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ABSTRACT

Gereralized geolopic provincs information and data on house construction were uzed o predicl indoor
radon concenirations in New Hampshire (NH). A mixed-effects segression model was used to predict Lthe
peometric mesn (Gii) shori-term radon concentrations in 259 NH owns. Eayesian methods were used to
avoid over-fiting and W minimize the effects of small sample varialion within towns. Da from a random
survey of shorl-lerm radon measurements, individual residence building characieristics, along with geologic
unil information, and average surface sadivm conceniration by wown, were variables wsed in the model.
Pradicted town GM short-tcrm indoor radon concentrations for detached howses with usable basements
range from 34 Bg/m’ (1 pCi/l) to 558 Ba/m® (15 pCi). with unceriainties of about 30%. A geologic
province consisting of glacial deposits and marine sediments, was associated wath sigmificantly elevated
radon kevels, afier adjosiment for radium concentration, and building type. Validation and interprsiation of

results are discussed,






Introduction

Radon, a radicactive gas known to cause lung ¢ancer when present in high concentralions, it a produet of
radium decay in rocks and scil. Indoor radon concentrations are necessarily strongly affagred by soil
tediom conlent, soil permeabilily, and other gealogic paramelets, as well as by ather pararyeters that contral
the sase with which goil a3 can enler i building, the ventilation male, and sther building characteristics,
However, direct quantitalive measuremens of important paramelers, including geciogic parameters, are nok
generaily available, and a physical model o predict indoor concentrations based om such measurements is
unavailsble in any case. Past offons to use geologic informaton 1o predict radon levels or to eslimaie
“potential” radon concentrations have wsuably relied on comelation of geologic featores {Lypically
generalized geclogic provinees) with measured indoor radon concentrations, Abhhough spme of these
effens have produced useful resulis, they have suffered from shorcomings such as the use of ad hee scoring
methods, failure to makes testable quantitative prediciions, inadequate or inconsistent bandling of smabl

gample variation in obgerved radon soncentrations, and lack of measures of model fir and velidation.

We have used a sialistical lechnique known as Bayestan mixed effects regrescion o investigate the
predictive power of peologic information in combination with other data related W indoor radon
measurements.  Bayesian methods have previously been applied (o prediction of indoor radon
concenirations based on data collected in relztively sparsc redon screening measwremenl surveys (Price and
others 1995, Price and Mero 19935, and Revzan and ovhers 1996). These lechniques can be used 1 estimate
parameiers, such 3s the gromeiric mean (GM), thal describe radon concentration distibutions n selecled
areas. Predictians based on statistical madels of this type have Lhe potential to provide guidance as to which
geographic arsas require the most urgent attention for such measuces as infensive radon monitoring of
mitigatican.

The znalysis and results presented o this paper use Bayesian mixed-elfeels regression analyses lo predicl
the geometric mean indoor raden concentration for each of the 259 “towns"™ in the state of Mew Hampshire
{NH). Note that in New Hampshire a “town™ is a polilical unit similar 10 what is known es a “township™ in

some other slates, some “towns™ conlain more that one village.



Data Used for Predictive Radon Modeling in New Hampshire

Data used in the analysis include: 1) radon “scresning” measurements in 1814 dwellings selected from 2
siratified random sample of the state’s housing stack, 2) physical characteristics of each building collzcted
via questionnaire during the survey (Firie and Haninglon 1989; Pirie and Haninglon 1990), 3) radiom
conlent of the surface goil (Duval and others {985), and 4) the wnderiying peoiopic characteristics of the
ground wpon which each Mew Hampshire town lies, as identified by the U5 Geclogical Survey (USGS) tn a

modified radon geology map for the stale {Gundersen and Schomann 1993},

The Hew Hampshire Radon Survey

Due e concern about the public health risks associated with the exposure to radon in residences, (he stale of
Mew Hampshire, Division of Public Health Services conducted a siratified tandem survey of short-lermn
indoor radon concenlrations, or “scraening measurernents.” during the winler months of 1983-1940 (Piria
and Hanington 1989 Firie and Haninpton 1990, Scretning measurenwits ars intended 16 quickly and
inexpensively determine indoor radon concemirations. They are wypically conducted in the basements of
houses during winter when ihe houss is relatively well sealed, so they tend 10 Overeslimale annual-average
living-area radon concentralions by a factor of 1.5 to 3. We wse the screeming dala because they arc
available and because they are expected 10 show approximately the samc spatial pattems thal would be
present 1o long-torm living-area measurements,  Adjustinent W calibrate screening data o predict annual-
average living-arca concenirations is possible in prnciple {Price and Nerc 1994), bul has pol been

atlempied for theac data.

The NH survey sample was siratified by 1) lown or city populstion and 2} the predominant badeock uranium
content.  Participating households were selected al candom Frotn witlon each stratum, based on telephone
dirsciory lists. Houssholds which agresd 10 parlicipate were mailed a radon screening onsasuremend kil
eontaining a charcoal absotption dslector, a set of imslroctions, and e survey Questionnaire. The participanis

were asked to expose the delector for three days on (he “lowest livable lzvel” of their home, which was



usuatly a basemeni. The questionnaire obiained informadon about the home's consiruciion, heating sources
and usspe, waler suppiy, etc. Exposed charcoal detectors and compieted questionnaives wera caturned by
mail 10 the analytcal laboratery and survey office, respectively. Furiher deails of the survey design,

implementation and resulis can be (ound in the survey repor cited above,

Over the three winters during which the survey was conducted, 1814 dwellings in 232 of New Hampshire's
2599 towns wore monilored, Overall, 27 towns were unsampled, five wwns had only one measurement, and
the median number of measurements per town is &. Only 10 towns had 30 or more measurements. For bolh
the state a5 a whole and for individual towns, measurements appear (0 be approximately logmormally
distributcd {i.¢. the logarithms of the measurements are normally disidbuted). The number of observations
and the obsesved lown geormeiric means (GM) and geometric standard deviations (GSD) for 5 randemly

selected et of towns are presanted in Table 1.

Fig. | depicis ehe disiribulion of the 1814 screening measuraments. The calculated GM and GSD of thess
measuremenis are &1 [-'!.|:||'|11|3 (2.2 pCiL) and 3.0, respectively. Abowt 31% of the homes had measurements
above 150 Bo/nt' (4 pCifL), the Enviconmenal Protection Agency's {EPA) recommended “action level™ for
remediation. (Recali, however, that screcning measuremenis substantially oversiate Jong-term living-area
concentrations. ) About 2.5% had measurements above 740 Bofm® (20 pCifL). The distribution of
screening measurements is approximately lopnormal.  Superimposed on Fig. 1 is 2 logootmal curve of

GM=81 Bg/ni® and GSD=3.0].

Table 2 summarizes some chacactetistios of homes included in the survey. Waler source it a potentially
importan| varable, since water drawn from a drilied ariesian well can contain high concentrations of
dissobved radon, which can escape into the house whenever water is used {Nazaroff and others 1937
Radon concentrations of 4 ¥ 10° Bg/m’ or rooze have been chserved in some NH arlesian water. All of the
repression analyses presented in this work have been conductad on data from the subset of 1775 homes For

which water supply imformation was repored.



Surface Radium Content and Geologleal Attrlbutes of Neaw Hampshira

The town-average surface radium contend of the soil for each town waz derived from digital maps from data
frewns e National Uramiurn Regource Evaluation {NURE), whick were processed (Duval and others 1980}
to correct for various probbems with the eaw data. NURE messererments have been found te be correlaled
wilh mean indoor raden concentrations (Price 1996; Price and others 1995). Fig. 2 depicts the relationship
between the natueal logarithm of MH town radium levels {#quivalent U, ppm} from NURE and 1the natural
logarithm of town GM screening measurernents (Bgm’). The vertical emor bars indicate + 1 classical
standard ¢tvor in the log of the town™s GM. The Jine throupgh the plotied pointz was ealeulated uing an
ordinary least-squares regression (R*=0.09). The poor correlation, evident in the plot and the Jow value of
R?, is at least pastly mbributable o the emall samiple sizes within towns, since the observed town Ghds vary
subsiantially about the true town GMs. Thus even if NURE predicied the rrue 1wown Ghis perfectly {i.e., the
GM that would be Found if every bome in every wown werz 1o be monilored), a low comrelation with
cbserved OMs is expecied. One of the goals of the present analysis is (0 determine the exlent 1 which

various explanatory variables, including NURE, can be used o predict the rrue town GMs.

A digitized mep of generalized geclogic provinces in Mew Hampshics was oblained from the US Geglogical
Survey {JSGS). The provinees are basod on both bedrock geology and soil characteristios, and were
developed by Linda Gunderten and Randall Schumann of the USGE from their radon ggology map for the
state (Gundersen and Schumann, [993). Table 3 lists the 9 geologic provinces which were used in our

waork, and Fig. 3 thows them o a map of New Hampshire.

The geclogic data were processed Lhmdgh a Geographic Information System (G15) and superimpased over
the town boundaries, aad the prevalence of each geclogic unit within each town was calculated. Many
1owns were found 1o lie on 1we or more geologic unils. For example, the prevalence of getlopic units 541,

544, and 561 in Alexandria, NH is 48%, 13%, and 39%, respectively.

Statistical Modeling Techniques

Ohbserved distributions of indoor radon concentrations ofien appear o be approximately lognormal,

inespeclive of scale (Nero and others 1986, Nero and others 19900 Price 1936; Price and others 1993).
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This is probably because the indoor radon conceniration in @ home can be writien as a product of factors
that are not perfecily comelated (soil radivm content, times emanadon (raction, 1imes soil permeability,
elc.}, 30 that ibe fogarithm of the indoor radon concerication can be wiiken as a sum of logarithms of
separalely variable factors. The central limit theorem then implies thay, il G individual faclors are
sufficiently vaniable across the population of homes, the ;asuhing disiritution of indoor concentrations will
tend wowards a nocmel diskibubon (n log-spaced. Fig. 4 shows gquartile plots of the logarithm of the
concentration sncaswrements in the six MH owns with mose than 25 measurements.  Yerical sealos for the
different towns have been shified 1o svoid overlap. On this type of plot, measurements that are normally
distributed fall on a siraight lins, with the slope of the line determined by the standard deviation. It can be
seen from Fig. 5 that the log radon measurements in these lowne are approdimately normally distributed,
with mildly variable standard deviations; in untransforned space, thess owns have approximately

lognarmat distributions of measurements, with similar G3D0s.

Fig. 5 presents all of the observed wwn G5Ds as a function of me number of ohservaions made in each
wowir, The weighted mean withio-twown G3D for all of the measvred 0wns in the state is 2.6, If every town
hed the same free GSD of 2.6, then 95% of e observed G3Ds would {2l between the two Yimes on the
figure. The figurs suggests that most of the observed variation in GSDs 45 due 10 small sample sizes within
lowns. In other words, it looks as though given cnough measwements, the GED of the measured town

screening measurements within most towns would be close 1o 2.6 for all Wwns in the siate.

Eased on previous experience (Price and olhers 1994, for example), the included explanatory vanables are
expected to have multiplicalive rather than additive effecis on indooe eadon concenlealions, sa il is
computshionally convenient to work wilh the logarithms of the radon measurements Tather than with the
measirements hemselves, We would like o write the log of the radon messurement in each home as a sum
of terms associated wilh various explanatory variables (MURE, presence of a basement, geologic lype, what
owm Lhe home is in, ewc.) plus residual variation. A sliph complication is that the peologic 1ype associated
with each home is unknewn, since the only Jocgiion information available is the wwn that the home is in,

and many (0wns coniain more than one geclogic type. In the absence of speciflic geologic knowledgze



nssocizled with each home, we fit @ model in which sach home’s prediction bas a coniribution from each of

the geologic 1ypes prosent in the wwn, weighted by preva;lenne, as explained below,

The full statistical mode!l wsed to predict individual shon-term radon measurement (SERM) radon

concentrations follows. we wrike V. the natural logarithm of the SRM in home &, which is in town j, as

I‘;:Xﬁ*ﬁﬂ'z ﬂ*ﬂg+3;+.€ﬂ (1)
k

where X is a vector of explanatory variables for hame @ in town j, and is known. The explanatory variables
in X are: the logatithm of the town-average NURE measurements, the building iype, above/below-grade
messurenenl location, présence of below.-grade living space, presence of a forced-aic heating system, the

dornestic water supply, and a consiant lerm.  The vector iz composed of coelficients astociaied with the
explanatory variables in X these coefficients are to be estimated Irom the data. The paramelers fog J are

the "geologic wnit effects” (discussed below), and allow some geologic units o have generally higher or
lower radon levels than oihers do, by amounts 10 be sstimated from the data; £y is the Fraction of wwn § tha
t5 composed of goologic type Kk, and is determined from digitized town and geology maps. The parameters
19 ) are called the “town effects” {discussed below), and represcnt the amount By which the logarithms of
the tews town GMs differ from the predicted valucs based on the other sxplanatory variables in the model,

Finally, the logarithm of the radon measurement gencrally diffcrs from its predicted value by a residual, &;

The building type, forced-air heating, measurcment lacation, and waler supply vanables were cntored into
the mode] as indicator (Mdummy™) variables. For example, there is a variable that takes the value of one for
homes that arc apartments, and zero for homes that are nol aparboents. A sccond vanable takes the valus of
one for mobile homes, and zero for othees. The coefficients associaled with these variables indicate the
entent ¢¢ which measurements in apactments and mobile homes, tespectively, are elevated or depressed
relative 10 detached homes, Thus, a negative coefficient for “apartment” implies that indoor radon
meastrernents in sparlisis are lower than single family detached homes, after controlling for all of the

othet variables in the model.



We assume the effects associated with the variows geologic units are drawn from a normal disuibution {in

log space) with mean { and unknown variance 17 10 be estimated from the data:
o, ~ N(0,7%) @

The assemption that the geologic unil #ffects disinbolion hag mean zero doss not md.uce the gererality of
the model, since any overall shift in the disiribation of geologic wnit effecis iz absorbed by the constant term
in the mode] {see Equation 1). This is also true Jor the lown effects, discussed below. The normaliy
assumption is chosen pariy for compuiations] convenience, bul also for substantive reasoms: we expect a
few geologic units 1o be associaled with highly elevaled or depressed indoor radon corcentrations, whils
most of the vest are more “typical”, there is ne 2 priori eason o expect the disiribution of geclogic effects

to be bimodal, for example. Model appropriateness and validation will be discussed in a later section,

We assume the town ffects are drawn from a normal diswribaticn with mean 0 and unknown variance & to

bz estimated from the data;

0, ~ N(0.5°) ®

I

The role of the town effects {8} is as follows. [f the regression coefficients {5} and all of the geologic unit
elfecs (o} were known, then the wwn effect would be the residual between the town's trus SEM In{GM)
and the prediction based on the other expianatory variables. 1f the town effects were all close 10 zero, this
would indicate that the prodicnons based on the olher explanalcry vardables wers vory accurate; if, on the
other hand, town effects tended o be Jarge, this would wndicate that predictions based on the other
caplanatory variabics are subject (o large: ﬂrr;clrs. In the present analysis, the wn effect estimate lfills (we
roles: first, it allows the final prediciion of the roe SRM values to be dircelly influenced by the obscrved
lown GM — if the prediction from the explanatory variables slone differs from the observation, the final
prediction for the wwn (including the town effect) is a weighted average of the regression-predicted value
and the observed valuc., Sccondly, the typical size of the town effects {as described by Lhe variance & or
related measures) provides an cstimate of the vanahon of the true SRM GMs aboul their regression-

predicted valuss,



We assume thal afier the beat cosfficients for the explanatory vaniables B, &, and & are cobtained, rosidual

ermror € for a home is drawn from the distribution;

£, ~ N{0,0%} (4}

W

For any particular model, the variance of the residuals, o, provide: an indication of model fit ar the

individual house level, with smaller velues of & indicating better predictions of individual hovse log radon

masSIraments.

The town effects variance & and the residual variance ¢ sddress diffecent aspects of model fit. The town
effects variance addresses the issve of how well individual town meane are pradicted by the explanatory
variables, but ignoras within-town vanianee, The regidual variance addresses the issue of how well the
measuremenis in individozl homes are predicied; since town effecis are included in all of cur models, this

paratnetss sumnanzes the variation betwesn homes within 10wnhs, and ipnores varialion Beiween LOWnNs.

In practice, of course, we do not know the valugs of the regression coefiicients { #1, the geologic unit effects
{rz], nor the town effects (& ). We can, however, obtain estimates of all of these parameters through use of
a stanistical echnique known as a mixed-effecis regression. A Bayesian mixed effects regression is
analogous o an ordinary mubivariate regression, except that some parameters — town cffects {8 } and
geologic unit #ffecis o), in this case — are nol allowed 1o vary independentiy, but are assumed drawn
from common distributions.  Such parameters are known 28 “random effects”, as opposed 10 the “fixed
cffects” {8} which are wealed independently of one another as in a conventional regression;  Lhe
combination of both Lypes of paramf:le-rs leads 10 the terminology “mixed effects regression.” The term
“randorn effects” does not imply that the coefficients are actually assipned at random, metely that excepd for
the dala included in the model we have no knowledge that tells us which effecis should be high and which
should be tow. Knowledge of the distribution from which paramelers are drawn can help subsiantially in
minimizing the effecss of statistical noise due (o small sample sizes. For xample, il we know the range in
which most wown Gbis fall, we have some knowledge abowl the range of likely values even far a wown with
1o observations at all. Detailed discussion of Bayesian mixed effects regression is outside the scope of the

present paper. For a discussion of the topic as a whole, ingtuding computational and validation issues, s&

8



Gelman and others {1995} for an applicetion o predicting county radon concentrations in Minnesota, see

Price and others (1995).

The assumpkions that town effecis and geclogic unit effects are drawn from common digiributians for which
the variance it estimaled from the data reduce the danger of substantinlly “overfitting” the model. In a
convenlional regression, if we include a regression coefficient for &very town the coefficients will be
esbirated so that the model fits the observed wwn GMs exactly. Soch 2 medel would fit the data perfectly
bul would be highly vnsatisfaciory oh substantive sroonds. For example, consider Langdon, NH. This
town had only one observation, which was 174 Ba/m’ (2.7 pCifL). Chousing a town efftcl estimate so thal
the GM of this county is predicted 10 be 174 Bq#m3‘ would fil the data perfecily. However, such a prediction
woeold not be appropriate since it does not laks into account the possibility that the sampled home had a
particolarly high, or low, measurement comparsd to true 1own GM. In F2el, most 1owns in the same
geologic unit have ohserved GMs much lower than 174 Bg/m’, so it seems likely that the single measured
home in Langdon, NH, had a higher cadon coneentration than iz typical in the town, at least for the period
owver which il was monitored.  Bayss's theorem, vpon which the zpproach of random {and mixed) eflects
regression i5 based, puts this idea on a fiym stalistical footing. Generally, the posterior esiimale for 2
random effect is a compromise belween the best-fil valoe and the expected value based on the distnbuotional

information for the parameter.

As il happens, under our mode) if the values of the variance parameters [12 . ¢ and &) were known exactly,
the posterior estimates and uncentainties in the geologic effects, wwn effects, and clher coethicients conld
be determined analytically from the data. But of course, the variance values are thensselves uncentain, In
order to comeclly incorporate this unccntainty, we perform many differcal regressions, each with & different
set of variances, We use a Monte Carlo method (o sample from the disteibution of likely values of the
vapance components, and then determine the regression coefficients faod individual town and goolopic
effects estimates) given thatl set of varience valucs (scc Gelman and others 1995),  Performing this
procedure many times (saveral hundred) allows us 1o take accoont of the uncerainties in the distributional

parameters and the regression coefficients,



The outcome of the series of regressions is a set of eslimales, one for sach simulation, for every geologic
province coefficient, every wwn coefficient, and every repression coefficienl. Through coefficients of large
magnitude, more influence is given 10 very relisble indicators of the ue measurements, and through
coefficients of small magnitmde Jess infloence is given o less reliable indicalors. The method empiricalty
determines the coefficients thal best fit the data piven the constrains of the model, and repetition of the
repression with difftreml variance estimates allows us (o incorporale owr unccrtainty in gach of the
parameiers. The varialion in ihe estimaies of a parlicular parameter indicates the uncenainly of thei
paramcter’s value, A sei of posterior predictions, having a distibution of several hundred sstimates for cach
observaticn, can be created by multiplying each vector of coefficients by the mamir of predictive variables

nsed in the model.

Parameter Estimates from the Modeli

Table 4 prosents cocfficient ¢stimales rcsulting from a number of Bayesian mixed-effects model fis
incorporaling different clagses of variables. The regressions do not generate a poind 2stitnate for each
coefficient, but rather a distribution of possible parameter values, The table shows Ihe tnean of this
distribution, for each coefficient, and the |as1 row in Table 4 consisis of the standard errors of the eslimates
for the full model described above, denoted in the table ag Model 10, The uncertpinties for the other

models are simalar 1© (hose of Model L0

Rather than showing ali 232 wan coefficients end 9 geclogic unit coefficicois, we show only Lhe estimaled
vartance of their distributions, in Tabile 4. By defipition {equations 2 and 33, the mean of these disicibutions

s e,

Although we are most ierested in the results of the full model presented above, we have petformed a
variely Of fils using various combinations of explanalory variables, o eaplote the extent to which the
individuak classes of varizbles add predictive power, The simplest model summarized in Tablc 4 is that of a
mixed sifccrs regression of the observed log SRM against a constant term, with 1own cffects, This mode!
uses the radon measurcments alone to estimate the between-town waciation in log radon measurements,

withoul conrolling for any explanatory variables, The expression for this model 15

10



Yy=B+8, +£, @)

Az described in #quation 3, values of & are assurned 1o have been dravm from & normat distribution with a
mean O and a variance of & which is uninown. The estimale for ff, was £.4340.05 (in units of tn(qu’m:}],
and that for & is 2820405 [n untransformed gpare, this model assume: thal the town GM radon
concenlretions are themselves drawn from a lognotmal disttibution. The paramelet estimale: sugpest thal
the distribution of town GMs has 2 GM of sxp{4 43) = 84 Bq.-’rn3 (2.27 pCifLYy and a GSD of expld =1.7.
The lown effects coefficients produced by the procedure can be vsed to predict the individual tvwn radon
GM and G5D, though with considerable Jese precision than those from the models that include additionsal

explanatory variables.

Measures of Model Fit

As discussed above, the variance of the residuals, o, can be used 1o assess the prediclive crvor of the
models, {Nole tha: within the context of Eq. 5, which contains no individual-house variablas, a" can be
thought of as the “within-lown variance.”™) This quantily can be used (0 make a comparative measure of
model fit for prediclions 81 1he individual houss tevel similar 10 the “R** used in conventional regressions

{Bryk and Raudenbush 1992, Price and others 19933, This “effecowe” R’ can be cxpresscd as:

a2 (6}

RE.!dwE !' -
where

Uf, = unexplained variance of true In{5RM) in model m, and

O Fasg = tolal variance of true [{SRM).

Although the actual uncxplaincd vatiance and Lthe tolal varkances are unknown, we can estimate them from

the data. -, can be estimated by the value o derived from the random-effects regression fits of a model.

The 1o5al variance, ¢F s, can be estimated as the calevlated variance of the actual In{Rn) values For the



NH zurvey The wotal vanance of the messured In{Rad values i the 1774 homes in the anatysis s L2
RE .. lor Model 1, as shown in Table 4 12 0 18 Thie indwcatss thal about 18% of the vananos s the

logarithms of the mdindual radon measurements 15 atthbutable to variation between towns, with the

remander boing due 1o vamabon withun towns

The varrance in lown effects | 5} gives an indication of the extent to which the difference bebaeen towns 15
explatned by the vanatien in the explanatory vansbles This metvic can be thought of as the "unexplainad

betwesn-town vanancs ' Model 2, which meludes NURE, 15 defined by

Yy =B, + B,-10g( NURE)+ 8, +e, ¥

The estimated town effects vanance 18 & of 6222004 (corresponding o & GSD of lown effects of
exp{0 22)=1 6), shghtly lower than the value of G 2830 {4 for Model 1 Recall that the town silcos |6}
proxy for sources of twn-to-19wm vanaton thal aren't wcloded n the model  As such, we wouldn’t expeci
lown-level explanalory variables such as NURE to cxplain within-lown vanance Addibon of & vanable

could enormously improve the model fic at the wwn level (1 e could improve predicuon of the town GMs)

without changing R

The change w betwean-town vanance can be utthized m the metne Ri.“ to compare how well different
models predict the lown mean log radon measurements  This metnie, also presented 1 Table 4, sumlar to

R+ 15 sumply

52 8)

whete

51 = unexplamed between-lown vanance n modsl m, and

ﬁ;‘:m_m = total variance of town-cffects, 1 e, vanance i Model 1 winch has only town-gffects and a

consiant  Model 2{Eq 7) has an Rz,,.,,.., of & 1% This value can be compared 1o the simple R? of 0 09 from
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the regression of InNNURE) against observed IniGM SRM). The increase from 009 1o 0.19 can be

attribuled 1o a reduction of the sample-noise present in the simple regression.

Model 2 shows a slight improvement in the prediclion of indoor radon levels through the addition of the
water-souree vaniables. Model 10, the full model as deseribed by Eq. 1, includes all of she fixed-effect
varizbles, the town-effects and geologic vnit effscts. Adding the geologic anit effects to Model % does rot
change the Ki.y,, which represents residual variation after conirolling for all of the explanalory variables.
This is expecled, since within any town all of the homes are assipnod the same combination of geolegic
confributions, in the absence of peologic information at the individual howse level. However, Modal 11
dozs show substantially reduced town effects compared with Medsl 9, indicating that the geolopc variables

da help explsin the vaniation of radon measurements berween lowns.

The estimated town effects variance is considerably lower for models that include the geclogic units than
for other models, although the unexplamed vanation is sill subsiantial. For example, consider 4 town from
which we have no monitering dala {and thus no information or i1s town eflcet), but For which we do have
explanatory variables, including geologic information, for homes in the lown, We capect our prediction of
the town's GM 1 be off by ghoul a factor of exp(B=1.46 {scc Model 10 in Tabls 4), a considerable
improvement over the factor of abowt LG or 1.7 that would obtain withouot the geologic information, but still

a large sxpected otror,

The estimaled town cocfficients, which represent the amount by which mean town log radan meaturcments
differ from the value expected from the explanatory variables, are not presented fully in this paper. In
Madel 10, they rangs from -0.5640.23 for Belmont, MH, 1o 0858036 for Clarksville, MH. Tn 2ech case the
listed standerd emwor i a posterior interval rather than a classical confidence interval, an important
distinction that is distuszed below in the context of the peclogic effects. A full listing of thess coeflicients
is available on the internel web-site of the HIGH-RADON PROJECT a1 "hitp:Heeud. bl govIEP high-

radon/hr.himl.”
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Posterior Predictions of Town Geometrlc Means

The last column in Table o presents prdicied town GM SREM values calealated from the posteror
distribution of Mode] 10 for a random selection of WH towns, Fig. 6 is a map of NH towns with shading
used Lo depict the posterior predictions of GM SRM valpes for all 249 wwns in New Hampshire, for
detached single-family dwellings with occupied basements (i ¢, MH = AP = BGL = MAG = 0, see Table 4
for identification of these abbreviations), no forced-air formace (j.e., FAF = (), and 4 municipal waler source

{ie.. DW= 5W=1).

We present the results in thiz way since for most towns we have little data on the fiaclion of homes in each
town that are nol single-family detsched bomes, hal have forced-air healing, etc. Al we know are these
fractions ¥or the homes in cur date set, and the small number of homes in most towns makes the true
lractions very unceriain, Predicied GMs for other rypes of homes can be caleulated by mutiplying by the
appropriatc faclor, For example, from Table 1 the posenior predicuion of GM SRM for single-family
detached dwellings with municipal water atdd no forced air furnece in Madison, NH is 214 »+1.3¢ Bg/m’
{note muluplicative ervor). To calculats the predicled GM for, say, mobile homes that use municipal water
and have no forced-air heating—and which ars typically measured above grade, with no below ground
living space—wec muzl adjust for several faciors: mobile homes have different {lower) measurements than
do single-family homes, homes without below-ground living space have somewhal different {lower)
measurements than homes with below-ground living space, and measurements above grade are cubstantally
lower than thase made below prade. No adjusiment iz necessary for heating 1ype o water supply, since
theze match the “standard” home for which the predictions were generated. The required adjusiment Faclot,

then, (from Table 43 15;
exp{-0.73pn - 05245 0. 10pgL) = &' ¥ = 0.26. (0

Thus the predicted GM for mobile homes in Madison is 0.25 x 214 Bgfm® = 55 Bg/m’. Note the subscripts

in Eg. 9 refer 1o the variable for which the coefficients apply.



The lowest and highest predicted NH town GMs aze far Ancrim {34 Bg/m” or | pCiAl, G8D = {.3) and Rants
Location {558 Bg/m’ or 15 pCifl, GSD = 1.5}, respectively. Posterior predictions for all towns in NH using

Model 10 are lisied in Appendices I and I8

Model Validation

In this section, two methods are used to assess how well the assumptions of the model agree with the dala
The first method, known as “postenior predictive checks,” simulates data from the full-Bayes model and
compares Lhem to the ohserved data. The second method, “eross-validation™, is (o ren a full-Bayes model-
fit on a subsel of (he data and use the results to predict the radon concenizations in the bomes which were
excluded from the dataset. A comparisen of the predicted radon 1evels in these houses © the observed

levels provides a measure of how well the model is working.,

Pasterior Predictive Checks.

Bayesian posterior predictive checks have been stiggesied as 2 means o assess the ability of a model o
prodoce realistic simulations.  Such checks can point oul possible model violalions, as described fuliy by
Cielman and others {Gelman and others 1995). Postericn predicuve checks are performed as Ballows: we it
our statistical model w ihe data, thus generating prediclions and uncertainties for each of ihe cogfhcients
{including geolopic and town elfects) as well as for the variance components. Using these prediclions, we
then gencrate prediclions for each home's SRM as well as the uncertainly n this quantity. Sampling from
this distributien for each home, we construct an “imputed” or “simulated” data sct. This daia set ¢ar be
thought of as ancther “possible data set tha could have ocourred, if another New Hawmpshire survey wers
comducted with another sel of homes with the same explanatory variablos (bul not teccssarily the samc
radan levels) as the homes in the actual survey, A significant discrepancy between the simulaled data set

and the actual dala may indicate a model violalion.

This procedure may s¢éem ciccular, after all, cur predictions and variance estimates ate generated from the
data, 20 aren’t our impuled data guacanteed to agree with the actual data? The answer is no, becawse the

predictions and variance estimates do nof just depend on the data, bul also on the assumpiions built into the
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model. T (hese assurnpiions are seriovsly in error—fos instance, il the nommality assumpiions or the
assumption of uniform variance in the resklvals are very wrong—the imputed data can differ gready from
Lhe actual dala. Scme test statistics are more sensitive (han others 13 soch model choices, with effecis of
non-nonnality or heteroskedastcity {nan-uniform variance) showing vp most strongly in the tails of the

distribution of measurements,

Fig. 7 presents a set of histograms of the distribwtions of imputed 10th, 200k, 50th, 80ch, 90th, and 99th
peccentile SRM values from medel 10 {using 1200 draws Fem the posterior distribution).  These
higlograms depict the variation in predicted values at their percenlile. For example the upper-left histogram
in Fig. 7 shows that wnder the madel, the 10th pereentile measured value is sxpecied to be within about 1 or
2 Bgf’ of 21 By/n®. Each histogram in the Fipure has a tolid vertical line indicating the appropriate
percentile of the observed SRM diztnbotion. The 10th percentile SERME in the scinal data is just over 22
Rq/m’, which is lowards the high side of the expecied distribution from the model: As the “Baves p-value™
of .13 shown on the figure indicates, tn only 13% of the simolation draws was the impuied 10ih percentilz
SEM asz high or higher than in the actual dat  So il (e medel is “comec” then a Db parcentile
measurement as high as 22 Bg/m’ is somewhat unusual . Exireme Bayes p-values — very closc w D or | —
indicate thal \he observed data are very unexpecied under the model, suggesting the model assuemptions may
be substantially incorrect. This may or may not represent a serious problem, depending on the sensitivily of

the parameters of inlerost Lo the problems with the model.

In Ihe present case, the imputation does not indicate any sericus preblems fou the bulk of the data: altheugh
the Bayes p-values for the 10th, 50th, andd B0¢h percentile are all forther from 0.5 than we would liks, the
discrepancies between imputation and actua) data ave very small in absolute 12rms, of the order of 2 few
© Bym'. For example, in the case of the 50th percentile, the Bayesian p-value of 0.94 indicates a fairly poor
fit, but on substantive grounds this means liule since the 5 Bog/m’ (0.1 pCiL) difference between the
observed value (approx. 82 Bg/m™ and the median of the posterior distribution (approx. 37 Ba/m®) is of no

CORSEqUENCe .

However, the posterior prediclons: ftom Model 10 clearly underestimate the observed ¥Mh percentile of
radon concentrations. In fact, in only abow 0.2% of the 1200 simulations was Lhe 949th percentile SEM as
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high as the observed value of 1550 Bg/m’! On substantive grounds 1o, the model also appears 1o fail 10
caplure these tail concentrations: the difference betwaen the median prediclion and the true value is several
hundred Bq/m®. The model assumptions that lead 10 these discrepancies are probably either the assumption
of homoskedssiicity (equal variance) within towns and geclogic provinces, or the aesumption of normality
of the tesiduals in log space. This problem only oceurs for e highest few percent of measurements, and
this failure of the model to pradict individual high homes does not have a significant influence on the
estimates of the individval town and geologic unit effects because these estimates are dominaled by the bulk
of tie data. Modifving the modei to beuer 6t the high (2] of measurements wouoid iead 10 increased
computational complexity 2and would make the resultz harder o interpret, without subsianiially affecting the
estimates of the peologic effecs and rown effects. For this reason, we retain our simple model and mercly
rote that it wowld not be a good idea to use the wodel o predict, say, the number of homes in the staie in

which 2 screening measurement would sxeeed 750 Bg/m?® (20 pCifL).

Model Vatidation Using a Restricted Data Set.

In order o search for other violations of the model, & validation data set was created by randomly removing
B0% of the data from the 27 1owns in the NH survey with 15 or more observations. Most of these towns are
from the highly papulous sounheasten portion of the state.  Model i) was re-run with the reduced dataset
(N=1320). Observed data from the remaining 455 homes from the previously well-sampled towns wers
then available for comparison with the model predictions for those hotmes, Fig. & shows the relationship
belween observed and predicted lown mean Infradon) values for the validation dataset. The diagonal line in
thiz figure represents the theorelical pari‘e:ct fit {slope =1, inlercept =0} for this comparizon. The observed
rn#an for ¢ach town was caleulated diractly from the full survey dataset. The predicted mean for each town
was calculated from the individual wown means from the 1200 se1s of posietior predictions. The error bars

for each point {each town mesnd in the Bgure indicale + 1 standard emor, calculated from the distribution of
posterior predictions.

BNote that only 3 of the 27 disiributions of predicted mean lown lafradon) levels are more than | slandard

error away from ihe observed value, in cottrast 10 the 2 or 20 towns that are expectad (o differ by that
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amount. That is, the model appears to predict better than it is expecied (o {the stated uncertzinties are tog
large}). Investigation of the model predictions reveals the explanation: most of the well-sampled wwns are
ftom the southeastern part of the stale, and onz of the 1wo major geologic wypes there—G428, Granilic
plutens, metasedimentary rocks—shows much less relative variation betwean towns than do other geclogic
types. The moded assumes that all peologics are squally variable (in log space), and thus capects mocs
unpredicted variation between lowns than is present in this geology. The model could be modifred (wath
difficully) to eslimale separately the town effects vanances for the different geologies, but we have not
petformed this tagke. Only two geclogic provinces show evidence of substantially arypical variability: G438
{mentionad above) which is much less variable than moest geologies, and G348, Jursssic-Cretaceous rocks
of the While Mouniain and New England-Quebec igneous soccession, which is much more variable than
mast for reasons discussed below.  Fitting 8 mowe complicated beleroskedastic (mulli-variance) model
would provide somewhat belter predictions for towns in these provinces, but the main effect would o
change Ihe ermor estimates: poslerior intervals for towns in G438 would be namowed, and thase for G346

would bo widened, compared o the predictions generated from Model 0,

Interpretation of Geologic Unit Effects

The poslerior sstimates and uncettainties of the geologic coefficients o from Model 10 ars included in
Table 3. Recall that NURE is included in lus madel, so these gerlogic coefficients represent the offocts of
the various geclogic provinces alter accounting for varation in surficial mdivm concentration. Many of the
coefficient estimalcs are comsisient with zero, in the sense thal the standard crrors overlap zero, However,
thers iz an important distinclion between the postenor intorvals given in the fable and classical confidence
intervals. The classical esfimates would be chosen te best fit the data, and overiap of the confidence
intervals with zero might then l¢ad one to conclude that the estimates are not “significant™ and that all of the
true coefficients ate likely 1o be closer 10 zers, and might all be zers, The posterior estimates shown in lhe
table, though, have slready been “pulled” Lowards zeso through Bayes™ theorem (tecall that the posterior
gsHmals 5 ﬁcnmpronﬁse batween the basi-fil estimate and the mean of the distribution of affects, which is

zero in this case). [ the statistical model we have hit is appropriate then each cosfficient’s true value is
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equally likely to be higher or Jower than the posterior estimate, Thus the fact that many of the standard

ermors overlap zeco should net be taken to indicate thal the geologic effects overall are small.

Al least two of the nine provinces are associated with large effects on radon measurements. The “glacial
deposits and marine sediments” geclogy ([ number Gd1 1) is present in she Northeasiern part of the stale
and has a high estimated coefficient {1.09 & 0.52), indicating a subsianiial association with elevated indoor
radon levels even afier conwolling for other cisk factors such as WURE, building type, waler source, towrn
effects, etc. Town OM radon levels for this province can be expecied (o be a facior of aboul exp(1. 13 =3
times higher than the averape for otier towns with similar house construclion and surface wranium
concentration.  Siluriao-Devonian iokcusive rocks (ID numbes G541 are associated with substantially
depressed levels, abwout a Factor of 1.4 times as high as the median geology. Two additional provinces (1D
numbers G546 and G361) are also associated with substantial estimated effects.  Several of the other
geologies might also have large effects, but the available data are not sufficient to determine which (if any).
Fig. 7 mapt the prographic distribution of geologic units with an index signifying the sirength of the

caefficients.

The variance of the distribution from which the geolngic province effecis were drawn, 7° | is quite uncerlain,
with values gs low ag 0.2 and &5 high 25 1.4 being marginally consistent with Lthe data. However, the exacl
value of this variance is not particolarly informative in the present case, since only a small number (9% of
different geologies are presenl—we ars inlerested in the effecls associated with ihese particular geclogies,
not the distribution of “possible™ geologic cffects from which these valuss were deawn. The assumed
“hyperdisiribution” from which the geclogic effects were drawn is a mathemalical ficion thai belps us

quanlify cur uncertainties in the individual geulogic cifects,

The fact that some of she geologic provinces are associated with substantially elevaied (or depressed) radon
concentrations does not necessarily meap that this agsociation is causal. With a fow exceptions the geologic
proviness tend to be fairly compact and localized, 5o that eny strong spetial correlation could manifest itself
in large geologic province effects. In fact, a fit that uses the 10 counties in New Hampshire instead of the
geologies — primarily a spatial assignment, although the county boundanies do follow some goopraphic

feamres — performs as well statisiically as the fit based on the 9 geologic provinces, The county
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boundaries allow for one important feature that the geologic provinces do rot: in the central latitndes of te
stale, iowns casl ol roughly the Nonh-South mid-tine have much higher radon measurements tan do owas
wast of that line, even after concolling for NURE and house construction vapables, The division between
high and low wwn GMs coresponds approximately with the border between Carroll and Sraflon counties,
so the county variables can captlure this difference in 1adea levels. In contrast geclogic province G544
containg both low-radon wwns to the west and high-radon 10wns to the east. This iz the reason for the large
wwa effects variance within this geologic provinee, which was noled above: the high and fow iowns cannot
be predicted from peologic province, MURE, and the other explanatory variables, 5o the only remaining
sowrce of variability i5 the town effects. On the olher hand, elzewhere in the stale the geologic provinees
boundares perform betler than do the county boundaries, particulardy in the southeastern and northern
portions of the state. In short, the reasom for Lhe demonstrated relationship between the genlogic provinces

and the indoor radon measurements is unclear.

Also unciear is the extent 1o which the abnormally low variance betwesn towns in geology G438 is cavsal,

ux opposed 1o being the resull of, say, more uniform housing siock in this idy urbanized arca.

Discussion and Conclusions

A Bayesian mixcd-eficots lincar regression mode] has been used 1o pradice short-term indoor radon
cancenirations in residences in New Hampshire with mare precision than would be possible using available
monitenng data only, Yalidation checks indicate minor model wiolations that do not strongly influence
estimates of thc main parameters of intersst, which are town GMs and the coefficients associated with
geologic provinces and other explanatory vanables, Geologic ndicator vanable: wers imcluded in some
madels, as were prediclive vanables that are believed #o be directly related to indoor radon concentralions:
lovn-average NURE dala are a measuce of radium in the sucface soil. Siructure-specific variables ineluding
building type. below-grade living space, forced air furnace heating system, and walet supply source are all
variables hikely to affect the equilibrium indoor radon concentration were included, Since radon generally

enters through the lowest floor of the home measurements are expected 10 be higher if made below grade.
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One assumption upon whick the model relias is that the distributions of indoor tadon conreenteations within
towns are lognormatly disteibuted.  This assumplion appears 1o be approximateiy comrect, based on the
observed distributions of several well-sampled NH lowns. The posterior prediclions of town GMs from the
full model range from 34 Bgfm® (1 pCifl} with a muhiplicative wncertzinty of 1.3, 1o 571 Ba/m' (15 pCifl)

with a mulliplicative unceriainty of 1.3,

Model 2, i which only town effscis and NURE are nsed to prediel short-term radon contentralions,
suggests that NURE alone does considerably better than suggested by the valuz of RY in the conventionel
regression, with R, = 0.13 compared to the conventional regression cstimate of R = 0.0%: the observed

GMs vary about their true values dve ro small samgple variation, depressing the conventional B estimate.

Addition of geologic provines informenion, as in Models 3.4, and 3, substantially improves prediction of
the 1own GMs compared to models that exclude this infarmation, with ng of the order of 0.5 mather than
between .15 o 0.20. However, as discussed previously the reasons {or this improvemen! are not clear—ix

may be that the geologic provinces merely capturs some spafial variaton that is due o other causss not

inchuded it the model,

Thers is considerable vanation i lown GMS across the statc—indeed, a: can be scen from the estimane of
Rﬁ,m inn the first ling in Table 4, abow 18% of the variance in individwal house kog tadon measurements 15
altributable 1o the fact thal some wwns have elevaled concenrations compared 1o others. Improvements in
the fil are aiso seen when characieristics of the individual homes are included, leading 1o an increase of
R, Foin 018 10 026, The coefficient estimates are reasonable in both magnitude and direction:
reasurenens mads above grade are considerably lower than those made below grade, and measyrements
in mobile home: are much tower than thote in tingle family homes, by a faclor of exp((.73} = 2, compared
Lo single-family homes monitored above grade, The coefficieat of 0.2040.06 for drilled wells indicates thae

restdences with this water source have 20 percent highet radon values (han those with a muonicipal water

EOURCE,

Forced air furmaces are associaled with about a 15% reduction in meazured concenirations, bt thiz finding
must be interpreled with some care. For inftance, it may be that forced-air jurnaces canse increased mixing
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between the: basement and upper Aeors, and are thus associated with decreased radon concentrations in the
basement {whoere mosl measuremenis were made) while increasing concentrations upsiairs. The present
data, which do not contain measuremenis for muliiple Noors in e same homes, are not sufficient for us 10

investigale this possibility.

The approach used in this paper has provided a means to wse radon survey screeming data and other
explapalory vardables to more precisely predict short-term indoor sadon concentrations and town GMs.
Eayesian modeling belps reduce the sffects of sampling variation allowing more precision than possible n
analyses based on available monitoring alone. The approach appears to work well in predicting short-term
indoor radon distnbulions a1 a scale as small as individual wwns. The inclusion of geologic unit
information has been wseful in identifying high-radon areas and serves 1o increase the prediclive power of
the model, bul results are ambiguous with respect to the causal relationship between e included geologic
province information and the radon measurements. More information on the develapment and results of
these methads is available hrough e-mail to *high-radon®Ibl gov,” or via the world-wide web as Jiscusced

ahove.
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Tables

Tabkle :. Summary of screening data, average surficial uranium concentrations {MURE) and posterior
predictions from Model 10 for 25 of the 259 New Hampshire tovwns,

Pradicted GM
Town Name Numbzer Observed Observed  NURE for Houees with
of oM GSD B ztement
Homes _ (Ba/m") {ppm U3 (Bgfe’)
WINDSOR 1 15 202 40 % 1,44
WEBSTER 7 3| 2.04 158 I 131
CENTER HARBOR 2 32 1.38 1.77 45 341,39
WARNER 6 36 398 1.99 53 x4 1,32
MONEOE q 43 1.78 149 51 =x%1.35
SUPEE 5 43 2 o T3 w132
MEREDITH 12 46 2.28 217 77 2128
HINSDALE 1 51 144 L8R B2 >4 1.26
ALEXANDRIA 4 59 1.25 284 T w133
NMEWINGTON 5 50 295 2.50 104 w133
ANDOVER 7 £5 4.03 211 7R 1,20
EASTON 4 % 2.02 L.46 62 w131
BENTON 5 Ti 2.56 L.74 B2 w5 132
MONT VERNON [ T8 0o 133 T w1 3
GOEFSTOWN 14 82 2.49 315 96 544 1.24
PEMBROKE o BE 326 ] Y
WINCHESTER 5 92 .10 193 80 et ] 34
MIDDLETON 4 127 2.12 287 123 %4 1,36
COLEBROCK § 127 2.89 1.40 90 %131
CANDIA 13 141 225 118 129 %4126
BRADFORD 2 150 5.42 L.66 59 51,41
STARK 4 270 6.06 2.07 168 %136
GOREOAM 13} 323 345 2.56 2Bl w4124
WOODSTOCK 4 427 223 243 129 341,39
MADISON 4 589 2.4 3.59 209 %41.39
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Table 2. Summary of home types in the New Hampshive radon survey.

mumber of percent
homes of bumes
Total number of homes surveyed 18514 100
Mumber of homes in the present analysis 1775 9%
simgle lamily detached 1661 !
mult family 85 b
mobile bome 68 4
bazement is used as living space 565 31
no basement or hasement not ived in 1240 49
monilored in basernent (if any} L4185 52
no basement or not monitored in basement 129 13
forced-air heating system 584 3
other heating system 1230 68
Lawn water supply 634 a5
shallow well M5 (}]
drilled wel} B3l 46
unknown L 2
home buill before 1900 266 13
1901950 267 i3
1950= 1974 439 24
19741590 a2 46
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Table 3. Grovpings of New Hampshire geologic types used in the radon predictive model and geologic

effeces coafficienms derived from Mode? 10

Geologic effects
Madel 10
USGS Geologic VEGS Geologic Type Description {mean + sid &7.)
Type 11 Humber
G411 Cilacial deposits and manine sediments 1.10 = 0h52
(438 Granitie  plutons, metasedimentary  tacks .26 x .30
{phyllites, carbocecus slates and schists).
3541 Silurian-Devonian intrusive rocks ranging from 088 £0.37
gabbro 10 gramits.
G542 Cambrian-Early Ordovician metamosphic rocks 0.02 & 0.99
G544 Brevonian-Carboniferpus Iwo-mica granite, 022042
G546 Jurassic-Cretaceous rocks of the White Mountain 047 £ 042
and New England-Quebes igneous suceession.
G561 Late Cambrian-Early Devonian meismocphic .47 + 036
rocks
G591 Middle to Late Ordovician ntrugive rocks 005 + 040
ranging from gabbra to syenite in composition
Gl Early Ordovician imtrusive rocks ranging from .08 = 036

gabbro to grancdionite.
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Table 4. Cocfhicient estimates rom Bayesian mixed-effects madels for varigus combinations of explanatory vanables.

Coefficients of fixed-effects explanatory variables® W ariances Measures of fit
blodel Conzt. Log Mobile Apart- Meas. Below | Forced {Drlled  Shallow Town Geologic | Residuals | Efective’ Effactive”
Number of |Home ment Above Ground | Air | wen  wew Effects Effects O &

NURE Grade Living | Fumace Spong Tesid.  town
Space

In(Bafm’} [MH] [APF] [MAG] [BGL] | [FAF] | [DW]  {5W] F  exp@| © expin] & Riw  Riw
| 4.43% 028 169 059 018
2 3.70 0.87 0.2 1.8l 0.99 08 019
3 4,82 014 1.45 1.37 323 0.9% 0,17 0.51
4 422 .67 211 140 | 093 262 1.04 017 .40
3 e 0.93 G790 009 053 022 162 0.90 0.25 C.lé
6 3ED .94 L3 009 055 07 023 162 0.90 0,25 16
T 383 .92 073 008 2053 112 0.23 1.62 090 .25 o17
& 156 0.93 073 009 055 008 013 024 162 0.9 0.25 13
0 3 B0 .41 0075 009 054 -0.09 13 0.18 <306 023 1.65 (.9 026 019
10 4.23 074 073 012 -052 (10 -0.12 0.20 0.01 014 145 08T 267 (.90 026 0.50
50 .39 008 014 011 007 005 05 .05 0.08 .03 1.156 003
Model 10

‘Coefficients are actually the mean of 1200 cocfficients estimates made using Full Bayes regrassions. Bracketed codes are abbreviations for the variables which

ars used in the fexl.
"Effective B resic.{ %, ) it calculated as |-{{var{residualsMvarfIn(observed radon screening measurements))).

*Effective R? wwn ( &L, ) is caiculated a5 1-[{8° from Model n) 32 from Model 1}].
151andard deviation of 1200 coefficient estimates made using Full Bayes regression Model 10.
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Figure Captions

Fig. 1. The dismibution of shori-term vadon screening measurements collected in the New Hampshire

Radon Survey,

Fig. . The natral logarithm of observed geomeisic mean shon-term radon screening measwements for

232 towns in Now Hampshire plotied against town-average surficial uranium concentrations (NURE},

Fig. 3. Geologic map of Mew Hampshire wilh distinct geologic units indexed by random-effects geological

unit coefficients from Model 10.

Flg. 4. The distributions of natural logarithm of measured indoot radon sereening measurements for six
Mew Hampshire towns. Note that the values of these chservalions have heen shifted by constant amounts in

order oy superimpose Lhemn on the same figurs.

Fig. 5. Observed own geomerric standard deviatigns of short-term radon screening measurements plobied
as a function of the number of observetions in each ioam. The supenmposed curves indicale the 953%
confidence inerval for the hypothesis that the wue G50 for Hew Hampshire town radon screening

mecasurcments is 2.6,

Fig. 6. Posterior predictions of town GM indeor radon concentrations far homes with basements. The OM
values presented here are not Lthe “rue” values but only one of many peossible sais of predictions drawn at

random from distnbulional data.
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Fig. 7. Bayesian posterior predictive checks of 1200 simulations of Medel 10, The predictive chacks have
been conducked al the 10th, 20k, j0ih, 30th, 20k, and 39k percentiles. The superimposzd line on each
hisiogram of posterior distributions is the measvrement al the percentile in guestion, from the Now
Hampshire Radon Survey, The p-valer presented is a Bayesian p-vafue, as discussed in the text. For
example, the first plot shows that the 10th-percentile measurernent was about 22 Bogdm® (verical bine), and
that simu¥ated data from the posterior distribution had [dth-percentite values hetween about 19 and 22.5
Bgtm’ most of the tme (histogram), with the simulated 10th-percentile value excesding the aciual

measurement about 11% of the ime {p=(L11}

Fig. 8. A validation sef was created by removing 30% of the data from the 27 best-sampled towns in the
Mew Hampshine Radon Survey. This figure shows predicied town In{geometric mean} radon concentrations
{using Model 10} for these towns, plotted as a function of the owns’ observed Tadon concentrations as
indicaled by the validation set. The disgonal line tepresents a “perfect fit”. The error bats indicate one

standard error of the distributions of predicted town concentrations.
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Flg. 1. The disiribution of shorl-term radon screening measurements collected in ithe New Hampshire
Radon Survey,
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oo 1 R-Squared = 0.09
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0.2 0.4 0.6

0.8 1.0 12

In{town NURE [eqiv. U, ppm})

Fig. 2. The pawural Ingarithm of pbsarved geometric

mean shorl-lermn radon screening measuremenls for

232 towns in Mew Hampshire plotted against town-average surficial uraniutn concentrations (NURE]),
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New Hampshire Geology

Geol. Unit Effects

] .0.88 (G541)
-0.47 {G561)
-0.26 (G438)
-0.10 ((G640)
0.02 (G542)
0.05 {G591)
0.22 {G544)
0.47 {G546)
1.09 (G411)

Fig. 3. Geologic map of New Hampshire with distince geclogie units indexed by random-efiects geologieal
unit coefficients from Maodel 10
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Fig. 4. The distributions of nateral logarithm of measured indoor radon screcning measursments for six

Mew Hampshire towns, Note that the values of shese obswrveiioas bave been shifted by constant amounts in

order to superimpose them ¢n the same figore.

EX:



oo - »
fanr .
miﬂ
o
B
c
g : .
I .3,
v:.:_o_' H -
e B - L s - L]
I'E. ='= [ » : . *
. ! 'l 'l'- » o+ 0 .. .
I! . - [ ...' * * . .
oy - -'."1 . * a
-
W
10 20 30 40
numkber of obsarvations

Fig. 5. Observed town geometric slandard deviations of short-leom radon screening measurements ploited
as & funciion of the nomber of observations i1n each town  The supenmposed curves indicate the 95%
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Predicted Town G Radon Concentrations:
NH Homes with Basements

GM Radon {Bg/mY)

Flg. & Poslenior predictions of town GM indoor radon concentrations for homes with basements The GM

values presented here are not the “troc” valwes but only one of many possible sets of predichons drawn at
random from disinibutiomal data
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Fiz. 7. Bayesian posterior predictive checks of 12080 simwlations of Model 10. The prediclive checks have
been conducted at the 10th, 20th, 30th, 30ih, 20th, and ¥3th percontiles. The superimposed linc on ach
histogram of postenor disteibudions is the moasurcment at the percentile in question, from the New
Hampshire Radon Survey. The p-vafue presenied is 2 Bayestan p-valie, a5 discussed inthe 1ext For
example, the first plot shows thai the 10th-percentils measurcment was about 22 Bg/m? {vertical line), and
that simulated data from the posterior disizibution had 10th-percentile values between about 1% and 32.5
Bl:p‘rnI mosl of the time (histogram), with the simulated 10th-percentile valug exceeding the actual

measurement aboul 1% of the ime (p=0.113.
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Fig. 8. A validation set was created by removing 30% of the data from the 27 best-sampled Lowos in the
Mew Hampshire Radon Survey. This figure shows predicied town In{gsomeuric mean) tadon comcentralions
{using Model 10} for these wwng, plotted as a function of the 1owns' observed radon concentrations as
indicalcd by the: validation sct. ‘The diagonal line represents a “perfect At”. The crror bars indicate onc
standard ¢eror of the distributions of predicted towa concentralions,
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Appendix 1. Posterior predictions from Model 1 for the 232 towns incloded in the NH 3tate Radon
Survey, These predictions are for the Town GMs of detached single-family dweltings with occupied

bazements, oo FAF, and a municipal waier source.

Pradicted GM

for Houses with

Toown Bassrnent

(Bg/m™) (%% s1d err}

ACWORTH (L3I}
ALBANY 280 (142
ALEXANDRIA 740(1.33)
ALLENSTOWN 168 (1.31)
ALSTEAD 74 (1.34)
ALTON 73(1.3%)
AMHERST 113 (1,23}
ANDOVER T8 (1.29}
ANTRDA 3441.32)
ASHLAND 118 {1.32)
ATKINSON 118(1.22)
AUBURN 111 {1.25)
BARNSTBAL 115(1.37)
BARRINGTON L1E {1.28)
BARTLETT 214N
BATH F2{1.30
BEDFORD 137 {1.22)
BELMONT 53{1.27
BEMNNINGTOMN IB(1.31}
BENTOM B2 (1.3}
EERLINM 123{1.19)
BETHLEHEM 141 (1.23}
BOSCAWEN 50(1.39)
BOW 97 (1.23)
ERADFORD 50141
BRENTWOOD 119{1.30
BRIDGEWATER 97 {1.25)
BRISTOL 444130
BROOKFIELD 145 {1.34)
BROOELINE 96 (1.33)
CAAN 140 {1.33)
CAMFTON T4 (1.3
CANIDIA 129 {1.26)
CANTEREBURY T7{1.33)
CARROLL 169 {1.34)
CENTER HARBOE 45 {1.39)
CHARLESTOWN T7{1.31)
CHATHAM 289 (1.45)
CHESTER B8 (1,28)
CHESTERFIELD a8 (1.31)
CHICHESTER 104 (1.40)
CLAREMONT T1(1.30)
CLARKSVILLE H2(1.44)
COLEBROOK MW (L3N
COLUMELA 160 {1.39)

A-1

Predicted G

for Houses with

Torarn Basement

{qum’} {4 std enr)

CONCORD oX{1.22)
CONWAY 260 (1.31}
CORNISH 62 (1.32)
CROYDION 112 {1.33}
CALTON BT (1.2%)
BANBURY 71 (1.3
EBANYILLE 185 (1.24)
CEERFIELD 122(1.23)
DEERING 43{1.31)
DERRY 112{1.21}
DIXVILLE 60 (1.3
DORCHESTER a9 1.35}
DOVER 965{1.27)
DUBLIMN 6l {1.33)
DUMMER BO(L3T
DUNBARTON 127 (1.3
DURHAM 101 (¢ 20
EAST KIMGSTON 140(1.21)
EASTOM 62{1.37
EATON 238 {1.36)
EFFINGHAM 00 {136}
ELLSWORTH 70 (1.43)
ENFIELD 03 (1L.34)
EPFING 123 (1.30)
EPSOM 05(1.35)
EEROL T8{1.2%)
EXETER T {128
FARMINGTON 146{1.32)
FITZWILL1AM T0{1.34)
FRANCESTOWN 45 {1.3%)
FRANCONIA 0137
FRANELIN T8 {1.24)
FREEDCM 193 (1.41)
FEEMONT 113 (1.35)
GILFORID 90 (1.28)
GILMANTON T2{1.31)
GILSUM B3 (1.3
GOFFSTOWN 96 {1.24}
GORHAM 2B {1.24}
GOSHEN 67 {1.31)
GRANTHAM D (1.34)
GREENFIELD 65 (1323}
GREEMLAND 05 (L.30)
GREEMNYILLE 108 {1.33)
GROTON T1(1.36)



Appendix 11, Fosterior peadictions from Model 10 for the 27 lowns not included in the NH Siace Radon
Survey. These predictions are for the Town Ohs of detached single-family dwellings with occupied
basements, no FAF, and a municipal water source.

Predicied GM
for Houses with
Town Baszment

(Bafm'} (%4 s1d err)
ATKINSCN & GILMANTON 38 {2,403
BEANS GRANT 68 {L.76)
BEANS PURCHASE T1(1.8%)
CAMBEIDGE 350218
CHANDLERS PURCHASE 54 (175
CRAWFORDS PURCHASE 72 (2.18)
CUTTS GRANT SR
DIXS GEANT 36 (2.37)
ERVINGS LOCATION XN Ay
GRAFTON 52 (1.859)
OREENS GRANT GO (1.8
BADLEYS PIIRCHASE 87200
HALES LOCATION 1043 (2.35)
KILKENNY 16{2.3n
LOWERBHEBANKS 52{1.87)
MARTINS LOCATION £2 (168
MILLSFELD 44 11,763
MEWFIELDS T4 (2403
CDELE. 47 (L&2}
PFINKHAM'S GRANT 60 (.38}
SARGENTS PURCHASE 66 (1.78)
SECOND COLLEGE 38 (2.38)
SUCCESS M (16D
THOMPSON&EMESERVE 65 (1.77)
UNCGROANIZED TEREITORY o1 2110
WATERVILLE YALLEY B1(2.02)
WENTWORTHS LOCATION 36 (2. 100

A-d









