
Estimation of field-scale soil hydraulic and dielectric parameters 
through joint inversion of GPR and hydrological data  
 
M.B. Kowalsky1, S. Finsterle1, J. Peterson1, S. Hubbard1, Y. Rubin2, E. Majer1, A. Ward3, 
and G. Gee3 
 
1 Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA  
2 Dept. of Civil and Environmental Engineering, University of California, Berkeley, CA 
3 Hydrology Group, Pacific Northwest National Laboratory, Richland, WA 
 
Abstract 

A method is described for jointly using time-lapse multiple-offset cross-borehole 

ground-penetrating radar (GPR) travel time measurements and hydrological 

measurements to estimate field-scale soil hydraulic parameters and parameters of the 

petrophysical function, which relates soil porosity and water saturation to the effective 

dielectric constant. We build upon previous work to take advantage of a wide range of 

GPR data acquisition configurations and to accommodate uncertainty in the petrophysical 

function. Within the context of water injection experiments in the vadose zone, we test 

our inversion methodology with synthetic examples and apply it to field data. The 

synthetic examples show that while realistic errors in the petrophysical function cause 

substantial errors in the soil hydraulic parameter estimates, simultaneously estimating 

petrophysical parameters allows for these errors to be minimized. Additionally, we 

observe in some cases that inaccuracy in the GPR simulator causes systematic error in 

simulated travel times, making necessary the simultaneous estimation of a correction 

parameter. We also apply the method to a three-dimensional field setting using time-lapse 

GPR and neutron probe (NP) data sets collected during an infiltration experiment at the 

U.S. Department of Energy (DOE) Hanford site in Washington. We find that inclusion of 

GPR data in the inversion procedure allows for improved predictions of water content, 

compared to predictions made using NP data alone.  
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1. Introduction 

Ground-penetrating radar (GPR) measurements are not directly related to soil 

hydraulic parameters in the vadose zone. However, they are highly sensitive to fluid 

distribution (and to changes thereof) and are therefore potentially useful for inferring soil 

hydraulic parameters. The use of GPR methods for characterizing the distribution and 

movement of fluids in the subsurface is well established. However, only recently has the 

potential for using time-lapse GPR measurements to infer soil hydraulic properties—

which can then be used to model flow and transport—been explored [Binley et al., 2002; 

Kowalsky et al., 2004a; Lambot et al. 2004; Rucker and Ferre, 2004]. The response of a 

hydrological system to external stimuli, such as the injection of water in the subsurface or 

ponding of water on the ground surface, depends primarily on the soil hydraulic functions 

and their variations in space (and on the initial and boundary conditions). Corresponding 

GPR measurements of the same system also depend on the soil hydraulic functions—

although indirectly—because the soil hydraulic functions influence the water distribution, 

which in turn influences the GPR response.  

A review of GPR applications in hydrological investigations is given by Annan 

[2005]. The soil property that most directly affects the speed at which GPR waves travel 

in the subsurface is the (dimensionless) dielectric constant κ. For common earth materials 

(and under favorable conditions), it is related to the electromagnetic (EM) wave velocity 

(V) through 

 
κ
cV ≈  , (1) 

where c is the EM wave velocity in free space [Davis and Annan, 1989]. The presence of 

water affects the dielectric constant of soil mixtures [Daniels, 1996] in a manner that can 
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be modeled with relationships that are purely empirical [Topp et al., 1980, Persson et al., 

2002], semi-empirical [Birchak et al., 1974; Roth et al., 1990], or theoretical [de Loor, 

1964; Dobson et al., 1985; Friedman, 1998; Sihvola, 1999]. Hereafter, we refer to the 

functions that relate water content (or water saturation) to the dielectric constant of soil 

mixtures as petrophysical functions, and to the parameters that describe such functions as 

petrophysical parameters. 

Because of their high sensitivity to the pore water distribution, cross-borehole 

ground-penetrating radar (GPR) measurements are used increasingly for monitoring 

transient flow processes in the vadose zone [e.g., Alumbaugh et al., 2002; Binley et al., 

2001; Kowalsky et al., 2004b]. Tomographic inversion techniques [Peterson et al., 1985] 

are typically applied to cross-borehole GPR data sets [Eppstein and Dougherty, 1998; 

Peterson, 2001] to infer spatial distributions of EM velocity or dielectric constant 

(tomograms), which can be converted to water saturation with a petrophysical function. 

Tomogram artifacts (e.g., smoothing or smearing in the images), introduced through the 

tomographic inversion procedure, are potentially problematic for application to 

hydrological modeling [Stewart, 1991; Peterson et al., 2001]. Furthermore, while cross-

borehole tomograms are useful for gaining a qualitative understanding of the subsurface 

(e.g., to help identify preferential flow paths), in general they cannot be used to obtain 

quantitative estimates of vadose zone flow parameters, such as the permeability and the 

soil hydraulic parameters of the capillary pressure and relative permeability functions, 

except for in some limited cases [e.g., Hubbard et al., 1997].  

Few studies have been published in which geophysical measurements are integrated 

in hydrological inversion in a fully coupled fashion (i.e., where the geophysical and 



 3

hydrological measurements are simulated simultaneously and are linked explicitly to the 

hydrological parameters), especially for vadose zone applications. Hyndman et al. [1994, 

1996] developed an inversion algorithm for estimating lithological zones and the 

hydrological parameters of the zones in fully saturated aquifers using seismic and tracer 

data. Rucker and Ferre [2004] used an analytical solution to invert for the average 

hydraulic conductivity value using the infiltration front position, inferred from GPR 

travel time measurements collected at a single depth (they also demonstrated the 

possibility of estimating two additional hydraulic parameters when including pressure 

head measurements). 

Here we describe an approach for estimating soil hydraulic parameter distributions 

such as in the vadose zone through the coupled numerical simulation (and inversion) of 

multiple-offset cross-borehole GPR measurements and other hydrological measurements 

collected during transient flow experiments. Coupling between the hydrological and GPR 

simulators links the simulated water saturation and porosity distributions to the simulated 

GPR measurements (e.g., travel times), thus indirectly linking the geophysical 

observations to the soil hydraulic parameters. Joint inversion proceeds by perturbing the 

soil hydraulic parameters—which alters the simulated hydrological observations and the 

geophysical observations—until the simulated and measured geophysical and 

hydrological observations are in good agreement. A flow chart depicting the joint 

inversion procedure, which we implemented in iTOUGH2 [Finsterle, 1999], is given in 

Figure 1, and details of the inversion methodology are discussed below.  

The methodology we employ is an extension of the work by Kowalsky et al. [2004a], 

who used geophysical and hydrological data jointly within a maximum a posteriori 
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(MAP) inversion framework [McLaughlin and Townley, 1996] that employed concepts 

from the pilot point method [RamaRao et al., 1995; Gomez-Hernandez et al., 1997]. The 

approach of Kowalsky et al. [2004a] allowed for estimation of unknown log permeability 

values, at so-called pilot point locations, and other  hydrological parameters, resulting in 

hydrological models that honored geophysical and hydrological data, and that contained 

permeability distributions with specified patterns of spatial correlation and that honored 

available log permeability point measurements. The method was shown to be useful for 

accurately predicting flow phenomena and quantifying parameter uncertainty. However, 

the forward model used to simulate GPR measurements was limited to a simple data 

acquisition configuration, disallowing the use of multiple-offset GPR measurements 

(discussed below) and three-dimensional models. In addition, the petrophysical function 

was assumed to be known and error free, despite the fact that inaccuracies easily enter 

into the field-scale petrophysical function when it is derived using non-site-specific data 

or laboratory-scale measurements [e.g., Moysey and Knight, 2004; Lesmes, 2005].  

At present the aforementioned method of Kowalsky et al. [2004a] is extended to allow 

for 1) inclusion of GPR measurements (travel times) collected using any transmitter and 

receiver geometry within a possibly three-dimensional model, and 2) estimation of 

petrophysical parameters. We have also extended the method to allow for possible 

estimation of spatial correlation parameters, but this possibility is not currently explored 

herein. These extensions permit investigations under more realistic conditions (e.g., 

where there is uncertainty in the petrophysical function) and increase the flexibility of 

GPR data acquisition configurations that may be considered, which allows for soil 

hydraulic parameter estimates with increased resolution and accuracy. Following a 
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description of the methodology, given in Section 2, synthetic examples and an application 

using field data are presented in Sections 3 and 4, respectively.  

 

2. Methodology 

 

2.1 Hydrological measurements 

The hydrological process considered in this study is variably saturated flow in the 

vadose zone. Variably saturated flow of incompressible water in non-deformable porous 

media can be modeled with the Richards’ equation: 
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where K and Pc, both functions of water saturation Sw, are the unsaturated hydraulic 

conductivity and the capillary pressure, respectively, ρw is the water density, g is the 

gravitational constant, ϕ is the porosity, and z is the vertically oriented unit vector 

(positive upward). The hydraulic conductivity is defined as: 

 
, (3) 

where krel is the dimensionless relative permeability (the only component of K that is a 

function of water saturation), µw is the dynamic viscosity of water, and k is the absolute 

permeability, which is a scalar k for the case of isotropic media, and which has horizontal 

and vertical components kh and kv, respectively, for the case of anisotropic media. For this 

study, we model the relative permeability and capillary pressure with the functions given 

by van Genuchten [1980] as:  
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where S is the normalized water saturation, and res
wS  and sat

wS  are the soil-specific residual 

and maximum water saturation values, respectively, and m (dimensionless) and α (Pa-1) 

are soil-specific parameters. Hysteresis of the relative permeability function can affect the 

redistribution of water following infiltration [Philip, 1991], but is not considered in this 

study.   

To simulate flow in the vadose zone using (2)-(6), the soil hydraulic parameters ϕ, α, 

m, res
wS , sat

wS , and k must be specified. Although a number of studies suggest that spatial 

variability of these parameters can be significant [Jury et al., 1987; Russo and Bouton, 

1992], data describing such variability for modeling applications are limited. In the 

present work, all parameters are considered spatially uniform, except for k, which can be 

treated as a space random function (SRF). 

The joint inversion approach described below aims to estimate the soil hydraulic 

parameters using a combination of hydrological measurements (e.g., water content values 

inferred from neutron probe logging) and ground-penetrating radar measurements (e.g., 

cross-borehole travel times), which are highly sensitive to the time- and space-varying 

distribution of Sw, which is in turn affected by the soil hydraulic parameters. The 

framework used for the coupled simulation (and inversion) of hydrological measurements 

and geophysical measurements (discussed next) is iTOUGH2 [Finsterle, 1999], a code 
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that provides parameter estimation capabilities for the TOUGH2 flow simulator [Pruess 

et al., 1999].  

 

2.2 Ground-penetrating radar measurements 

 

2.2.1 Petrophysical function relating water saturation and porosity to dielectric constant  

Application of GPR measurements in the subsurface requires a petrophysical function 

that relates the soil water saturation and porosity to the dielectric constant (e.g., reviews 

are given by Huisman et al. [2003] and Lesmes and Friedman [2005]). One of the most 

commonly used models, by Topp et al. [1980], is given as a third-order polynomial:  

 32 7.760.1463.903.3 θθθκ −++= , (7) 

where θ is the water content (the product of water saturation and porosity), and where the 

coefficients were determined through laboratory measurements on several inorganic soils. 

However, the dielectric constant of soils is sensitive to additional soil properties, such as 

the mineral composition of the solid soil particles [Roth et al., 1990], organic matter and 

bulk density [Jacobsen and Schjonning, 1993], temperature [Roth et al., 1990; Or and 

Wraith, 1999], and grain geometry and cementation [Lesmes and Friedman, 2005], all of 

which suggest the need for alternative petrophysical relationships that allow for site-

specific variations.  

Alternatively, there are theoretically based models [Lesmes and Friedman, 2005], 

such as volumetric mixing formulae, which account for the volume fraction and 

geometrical arrangement of materials with known or measurable dielectric constants. An 

expression used for two-phase mixtures [Birchak et al., 1974] and extended to three-
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phase mixtures of air, water, and solids [Alharthi and Lange, 1987; Roth et al., 1990] is 

given by: 

 [ ]nn
a
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w

n
s SS

1

)1()1( ϕκϕκκϕκ −++−= , (8) 

where ϕ is the porosity, κs is the dielectric constant for the solid components, κw and κa 

are the known dielectric constants for water and air, respectively, and n is a parameter 

related to the geometric arrangement of materials relative to the applied electric field 

[Ansoult et al., 1984]. The value of n is commonly assumed to be 0.5, which is expected 

in isotropic media [Birchak et al., 1974], but measured values for sediments have been 

observed to range between 0.4 and 0.65 [Chan and Knight, 1999].  

The petrophysical model (8) can be adjusted to site-specific conditions, given 

estimates of κs and ϕ.  The measurement of porosity from cores can be problematic, since 

the in-situ packing of unconsolidated or semi-consolidated materials is difficult to 

preserve through the coring process. Values of κs are sometimes assumed (e.g., a 

“representative” value is taken from the literature) or are determined with cores in the 

laboratory using time-domain reflectometry (TDR) methods [Topp et al., 1980; Martinez 

and Byrnes, 2001]. However, errors can be unintentionally introduced from several 

sources during this process. As petrophysical functions are frequency dependent 

[Robinson et al., 2003, 2005], relationships derived in the laboratory from TDR 

measurements, for example, are not necessarily appropriate for application at the field 

scale [Huisman et al., 2003; Moysey et al., 2004], where the frequencies employed are 

typically lower than in the laboratory. Petrophysical functions may also be derived in the 

field by correlating dielectric constant estimates, derived from cross-borehole GPR, with 

estimates of water content inferred from co-located neutron probe (NP) data [Hubbard et 
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al., 1997]. However, tomogram artifacts (such as smoothing) and errors in NP data [Yao 

et al., 2004; Fares et al., 2004] can introduce errors into the estimated petrophysical 

function [Huisman et al., 2003; Day-Lewis et al., 2004; Linde et al., 2005]. 

As will be described in Section 2.4, our inversion approach allows for estimation of 

petrophysical parameters in (8)—at present, we consider the estimation of κs—thus 

helping to overcome potential errors introduced by scale discrepancy and measurement 

error. It should be noted that we currently assume the error in the petrophysical function 

is contained entirely in the parameters, not in the petrophysical model itself. 

 

2.2.2 Simulation of GPR measurements 

Numerous techniques are available for simulating GPR measurements, ranging from 

ray-based methods [Cai and McMechan, 1995], to pseudo-spectral methods [Casper and 

Kung, 1996], to time-domain finite-difference full-waveform methods [Kunz and 

Luebbers, 1993; Bergmann et al., 1998]. Ray-based methods are the simplest and most 

computationally efficient for the simulation of GPR travel times; they are based on a high 

frequency approximation that calculates the arrival time of the first break of the 

transmitted wave (i.e., the time at which the wave amplitude departs from zero) and 

ignores the remainder of the waveform [Bregmen et al., 1989]. The straight-ray method 

was chosen for the current study for its computational efficiency. However, as will be 

discussed in the synthetic examples given below, significant errors can arise in travel 

times simulated using the straight-ray method, depending on the corresponding water 

distribution, leading in some cases to a systematic error (over-prediction) in simulated 

travel times that must be accounted for in the inversion procedure. 
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The travel time T for an EM wave traveling between the transmitting and receiving 

antennas in a domain characterized by discrete grid blocks can be approximated by 

defining a straight ray between the antennas and summing the travel times through each 

grid block that the ray travels:  

 ∑
=

=
N

i i
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1

, (9) 

where Li is the length of the travel path (linear line segment) in block i, N is the number 

of blocks through which the ray passes, and Vi is the EM velocity in block i. For the 

present work, the petrophysical function is modeled using the volumetric mixing formula 

(8), which, through combination with (1) and (9), allows for the travel time T to be 

calculated as follows: 
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where Sw,i and ϕi are the water saturation and porosity in grid block i, respectively.  

The simulation of cross-borehole GPR travel times in a domain undergoing transient 

fluid flow was made possible through solution of (10) within iTOUGH2 [Finsterle, 

1999]. Each travel time is thus a function of the distributions of water saturation and 

porosity, the variable dielectric parameters (n, κs), and remaining known parameters. 

 

2.4 Joint inversion methodology 

Here we extend the method developed by Kowalsky et al. [2004a] for estimating flow 

parameter distributions in the vadose zone using hydrological and geophysical 

measurements collected during transient flow experiments. The approach used a 

maximum a posteriori (MAP) inversion framework [McLaughlin and Townley, 1996; 
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Rubin, 2003] and employed concepts from the pilot point method [RamaRao et al., 1995; 

Gomez-Hernandez et al., 1997]. The permeability distribution was considered non-

uniform and was treated as a lognormal SRF with a known pattern of spatial correlation 

(i.e., known semivariogram).  

At present, in the case of non-uniform anisotropic permeability, the spatially varying 

component of permeability is introduced through the permeability modifier ξ(x), defined 

through the following relationships:  

 )(10)( x
vv kk ξ=x  (11) 

 )(10)( x
hh kk ξ=x  (12)  

where kv and kh are the mean values of vertical and horizontal permeability, respectively, 

and ξ(x) is an SRF with known patterns of spatial correlation (note that the methodology 

does not prevent the spatial correlation parameters from being treated as unknowns). The 

mean of ξ(x) is zero and its variance is equivalent, as is the semivariogram, to that for the 

log distributions of kh(x) and kv(x). The remaining flow parameters are assumed to be 

spatially uniform and uncorrelated with permeability.  

The permeability modifier field is parameterized using pilot points, giving a vector of 

unknowns (ξpp) at the pilot point locations. Through sequential simulation [Deutsch and 

Journel, 1992], a permeability field conditional to ξpp is generated. During the inversion 

procedure, estimates of ξpp are repeatedly perturbed as the permeability fields are updated 

through sequential simulation, until the permeability field is found that provides 1) an 

optimal match to the observed hydrological and geophysical data, and 2) minimal 

deviation of the unknowns from prior estimates, if available. The remaining unknown 

model parameters are simultaneously estimated with ξpp. 
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In previous work, the petrophysical function was assumed to be known and error free. 

In addition, the technique used for simulating ground-penetrating radar measurements 

was limited to one simple data acquisition configuration, the zero-offset profile (ZOP), in 

which the transmitting and receiving antennae are kept at equal depths during each 

measurement. This acquisition geometry yields a single depth profile of GPR travel 

times. While ZOP surveys are useful for gaining depth-averaged information, they do not 

provide information about lateral variations in material properties.  

Here we use (10) to simulate GPR travel times for arbitrary transmitter and receiver 

positions (e.g., in multiple-offset profile surveys) within a model is possibly three-

dimensional with non-uniform grid spacing. Additionally, we expand the parameters that 

can be considered as unknowns to include the vector of soil hydraulic parameters, such as 

ah = [φ, α, m, res
wS , sat

wS , kh, kv, …] from (2)-(6); the vector of petrophysical parameters aκ 

= [κs, n] from (8); and, while not explored in this study, the vector of semivariogram 

parameters aγ, which could include, for example, the range parameter occurring in most 

semivariogram models [Deutsch and Journel, 1992]. These extensions permit 

investigations under more realistic conditions, such as where there is uncertainty in the 

petrophysical function or in the spatial correlation function. Moreover, improved 

accuracy and resolution can be obtained in the soil hydraulic parameter estimates using 

the wealth of data available in multiple-offset profile surveys.  

The general goal of the inverse problem is the estimation of vectors a = [ah, aκ, aγ] 

and ξpp given measurements of the following types:  

1. GPR travel time measurements (T), given as [ ] GPRGPRRxTxGPRGPR T vtxxz += ),,( ** , taken at 

the transmitting and receiving antenna positions *
Txx  and *

xRx  (each of length MGPR), 
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and at survey times GPRt  (length NGPR), that is, ),,( **
GPRRxTx txx  = 

GPRMiGPRiRxiTx t ,...,11,,, ),,( =xx , 
GPRMiGPRiRxiTx t ,...,12,,, ),,( =xx , …, 

GPRGPR MiNGPRiRxiTx t ,...,1,,, ),,( =xx , 

where GPRv  is the measurement error (length GPRGPR NM × ) associated with 

measurement of GPRz ; 

2. Hydrological measurements, given here as local water content measurements (e.g., 

inferred from NP measurements) [ ] HHHwHH S vtxxz +⋅= ),()(ϕ , taken at borehole 

positions Hx  (length MH) and at survey times Ht  (length NH), where Hv  is the 

measurement error (length HH NM × ) associated with measurement of Hz . 

In order to test the approach with minimal data requirements, we assume in this study that 

point measurements of permeability are unavailable, although they can easily be included 

if they are available [Kowalsky et al., 2004a]. However, as was mentioned above, we do 

assume that the geostatistical information describing the log permeability is known (e.g., 

the variance and additional semivariogram parameters). 

Assuming that (a) the measurement errors are characterized by known normal 

distributions, (b) the permeability field is uncorrelated with other soil-hydraulic 

parameters, and (c) the prior information of the parameters is normally distributed, then 

the objective function (OF) that is minimized during inversion can be written as: 
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where ppξ
 

 and a  are the prior means of ξpp and a, respectively, and 
ppξC and bC  are the 

corresponding covariance matrices. For the case in which log permeability point 
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measurements are available, ppξ
 

 and its variance values (which are used as the diagonal 

terms in 
ppξC ) are calculated through kriging [Deutsch and Journel, 1992]. For the case 

we currently consider in which no log permeability point measurements are available, the 

prior values of ppξ
 

 equal zero (i.e., each pilot point is penalized in the same way for 

deviating from the mean log permeability value, which is one of the unknowns in aH); in 

addition, the values of 
ppξC contain the known log permeability variance, ensuring that 

the log permeability values at the pilot point locations stay reasonably close to the mean 

log permeability value k. 

For models with spatially uniform soil properties (as in the example given in Section 

3.1), only one inversion realization is performed, giving MAP estimates that are 

equivalent to the weighed least squares solution. In models with heterogeneous 

permeability (as in the example given in Section 3.2 and the application to field data 

given in Section 4), multiple inversions are performed, each giving one realization of the 

MAP solution, and each obtained using a different initial log permeability field (i.e., a 

seed number that is unique to each inversion realization is used for sequential simulation 

[Deutsch and Journel, 1992]).  

In the following examples, the Levenberg-Marquardt algorithm [Levenberg, 1944; 

Marquardt, 1963] was used to minimize the objective function.  

 

3.  Synthetic examples 

The joint inversion methodology is demonstrated in this section using synthetic data 

collected during simulated water injections in the subsurface. The objective function (13) 

can be used to estimate all unknowns or some subset of unknowns, depending on the 
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problem being considered. Here we test the effectiveness of the method for estimating 

various subsets of unknowns for two different heterogeneity conditions. In the first 

example (Section 3.1), we consider a model with spatially uniform soil parameters. In the 

second example (Section 3.2), we consider a model with a heterogeneous permeability 

distribution. 

 

3.1 Model with uniform soil hydraulic parameters 

The model considered in the first example has horizontal and vertical dimensions of 3 

m and 4 m, respectively, grid spacing of 10 cm (in both directions), and spatially uniform 

soil hydraulic properties (Figure 2). Boundary conditions are as follows: the total flux 

across the upper boundary, which represents the ground surface, is known; the lower 

boundary is fully saturated, representing the water table; and no-flow conditions are 

implemented at the vertical sides of the model. Because the steady-state water profile and 

the transient response to water injection depend on the hydraulic parameters, the 

simulation proceeds in two steps. First, the steady-state profile (gravity-capillary 

equilibrium) is simulated for the given set of hydraulic parameters. Second, using the 

steady-state profile to specify initial conditions, water injection and subsequent 

redistribution are simulated by imposing a mass flux of water equal to 1.08 kg/hr at the 

injection point for 12 hours duration. See Table 1 for a list of parameters used in the 

simulation. 

To test the inversion methodology, we simulated GPR and NP measurements before 

water injection (pre-injection) and several times after water injection (18, 24, 36, and 48 

hours post-injection) in boreholes at horizontal positions of 1 m and 3 m (Figure 2). The 
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synthetic NP measurements were obtained by recording the water content values during 

the simulation at the sampling locations shown in Figure 2a, and then adding 

measurement noise (zero-mean random deviates with standard deviation of 0.01).  

To obtain the GPR measurements for the “true” model, a two-dimensional finite 

difference code was implemented based on the method of Bergmann et al. [1998] and 

used to generate synthetic GPR waveforms with a central source frequency of 250 MHz. 

Grid spacing of 2 cm was used for both the horizontal and vertical directions, and the 

time step of 0.075 ns used was. Parameters describing the electrical properties that are 

needed for simulation are also given in Table 1. (Note that the electrical conductivity 

must be specified for the finite difference approach and is also a function of water 

saturation; see Kowalsky et al. [2004b] for details.) The travel time measurements were 

obtained by picking the first-break arrival times from the synthetic waveforms and then 

adding measurement noise (zero-mean random deviates with standard deviation of 0.25 

ns).  

For emphasis, we note again that the GPR travel times used as synthetic data for 

inversion were calculated from the simulated full waveforms, which reflect complex EM 

wave propagation effects, such as ray curving; that is, the synthetic travel time data were 

not generated using the straight-ray approximation. However, to simulate GPR travel 

times during inversion, the straight ray approximation (10) is used because of its 

computational efficiency. In some cases this approximation can lead to systematic errors, 

which is discussed in Section 3.1.1. 

The simulated water saturation profiles for two times (pre-injection and 18 hours after 

onset of injection) are shown in Figures 3a and 3b. In addition, the corresponding GPR 
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waveforms recorded for one selected transmitting antenna are shown in Figures 3c and 3d 

along with the travel times that were picked from the waveforms. Note the longer travel 

times resulting from the increased water saturation in the vicinity of the injection point.  

 

3.1.1 GPR travel time considerations 

For this uniform soil model, a systematic error (bias) in the simulated GPR straight-

ray travel times occurs and must be accounted for to obtain good soil hydraulic parameter 

estimates. Figure 4 shows how error in the straight-ray travel times is related to the 

injection time and the distance that the straight-ray passes above or below the injection 

point (the errors were calculated relative to the travel times picked from waveforms 

simulated using the finite difference method, as discussed above). At early times, after 

the onset of injection but before the injected water spreads appreciably, the injected 

plume of water serves as a low velocity inclusion (increased water saturation results in 

decreased EM velocity) and causes a sharp contrast in the EM velocity. When the travel 

path of the earliest arriving energy is curved around the low-velocity inclusion, using the 

straight-ray approximation results in the inclusion appearing drier than it is in reality. 

While in this case the magnitude of the travel time error is small and on the order of the 

measurement noise (standard deviation of 0.25 ns), it is a systematic rather than random 

error and thus introduces a bias, which significantly affects the accuracy of the soil 

hydraulic parameter estimates obtained through inversion.  

The mean and standard deviation of the errors in the straight-ray arrival times for all 

post-injection surveys are 0.088 ns and 0.093 ns, respectively. (The corresponding values 

for the pre-injection survey are much lower: 0.014 ns and 0.011 ns.) To partially 



 18

compensate for the bias in the GPR travel times simulated using the straight-ray 

approximation at early post-injection times, we include the post-injection shift in the 

arrival times (Tshift) as an unknown parameter to be estimated through inversion.  

 

3.1.2 Inversion results 

Using the time-lapse GPR travel time and borehole NP measurements described 

above, we test the approach for two different sets of unknown parameters. In Case 1, the 

vertical component of the log permeability (kv), the anisotropy ratio (kv/kh), the porosity 

(φ), and the parameter Tshift are estimated. In Case 2, two parameters of the relative 

permeability and capillary pressure functions, namely m and log 1/α, are estimated, along 

with the vertical component of the log permeability, the anisotropy ratio, and the 

parameter Tshift. In addition, we investigate various scenarios of uncertainty in the 

petrophysical function: (a) the petrophysical function is known accurately; the assumed 

or measured solid component dielectric constant (κs) in the petrophysical function is 

inaccurate (i.e., it contains an error of (b) +20% and (c) -20%); and (d) the parameter κs is 

estimated through inversion along with the remaining unknown parameters. For this 

example, we assume no prior information is available for the unknown parameters (i.e., 

the prior pdfs are uniform), yielding the objective function (13) with only the first term.  

At first we assume that the petrophysical function parameter κs is known accurately 

(Case 1a), giving reasonably accurate estimates of the hydraulic parameters (Table 2), 

although the anisotropy ratio is over-predicted. The difference between the predicted 

water saturation distribution and that of the true model at a single time is depicted in 

Figure 5, showing good overall agreement (maximum relative difference of 10%) with a 
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slight under-prediction of water saturation in the vicinity of the plume. The parameter 

Tshift is estimated to be 0.125 ns, which is similar to the expected average bias in the 

straight-ray approximation, as discussed above. 

In practice, a small (or large) amount of error can be unintentionally introduced into 

the petrophysical function, for example, when a petrophysical function derived from 

laboratory scale measurements is employed at the field scale, or when an unconfirmed  

generic function is used at a given site. To examine the impact of realistic errors in the 

petrophysical parameters on inversion results, we intentionally use incorrect values for 

the parameter κs (errors of +/- 20% of its true value of 4.5). For these two cases (Cases 1b 

and 1c), the resulting errors in the hydraulic parameter estimates are substantially 

increased (Table 2), most notably: the porosity is over-predicted and under-predicted by 

almost 30%, for Cases 1b and 1c, respectively; and the anisotropy ratio is over-predicted 

by 60% for Case 1c. As shown in Figure 5, the water saturation profile is over-estimated 

(by up to 65%) and under-estimated (by up to 30%) for Cases 1b and 1c, respectively. 

Note that the petrophysical function (8) depends not only on κs but also on porosity, 

which was estimated through inversion. The erroneous values of κs assumed for Cases 1b 

and 1c and the corresponding inaccurate porosity estimates lead to highly inaccurate 

petrophysical functions (Figure 6).  

Because errors in the petrophysical function can adversely affect hydraulic 

parameters estimates, our inversion methodology allows for such errors to be partially 

compensated by allowing one or more of the petrophysical parameters to be unknown 

(aGPR) and jointly estimated with the remaining soil hydraulic parameters (ah). For Case 

1d, the parameter κs is considered unknown and is estimated along with the remaining 
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soil hydraulic parameters, which are estimated more accurately overall than for the 

previous cases (e.g., the error in the porosity estimate is reduced to 5%). Consequently, 

the saturation profile is better predicted, to similar accuracy as for the case in which the 

parameter κs was error free (Case 1a). 

In Cases 2a-d we include in the estimation procedure two parameters of the capillary 

pressure and water retention functions—namely m and log 1/α—and we again consider 

several cases of uncertainty in the petrophysical function. Considering Table 2 (and 

Figure 5) the following observations can be made: (1) that knowing the parameter κs 

accurately allows for reasonable estimates of the soil hydraulic parameters and good 

predictions of the water profile (Case 2a); (2) the presence of error in the petrophysical 

function adversely affects estimates of the soil hydraulic parameters and of the predicted 

water saturation profiles (Cases 2b and 2c); and (3) adverse effects on hydraulic 

parameter estimates due to uncertainty in the parameter κs are minimized when κs is 

jointly estimated with the remaining hydraulic parameters (Case 2d).  

For reference, the capillary pressure and relative permeability functions obtained for 

Cases 1 and 2 are shown in Figure 7. Note that the parameters of these functions were 

assumed to be known in Case 1, whereas two parameters were estimated in Case 2 (see 

Table 2).  

Note that there is relatively little error in the petrophysical functions for Cases 2b and 

2c, relative to those for Cases 1b and 1c; this is because in Case 2 the correct porosity 

value is assumed, leaving only inaccuracy in κs to affect the petrophysical function 

(Figure 6). However, as was shown above, the small inaccuracies in κs were enough to 
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cause large errors in the hydraulic parameters. But, joint estimation of κs allowed for such 

inaccuracies to be largely overcome. 

 

3.2 Model with heterogeneous permeability 

The model explored in this example is identical to the one explored in Section 3.1, 

except that the log permeability considered at present is spatially heterogeneous (Figure 

8a), having been generated using sequential simulation [Deutsch and Journel, 1992] with 

an anisotropic spherical semivariogram (Table 1). The remaining soil hydraulic 

parameters are modeled as spatially uniform. Synthetic data sets were obtained in the 

same fashion as in the previous example, except that the survey times of 12, 24, 36, and 

48 hours after injection are used, in addition to the pre-injection survey. Measurement 

noise was added to the synthetic NP and GPR data sets in the same manner as for the 

previous example. 

We choose to estimate two vertical columns of pilot point (see Figure 8a), since the 

correlation length scale of heterogeneity in the horizontal direction is much longer than in 

the vertical direction. Computational considerations also affected this decision: while the 

use of more pilot points potentially better resolves lateral heterogeneity, the computation 

time required for inversion increases with the number of unknowns, which is a concern 

with three-dimensional models (such as is considered in Section 4). In total, 17 unknowns 

are estimated, namely, the uniform soil hydraulic parameters φ  and log kv, 14 pilot point 

permeability values ξpp, and the petrophysical parameter κs. 
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Recall that the entire permeability field is generated conditional to the permeability 

values at the pilot point locations, such that estimating the optimal pilot point values is 

tantamount to determining the optimal permeability distribution of the entire model.  

The total flux at the surface is assumed to be known, as are the variance of the 

permeability field and the parameters of the log permeability semivariogram, the 

permeability anisotropy ratio (kh = 4kv), and remaining soil hydraulic parameters. Note 

that the purpose of the examples presented here is not to design the optimal injection 

experiment, but rather to demonstrate the merit of the joint inversion approach.  

 

3.2.1 GPR travel time considerations 

In the previous example (Section 3.1), which utilized a uniform soil model, it was 

necessary to account for systematic error in the travel times results from the straight-ray 

approximation. However, in the present example, which contains a heterogeneous 

permeability distribution, there is minimal systematic error in the simulated straight-ray 

travel times. Because the injected water is dispersed and distributed more 

heterogeneously, corresponding to an increased “randomness” in the EM velocity field 

(as compared to the elliptically shaped plume in the previous example), the true ray paths 

no longer bend in a highly focused fashion around the injected water plume, making 

estimation of the parameter Tshift unnecessary.  

For comparison with the previous synthetic example (for data simulated at 18 hours 

after onset of injection), the mean and standard deviation of the errors in the straight-ray 

arrival times for the post-injection surveys, relative to the travel times picked from 

waveforms simulated using the finite difference technique, are 0.055 ns and 0.20 ns, 
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respectively. The corresponding values of the pre-injection survey are -0.020 ns and 

0.043 ns.  

 

3.2.2 Inversion results 

Using the time-lapse GPR travel time and NP measurements simulated for the 

heterogeneous model, we test the approach for the case in which the soil hydraulic 

parameters and the petrophysical parameter κs are unknown, as described above. We 

assume no prior information is available for the unknown parameters, except for 

parameters of the log permeability semivariogram function (including the variance), 

yielding the objective function (13) with the first and second term. We performed 20 

inversion realizations, each with a different realization of the initial permeability field, 

resulting in 20 equally plausible sets of parameters.  

The estimated log permeability distributions compare well with that of the true model 

(as an example, one inversion realization is shown in Figure 8b). The mean of the 

multiple realizations is smooth, capturing the true model within the error bounds (see 

Figures 8c and 8d). Note that while the mean of the permeability realizations is smooth, 

the permeability fields estimated for each inversion realization reflect, on average, the 

specified spatial correlation model. Thus, the multiple permeability realizations could be 

used to predict flow phenomena, for example, the pdf of breakthrough time of the 

injected water reaching a control plane.  

The predicted water saturation profiles, on average, match that of the true model 

(Figure 9). The peaks in water saturation near 1 and 1.5 meters depth are slightly under-

predicted, especially for the earlier time shown (12 hours after the onset of injection). 



 24

However, in all cases the peaks fall within the uncertainty bounds of the predicted 

profiles (Figures 9c and 9f). 

The average of the predicted petrophyiscal functions, based on the estimated values 

of ϕ and κs, is nearly identical to that of the true model (Figure 9). 

 

4. Application to field data from DOE Hanford site 

An application of the joint inversion method to a field data set is given in this section. 

The purpose is not to develop an optimal hydrological model for the field site considered, 

but rather to demonstrate the method in the context of a three-dimensional setting with 

actual field data and to demonstrate the potential benefit that GPR measurements offer 

for estimating soil hydraulic parameters. 

 

4.1 Description of site and experiment 

At the U.S. Department of Energy Hanford site, in Washington, vast quantities of 

highly radioactive waste and other toxic fluids have leaked into the vadose zone [e.g., 

Sisson and Lu, 1984; Gee and Ward, 2001; Hunt and Gee, 2002] and have necessitated 

the development of methods for monitoring and ultimately controlling the spread of 

contamination. Here we consider the Hanford 200 East Area field site (also known as the 

“Sisson and Lu site”), which has been the subject of a number of experiments [Sisson and 

Lu, 1984; Fayer et al. 1993; Fayer et al. 1995; Gee and Ward, 2001, 2002], and for which 

laboratory investigations of soil properties have been reported [Freeman, 2001; Last and 

Caldwell, 2001; Last et al., 2001; Schaap et al., 2003] and modeling studies performed 
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[Smoot and Lu 1994; Smoot and Williams 1996; Rockhold et al. 1999; Zhang et al., 

2004].  

The infiltration experiment we consider here began in May of 2000 and consisted of 5 

injections of water over a period of one month. Each injection of approximately 4000 L 

of water lasted between 4 and 6.75 hours. During the experiment, extensive NP 

measurements [Ward et al., 2000] and other geophysical data sets, including cross-

borehole GPR [Majer et al., 2000] and electrical resistance tomography (ERT) 

measurements [Ramirez et al., 2001], were collected. The schedule for the injections and 

the surveys are depicted in Figure 11.  Baseline surveys for both the GPR and NP 

measurements were collected before injection, and these are assumed to reflect steady-

state conditions. The NP surveys were typically conducted on the day following each 

injection, whereas the GPR surveys were collected sporadically.  

The locations of the measurement access wells are shown in Figure 12. The dense NP 

measurements that were collected at an interval of 30.5 cm allow for construction of 

three-dimensional data sets through interpolation [e.g., Ward et al., 2000]. However, in 

this example the data collected in only 2 wells (see Figure 12) and at three survey times 

(NP-Pre, NP-1, NP-2 in Figure 11) are used for inversion, as are the GPR data for only 

two survey times (GPR-Pre and GPR-1). The dense NP data derived from all NP wells 

are used only to test the distributions predicted with the calibrated models at the time for 

which survey NP-3 was collected (corresponding to 15 days after the initial injection). 

Figure 13a shows the distribution of water content derived from the dense NP data 

cube (for NP data collected in all 32 wells at one survey conducted 15 hours after the 

initial injection of water). The locations of the wells in which cross-borehole GPR 
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measurements were collected are indicated in Figure 13b, as are the straight-ray paths for 

the GPR measurements used in this example (they represent a small subset selected from 

the available GPR measurements). 

 

4.2 Model with heterogeneous permeability 

We focus on a subset of the study area (the nodes of the hydrological model are 

indicated in Figure 12). The model domain is approximately 12 m in both horizontal 

directions, and 14 m in depth. The grid spacing ranges between 0.5 and 1.25 m in the 

horizontal directions, and equals 0.305 m in the vertical direction to allow for small-scale 

variability and to coincide with the vertical spacing of the NP measurements. We 

increased the vertical grid spacing of the bottom layers, since the water content in this 

region remains constant throughout the injection experiment. All elements in the top 

layer of the model are connected to one grid block, at which a small flux of water is 

applied to represent surface conditions. A free drainage boundary is implemented at the 

bottom of the model domain, as are no-flow boundaries at the four vertical sides. For the 

injection source, a time-dependent mass flow rate is specified at one grid point according 

to the schedule depicted in Figure 11. Since the actual time-varying flow rates are 

unknown (i.e., suspected to vary from the average values measured during the 

experiment), they are estimated with the remaining unknown parameters.  

Based on geostatistical analyses of permeability measurements, an anisotropic 

spherical semivariogram was chosen to model the log permeability. Various parameters 

that are either assumed or estimated in the present example are listed in Table 3.  
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4.2.1 Inversion results 

Using the two GPR travel time surveys (GPR-Pre and GPR-1) and a small subset of 

the available NP measurements (2 wells for surveys NP-Pre, NP-1, and NP-2), we test the 

approach for estimating the unknown parameters listed in Table 3, which include the 

petrophysical parameter κs, the porosity, the mean log permeability, the log permeability 

modifier values at 16 pilot point locations, and a factor by which the reported flow rates 

at the injection point are multiplied. As before, we assume that no prior information is 

available for the unknown parameters, except for the estimated parameters of the log 

permeability semivariogram function, yielding the objective function (13) with the first 

and second terms. 

Using both the GPR and the limited NP data sets, we performed multiple inversion 

realizations using a simulation duration that includes the first two injections in the field 

experiment and up to the time of the second GPR survey (GPR-1). The results are 

summarized in Table 3.  

Water saturation distributions were simulated for the multiple three-dimensional 

models obtained through inversion for a duration lasting beyond the third water injection 

and up to the NP survey NP-3. The simulated water saturation distributions were then 

converted to water content (using the corresponding porosity estimates), so that the 

predictions could be compared to the three-dimensional water content data sets (obtained 

through interpolation of from the dense NP data set) for the same time.  

In Figure 14, two-dimensional slices (along the line labeled AB in Figure 12) of the 

dense NP data set (Figure 14a) are compared to slices of the predicted water content 

distributions (for a single inversion realization) for two different cases of inversion. The 
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first case (Figure 14b) includes inversion with only the limited NP data sets (i.e., no GPR 

measurements were used). The second case (Figure 14c) demonstrates the relative gain in 

this case of including measurements from two GPR surveys in the inversion. While the 

overall the trends are similar for both cases, inclusion of GPR measurements allows for 

the various peaks in water content occurring below the injection point to be captured 

somewhat better.  

To better illustrate this point, vertical profiles (one-dimensional) of predicted and 

measured water content at a location near the injection well are given in Figure 15 for the 

same cases. In this figure, the mean of 5 inversion realizations is shown, as are the 

prediction uncertainty bounds. The parameters that were estimated for both cases are 

listed in Table 3. 

It is worth emphasizing that while NP measurements were collected in 27 wells to 

obtain the dense NP data sets at eight times, only a limited subset of NP measurements at 

each time are actually used for inversion (see Figures 11 and 12); however, all NP data 

were used to test the inversion predictions. 

 

5. Conclusions 

A method was described for estimating field-scale soil hydraulic parameters and 

parameters of the petrophysical function using time-lapse multiple-offset cross-borehole 

GPR travel times and other hydrological measurements, such as water content 

measurements inferred from neutron probe logs. This research builds upon previous work 

in order to accommodate uncertainty in the petrophysical function and to increase the 
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flexibility of GPR measurement configurations that may be considered, and consequently 

increase the resolution at which soil hydraulic parameters may be estimated.  

The method was applied to two synthetic examples, which consisted of a model with 

uniform soil hydraulic parameters and a model with heterogeneous permeability. 

Potential errors in the petrophysical function were observed to significantly affect the soil 

hydraulic parameter estimates, but inclusion of a petrophysical parameter in the joint 

inversion procedure allowed for improved estimates of the soil hydraulic parameters.  

The importance of accounting for errors in the forward model used for simulating 

GPR measurements was also addressed. Using the straight-ray approximation to simulate 

GPR travel times introduces bias in some cases—the travel time bias was spatially 

dependent and time dependent, showing over-prediction near the edges of the water 

plume at early times in the injection experiment. To compensate for this bias, an 

additional correction parameter was estimated during inversion. In heterogeneous 

models, the bias was minimal, making estimation of the correction parameter 

unnecessary. 

Finally, the method was applied to the U.S. Department of Energy (DOE) Hanford 

field site in Washington, where time-lapse GPR and NP data sets were collected. 

Compared to predictions made through inversion of a limited NP data set, inclusion of 

GPR data in the inversion procedure allowed for soil hydraulic parameter estimates that 

gave improved predictions of water saturation. We conclude that the approach can 

provide in a minimally invasive manner accurate estimates of field-scale soil hydraulic 

parameters.  
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Related ongoing research includes: (1) implementing GPR forward modeling 

capabilities for additional measurement types (e.g., cross-borehole amplitude and surface 

reflection data); (2) incorporating capabilities for joint inversion with additional 

geophysical data types, such as from seismic and electrical methods; (3) accounting for 

spatial variations of the petrophysical function and its dependence on temperature; and 

(4) exploring the potential of estimating parameters of the spatial correlation functions 

within the procedure. Alternative joint inversion methodologies and different descriptions 

of geological heterogeneity as applied to the Hanford site experiment will also be 

explored in the future. 
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Table 1. Properties used for synthetic examples.  
 

 

Description Parameter Values 
Hydrological parameters a  
 

µw =  1.002 x 10-3 Pa s 
ρw = 1000 kg/m3  
kv = 5.0 x 10-12 m2,  kh = 2.0 x 10-11 m2

   

m = 2.69, α = 3.573 x 10-4 Pa-1  
Sw

res = 0.083, Sw
sat =1.0 

ϕ = 0.364 

Geostatistical model for log 
permeability (spherical 
semivariogram) b 
 
γk(h) = c0 +c1 [3/2(h/r)-1/2(h/r)3] (for h < r) 

γk(h) = c0 + c1  (for h > r) 
 

Horizontal 
c0 = 0.01 
c1 = 0.5 
r = 6.0 m   
 

Vertical 
c0 = 0.01  
c1 = 0.5  
r = 0.3 m 
 

Petrophysical function (dielectric 
constant function) c  
 

κs = 4.5  
n = 0.5  
φκ = φ = 0.364 

Electrical conductivity function d 
 

1

m

1
φn

w w

a
S

σ
σ

−
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

a = 0.88 
n = 2.0  
m = 1.37  
σw = 0.4 mS/cm 

a Parameters defined in text; see description of (2) – (5).  
b For example in Section 3.2. h is separation distance (m), c0 and c1 are 

nugget and variance, respectively. The range is a measure of spatial 
persistence for the spherical semivariogram [Deutsch and Journel, 1992].  

c  Parameters defined in text; see description of (8).  
d Archie [1942]; also see Kowalsky et al. [2004b] for description. Used for 

generating synthetic waveforms with finite difference method; not used in 
calculating straight ray travel times with (10). 
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Table 2. Estimated parameters for synthetic model with uniform soil hydraulic 
parameters. The word “fixed” indicates that the true parameter value from the model is 
assumed to be known for that case; values in { } are the incorrect values used in inversion 
to test sensitivity to the error in κs; values in ( ) are the marginal standard deviations of 
the estimated parameter.   
 
 

 κs 
log kv 

[ kv, m2]  kv / kh m log (1/α) 
[α, Pa-1] ϕ Tshift  

[ns] 
        

True 
model 4.5 -11.301 0.25 2.69 3.447 0.364 N/A 

        

Case 1a fixed -11.270 
( ± 0.022) 

0.3230 
( ± 0.3E-3) fixed fixed 0.384 

( ± 0.006) 
0.125 

( ± 0.03) 

 1b  {5.4} -10.679 
( ± 0.019) 

0.216 
( ± 0.014) fixed fixed 0.467 

( ± 0.005) 
0.055 

( ± 0.033) 

 1c {3.6} -12.243 
( ± 0.056) 

0.42 
( ± 0.6E-3) fixed fixed 0.262 

( ± 0.009) 
0.26 

( ± 0.04) 

1d 4.52 
( ± 0.046) 

-11.262 
( ± 0.043) 

0.325 
( ± 0.26E-3) fixed fixed 0.384 

( ± 0.008) 
0.119 

( ± 0.033) 

Case 2a fixed -11.2308 
( ± 0.051) 

0.252 
( ± 0.007) 

2.57 
( ± 0.063) 

3.38 
( ± 0.04) fixed 0.0916 

( ± 0.034) 

 2b {5.4} -11.550 
( ± 0.046) 

0.167 
( ± 0.014) 

4.495 
( ± 0.261) 

3.77 
( ± 0.04) fixed -0.0216 

( ± 0.038) 

2c {3.6} -11.225 
( ± 0.048)  

0.570 
( ± 0.047) 

2.160 
( ± 0.033) 

3.32 
( ± 0.02) fixed 0.199 

( ± 0.04) 

2d 4.496 
( ± 0.042) 

-11.176 
( ± 0.025) 

0.223 
( ± 0.023) 

2.480 
( ± 0.003) 

3.34 
( ± 0.02) fixed 0.123 

( ± 0.034) 
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Table 3. Assigned and estimated parameters (not including pilot point log permeability 
modifier estimates) for application of method to Hanford field data. 
 

 

Description Fixed parameter values  
Estimated 
parameters  
(NP data only) 

Estimated 
parameters  
(GPR+NP data) 

Petrophysical function 
parameters. See (8). 

n = 0.5 
κw = 81 
κa = 1 

Not estimated κs = 4.137 
( ± 0.074) 

Flow modeling parameters  
See (2) and (3)a

. 
µw = 1.002 x 10-3 Pa s 
ρw = 1000 kg/m3  
kv/ kh = 0.05  

log [kv (m2)] =  
-11.683 ( ± 0.620) 
ϕ = 0.233 
( ± 0.057) 

log [kv (m2)] =  
-11.928 ( ± 0.243) 
ϕ = 0.189 
( ± 0.030) 

Relative permeability and 
capillary pressure 
functions. 
See (4) and (5)a. 

Sw
res = 0.083 

Sw
sat =1.0 

m = 3.447 
log [α−1 (Pa)]= 3.45 

fixed fixed 

Geostatistical model for 
log permeability (spherical 
semivariogram) b 
 
 

Horizontal 
c0=0.0, c1=0.269,r=20.0 m 
 
Vertical 
c0=0.0, c1=0.269, r=0.8 m 

fixed fixed 

Injection flow rate 
(duration)c 
 
 

Q1=0.278×F kg/s (4 h) 
Q2=0.165×F kg/s (6.75 h) 
Q3=0.185 kg/s (6 h) 
Q4=0.185 kg/s (6 h) 
Q5=0.185 kg/s (6 h) 

F=   1.03 ( ± 0.22) 
 

F=  1.25  ( ± 0.10) 
 

Boundary conditions 
 

Bottom: free drainage 
Sides: zero flux 
Top: total flux = 1.0e-4 kg/s 

fixed fixed 

a   Parameters defined in text.  
b  As defined in Table 1.  
c  F is the factor by which the measured injection flow rate is multiplied. 

  



 
 
 
 

 
 
Figure 1. Flow chart for joint inversion of geophysical and hydrological measurements 
using framework of iTOUGH2 [Finsterle, 1999].  
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Figure 2. Model geometry for synthetic examples: (a) injection point and neutron probe 
measurement locations; (b) straight-ray paths and antenna locations.  

 
 
 
 
 



 
 
 
 
 
 
 

 
 

Figure 3. Simulated saturation profiles (a) before injection (steady state) and (b) 18 hours 
after onset of injection for model with uniform soil parameters. A single transmitting 
antenna position (T5) is labeled with a square (there are 7 transmitting antenna positions 
in all, as shown in Figure 2), which the receiving antenna positions (Rx) are labeled with 
triangles. Simulated waveforms are shown in (c) and (d), corresponding to the simulation 
times for (a) and (b), respectively. Circles denote the arrival times (before measurement 
noise is added). 



 
 
 
 
 
 
 

 
 
Figure 4. Difference between straight-ray travel times (TSR) and the travel times 
calculated using a finite difference method (TFD) versus vertical distance by which ray 
passes above or below injection point (for model with uniform soil parameters).  



 
 
 

 
 
 
 
 

Figure 5. Predicted saturation profiles at 18 hours after onset of injection for Cases 1a-d 
(left) and Cases 2a-d (right) for example in Section 3.1. The profiles are vertical slices 
taken from the two-dimensional models at a horizontal distance of 2 m. 



 
 
 
 
 
 
 
 
 

 
 

Figure 6. Petrophysical functions for Case 1 (left) and Case 2 (right) of example in 
Section 3.1. 
 



 
 
 

 
 
 

 
 
Figure 7. Capillary pressure functions (left axis) and relative permeability function (right 
axis) for example in Section 3.1. For Case 1, the relative permeability function and the 
capillary pressure function are fixed to those of the true model (circles). For Case 2, the 
parameters log (1/α) and m of the capillary pressure function and relative permeability 
functions are estimated through inversion. 



 
 

 
 
 
 
 

 
 
 
Figure 8. (a) True log permeability distribution for model in Section 3.2, (b) single 
realization of estimated permeability field, (c) the ensemble mean of the predicted 
distributions, and (d) vertical cross section showing distribution for true model (solid 
line), mean of the predicted distributions (dashed line), and the uncertainty bounds for 
predicted distributions (dotted lines), defined as +/- 2 standard deviations. The x symbols 
in (a) indicate pilot point locations used for inversion. 



 
 
 
 
 
 
 
 
 
 

 
 
Figure 9. For heterogeneous model (Section 3.2), (a) the distribution of water saturation 
in the true model, (b) the ensemble mean of the predicted water distributions, and (c) 
vertical cross section of water saturation for true model (solid line), the average of the 
predicted distribution of water saturation (dashed line), and the uncertainty bounds 
(dotted lines) at 12 hours after the onset of water injection. The same cases described in 
(a)-(c) are shown in (d)-(f) at 24 hours after the onset of injection.  
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Figure 10. Petrophysical functions for heterogeneous example in Section 3.2: true model 
(squares); ensemble mean of the estimated petrophysical functions (solid line); and 
uncertainty bounds (dashed lines), defined as +/- two standard deviations. 
 



 
 
 
 
 
 
 
 

 
 
 
Figure 11. Measurement schedule for injection experiment at Hanford site. NP and GPR 
data sets were collected before the first injection (NP-pre and GPR-Pre, respectively) and 
at later times (NP-1 to NP-7, and GPR-1 to GPR-7, respectively). A limited subset of NP 
data were used for inversion (2 wells indicated in Figure 12 at survey times NP-Pre, NP-
1, and NP-2). The GPR data sets used for inversion are GPR-Pre and GPR-1.  
 



 
 
 
 

 
Figure 12. Measurement locations at the Hanford site and plan view of numerical grid 
used for hydrological modeling. Note that only 2 NP wells (solid circles) are used for 
inversion, while the remaining 30 NP wells (open circles) are only used to test the 
inversion results. 
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Figure 13. Available data sets collected during injection experiment at the Hanford site: 
a) example of densely sampled NP data set (interpolated from NP wells, indicated by 
solid black vertical lines); b) straight ray paths that are formed by the 4 GPR wells are 
used for inversion. 

 



 

 
 

 

 
 

Figure 14. Comparison of water content (θ ) slice AB (see Figure 12) from three-
dimensional model a) from dense NP data set, and predicted with single inversion 
realization using b) limited NP data set (using 2 wells at three times), and c) using the 
GPR data set (collected using 4 GPR wells at two survey times) and the limited NP data 
set. 
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c) 

θ

θ

θ



 
 
 

 
 

 Figure 15. Comparison of water content profile near injection point obtained from dense 
NP data set (circles) with the mean of the predicted water content profiles (solid line with 
dots) obtained through inversion of (a) limited NP data set (using 5 wells at three times) 
and (b) both the GPR data set and the limited NP data set. Note that while NP 
measurements were collected in 27 wells to obtain the dense NP data sets, only a limited 
subset of NP measurements are actually used for inversion (see Figure 12); however, all 
NP data are used to test the inversion predictions. The dashed lines around the mean of 
the predicted profiles indicate the estimation uncertainty (+/- 2 standard deviations). 
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