is used to demonstrate the soundness of the procedures, and

(c) checks if our procedures scale well on relatively large and complicated examples.

The results of the three sets of experiments are given in Figure 6.1, which shows for

each tool and for each set (a)–(c) the numbers of benchmarks with non-termination

proofs (“Nonterm”), timeouts (“TO”), and no results (“No Res”). (Proofs of termina-

tion, found by APROVE and JULIA, are also listed as “No Res”.)
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Discussion

The poor precision of APROVE & JULIA is mainly due to the non-deterministic up-

dates originally present in many of the benchmarks and also introduced by the (auto-

mated) conversion of the benchmarks to Java (the two tools’ input syntax). This shows

the lack of reliable support of non-determinism in these non-termination tools.

The TNT algorithm requires outright that non-determinism must not occur in the

input. Our implementation of TNT softens this requirement slightly: parts of the pro-

gram with nondet-assignments are allowed as long as they are not used during the

synthesis of recurrence sets. However this support is still very limited. Moreover TNT

does exhaustive enumeration of lassos present in a program and checks each lasso for a

witness of non-termination and thus is likely to diverge in this process very often. Thus

TNT can only find a few proofs of non-termination.

ANANT does exhaustive enumeration of lassos similar to TNT. However ANANT

performs better than TNT due to better support for non-determinism. Note that for a

lasso with only linear integer arithmetic the overapproximation computed by ANANT

is same as that of the concrete lasso. Thus the real power of overapproximation for

finding proofs of non-termination cannot be tested here.

T2 is the second most successful tool and can find many more proofs of non-

termination. This shows the usefulness of the safety based approach for proving non-

termination presented in Chapter 3. It also indicates significant improvement over pre-

vious approaches when input programs involve non-determinism.

CPPINV performs the best and finds the highest number of proofs of non-

termination. These results show the usefulness of the Max-SMT-based approach

for proving non-termination and indicate significant improvements over previous ap-

proaches.

We now compare ANANT, T2 and CPPINV based on the number of successful

non-termination proofs they could find. On 15 examples from the benchmark set

ANANT succeeded in proving non-termination, but T2 did not. However, T2 could

find 82 proofs that ANANT could not. On just one example ANANT succeeded in prov-

ing non-termination, but CPPINV did not. However, CPPINV could find 118 proofs that

ANANT could not. T2 could find 8 proofs that CPPINV could not. However, CPPINV

could find 58 proofs that T2 could not. These results show that no tool subsumes non-
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termination proofs of the other tools and suggest that each tool has different power.

However in general, CPPINV performs quite consistently.

Note that the latest version of CPPINV that also implements the termination prov-

ing procedure described in [LORR13], participated in 2014 Termination Competition

and was the winner of “Integer Transition Systems” category. CPPINV could find about

165 non-termination proofs that no other tool could find. These results can be seen at

http://nfa.imn.htwk-leipzig.de/termcomp/competition/20

6.2 Experimental Results on Programs with Non-linear

Integer Arithmetic and Heap based Commands
These experiments were conducted to test the usefulness of overapproximation based

approach of proving non-termination implemented in ANANT.

Note that among the tools described in this chapter T2, CPPINV and TNT are not

applicable, as they do not support programs with non-linear or heap-based commands.

Thus we have compared ANANT against APROVE and JULIA with the same settings as

in Section 6.1. As a benchmark set, we have gathered 33 example programs containing

non-linear, and heap-based commands from various sources. Since non-termination

usually indicates a bug, some of our benchmarks implement functions computing fac-

torial, logarithm, etc., with typical programming mistakes that lead to non-termination.

The set also includes the non-terminating examples from Berdine et al. [BCDO06], in

particular the bug in a Windows device driver discussed in this paper. While Berdine et

al. report that their analysis uncovers this bug by absence of a successful termination

proof, we can now go a step further and actually prove non-termination of such heap

programs.

Figure 6.2 shows the results of our experiments with ANANT, APROVE, and JU-

LIA. We ran ANANT and APROVE on an Intel i7-2640M CPU clocked at 2.8 GHz

under Linux. For JULIA, an unknown cloud-based configuration was used. All tools

were run with 600 s timeout. As Figure 6.2 shows, ANANT succeeded on 29 of 33

benchmarks, whereas APROVE and JULIA succeeded on only 2 and 4 benchmarks,

respectively. This difference is not surprising since overapproximation was thus far

not applicable to proving non-termination for non-linear and heap-based programs. In
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ANANT APROVE JULIA
Benchmark Res Runtime Res Runtime Res Runtime
1 X 0.50 s × timeout × 7.01 s
2 X 0.55 s × timeout × 7.80 s
2a X 0.82 s × timeout × 12.01 s
3 X 0.56 s × timeout × 7.74 s
4 X 125.66 s × timeout × 12.85 s
5 X 0.45 s × 18.59 s × 7.24 s
6 X 0.48 s × 235.79 s X 7.70 s
7 X 0.59 s × 23.51 s X 11.83 s
8 X 0.26 s × 3.15 s X 5.08 s
9 X 243.00 s × 5.10 s X 6.72 s
10 X 246.83 s × 27.42 s × 11.29 s
11 X 0.63 s × timeout × 8.69 s
12 × 2.35 s × timeout × 10.67 s
13 × 1.40 s × 108.61 s × 8.54 s
14 X 121.69 s × 147.54 s × 7.33 s
15 X 131.80 s × timeout × 8.45 s
16 X 57.41 s × 18.81 s × 7.07 s
17 X 0.54 s × 24.18 s × 7.06 s
18 × 0.66 s × 28.03 s × 6.92 s
19 X 0.44 s × timeout × 7.27 s
20 × 0.74 s × timeout × 6.95 s
factorial X 0.38 s × timeout × 7.57 s
log X 0.46 s × 3.17 s × 8.59 s
log by mul X 0.63 s × timeout × 7.68 s
lasso ex1 X 0.45 s × timeout × 7.03 s
lasso ex2 X 1.21 s × 72.25 s × 8.79 s
lasso ex3 X 0.48 s × timeout × 7.28 s
nCr combi X 0.70 s × 10.45 s × 17.26 s
power X 0.43 s × timeout × 7.03 s
Create X 3.47 s X 1.75 s × 4.94 s
Insert X 177.69 s × 16.86 s × 7.77 s
Traverse X 1.23 s X 2.12 s × 50.28 s
WindowsBug X 21.69 s × 14.46 s × 50.92 s

Figure 6.2: Results (“Res”) and runtimes of ANANT, APROVE, and JULIA on 29 bench-
marks with non-linear arithmetic and 4 heap-based benchmarks from Berdine et
al. [BCDO06]. HereX denotes that the tool proved non-termination, ×means that
the tool returned without a definite answer, and timeout means that the run was
terminated externally after 600 s.
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contrast, as our experiments show, we can now prove non-termination in many such

cases.

It is worth highlighting that e.g. on benchmark 9, ANANT took over 4 min to

prove non-termination, vs. JULIA’s <7 s. This difference may partly be due to dif-

ferent machine configurations. However, note that a combined prover for termination

and non-termination (like APROVE or JULIA) can discard parts of the program proved

terminating and only analyze the rest for non-termination. This can lead to a more

focused search for a non-termination proof than ANANT’s approach of enumerating ar-

bitrary lassos (whose termination might be easy to prove). Thus, ideally, the procedure

implemented in ANANT should be combined with a termination prover.

These results confirm the usefulness of the overapproximation-based approach of

proving non-termination described in Chapter 5.

6.3 Summary
The experimental evidence provided in this chapter confirms the usefulness of non-

termination proving methods introduced in this thesis. Both PROVER-SAFETY and

PROVER-MAXSMT are overwhelmingly successful when compared against other

tools on programs with linear integer arithmetic. Additionally the experiments show

lack of reliable support for non-determinism in the existing tools for proving non-

termination, whereas both PROVER-SAFETY and PROVER-MAXSMT procedures are

extremely effective in handling non-determinism. The experiments also highlight lack

of support in the existing tools for programs with non-linear arithmetic or heap-based

commands, whereas PROVER-OVERAPPROX is overwhelmingly successful on pro-

grams with these features. This also shows the usefulness of overapproximation-based

approach for proving non-termination.
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Chapter 7

Conclusion

We have studied the problem of proving non-termination of programs and have pre-

sented three new methods for the same. We have also provided a thorough comparison

of these methods along with previous methods.

In Chapter 3 we have introduced a new method of proving non-termination. The

idea is to split the reasoning in two parts: a safety prover is used to prove that a loop

in an underapproximation of the original program never terminates; meanwhile failed

safety proofs are used to calculate the underapproximation. We have shown that non-

determinism can be easily handled in our framework while previous tools often fail.

Furthermore, we have shown that our approach leads to performance improvements

against previous tools where they are applicable.

In Chapter 4 we have presented a novel Max-SMT-based technique for proving

that programs do not terminate. The key notion of the approach is that of a quasi-

invariant, which is a property such that if it holds at a location during execution once,

then it continues to hold at that location from then onwards. The method considers

one SCSG of the control flow graph at a time, and thanks to Max-SMT solving gen-

erates a quasi-invariant for each location. Weights of soft constraints guide the solver

towards quasi-invariants that are also edge-closing, i.e., that forbid any transition ex-

iting the SCSG. If an SCSG with edge-closing quasi-invariants is reachable, then the

program is non-terminating. This last check is performed with an off-the-shelf reach-

ability checker. We have reported experiments with encouraging results that show that

a prototypical implementation of the proposed approach has often better efficacy than

previous non-termination provers.

Overapproximation is the workhorse of program analysis. Unfortunately, over-



approximation can invalidate conventional techniques for proving non-termination. In

Chapter 5 we have introduced the notion of a live abstraction to show how overap-

proximation can help, not hinder non-termination proving. The idea is to prove the

existence of a closed recurrence set rather than simply a recurrence set. This modifica-

tion in strategy allows us to use off-the-shelf overapproximating abstractions, leading

to a new set of methods for proving non-termination of real programs. Our prototypical

implementation of these ideas can prove non-termination of programs with non-linear

arithmetic and heap-based commands whereas previous tools often fail.

The experimental evidence provided in Chapter 6 confirms the usefulness of non-

termination proving methods presented in the thesis.
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stract domains for static analysis. In Proc. CAV ’09. Springer, 2009.

4 citations on pages 10, 37, 71, and 72.

95



[KSTW10] Daniel Kroening, Natasha Sharygina, Aliaksei Tsitovich, and

Christoph M. Wintersteiger. Termination analysis with compo-

sitional transition invariants. In Proc. CAV ’10. Springer, 2010.

One citation on page 11.

[LNO+14] Daniel Larraz, Kaustubh Nimkar, Albert Oliveras, Enric Rodrı́guez-

Carbonell, and Albert Rubio. Proving non-termination using max-smt.

In Proc. CAV ’14. Springer, 2014. 2 citations on pages 19 and 20.

[LORR13] Daniel Larraz, Albert Oliveras, Enric Rodrı́guez-Carbonell, and Albert

Rubio. Proving Termination of Imperative Programs Using Max-SMT.

In Proc. FMCAD ’13. IEEE, 2013. 3 citations on pages 43, 61, and 86.

[LORR14] Daniel Larraz, Albert Oliveras, Enric Rodrı́guez-Carbonell, and Al-

bert Rubio. Minimal-model-guided approaches to solving polyno-

mial constraints and extensions. In Proc. SAT ’14. Springer, 2014.

One citation on page 57.

[LRR13] Daniel Larraz, Enric Rodrı́guez-Carbonell, and Albert Rubio. Smt-

based array invariant generation. In Proc. VMCAI ’13. Springer, 2013.

One citation on page 43.

[Mag10] Stephen Magill. Instrumentation Analysis: An Automated Method for

Producing Numeric Abstractions of Heap-Manipulating Programs. PhD

thesis, 2010. One citation on page 73.

[McM06] Ken McMillan. Lazy abstraction with interpolants. In Proc. CAV ’06.

Springer, 2006. One citation on page 82.

[MFS12] Florian Merz, Stephan Falke, and Carsten Sinz. LLBMC: Bounded

model checking of C and C++ programs using a compiler IR. In Proc.

VSTTE ’12. Springer, 2012. One citation on page 83.
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