

ACCELERATING SPARSITY IN THE NVIDIA AMPERE ARCHITECTURE

Jeff Pool, Senior Architect

OUTLINE

Sparsity Review

Motivation Taxonomy Challenges

NVIDIA A100 GPU 2:4 Sparsity

Sparsity pattern Sparse Tensor Cores Inference Speedups

Training Recipe

Recipe steps Empirical evaluation Implementation in frameworks

SPARSITY - INFERENCE ACCELERATION VS TRAINING ACCELERATION

Focus of this talk is <u>Inference</u> acceleration

• Including training methods that enable accelerated inferencing with no loss of accuracy

Using sparsity to accelerate training is very interesting - but not the focus of this talk!

• At the end of the talk, we'll touch briefly on accelerating training

SPARSITY REVIEW

SPARSITY: ONE OF MANY OPTIMIZATION TECHNIQUES

Optimization goals for inference:

- Reduce network model size
- Speed up network model execution

Observations that inspire sparsity investigations

- Biology: neurons are not densely connected
- Neural networks:
 - Trained model weights have many small-magnitude values
 - Activations may have 0s because of ReLU

SPARSITY AND PERFORMANCE

Do not store or process 0 values -> smaller and hopefully faster model

- Eliminate (prune) connections: set some weights to 0
- Eliminate (prune) neurons
- Etc.

But, must also:

- Maintain model accuracy
- Efficiently execute on hardware to gain speedup

PRUNING/SPARSITY IS AN ACTIVE RESEARCH AREA

Publications per Year

SPARSITY TAXONOMY

Structure:

- Unstructured: irregular, no pattern of zeros
- Structured: regular, fixed set of patterns to choose from

Granularity:

- Finest: prune individual values
- Coarser: prune blocks of values
- Coarsest: prune entire layers

STATE OF SPARSITY RESEARCH

Lots of research in two areas:

- High amounts (80-95%) unstructured, fine-grained sparsity
- Coarse-grained sparsity for simpler acceleration

Challenges not resolved for these approaches:

- Accuracy loss
 - High sparsity often leads to accuracy loss of a few percentage points, even after advanced training techniques
- Absence of a training approach that works across different tasks and networks
 - Training approaches to recover accuracy vary from network to network, often require hyper-parameter searches
- Lack of speedup
 - Math: unstructured data struggles to take advantage of modern vector/matrix math instructions
 - Memory access: unstructured data tends to poorly utilize memory buses, increases latency due to dependent sequences of reads
 - Storage overheads: metadata can consume 2x more storage than non-zero weights, undoing some of compression benefits

SPARSITY SUPPORT INTRODUCED IN NVIDIA AMPERE ARCHITECTURE

SPARSITY IN A100 GPU

Fine-grained structured sparsity for Tensor Cores

- 50% fine-grained sparsity
- 2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:

- Accuracy: maintains accuracy of the original, unpruned network
 - Medium sparsity level (50%), fine-grained
- Training: a recipe shown to work across tasks and networks
- Speedup:
 - Specialized Tensor Core support for sparse math
 - Structured: lends itself to efficient memory utilization

2:4 structured-sparse matrix

SPARSE TENSOR CORES

Applicable for:

- Convolutions
- Matrix multiplies (linear layers, MLPs, recurrent cells, transformer blocks, etc.)

Inputs: sparse weights, dense activations

Output: dense activations

Compressed format for the sparse matrix:

- Do not store two 0s in each block of 4 values -> 50% of original storage
 - If a block contains more than two 0s, some of the 0s will be stored
- Metadata to index the remaining 2 values needed for accessing the dense activations
 - 2 bits per value
 - 12.5% overhead for fp16, compared to 100-200% for CSR format

2:4 COMPRESSED MATRIX FORMAT

At most 2 non-zeros in every contiguous group of 4 values

Metadata: 2b per non-zero element

16b data => 12.5% overhead

8b data => 25% overhead

Tiling a Large GEMM

Dense Tensor Cores (FP16)

16x16 * 16x8 matrix multiplication

Replicated and repeated to support large M, N, K

Larger Tile = More Cycles

Dense Tensor Cores (FP16)

16x32 * 32x8 matrix multiplication - 2 cycles

B: Dense, KxN

💿 nvidia.

15

Pruned Weight Matrix

B: Dense, KxN

Pruned and Compressed Weight Matrix

Tiling a Large, Sparse GEMM

B: Dense, KxN

Sparse Tensor Cores - Hardware Magic

19

Sparse Tensor Cores

Sparse Tensor Cores (FP16)

16x32 * 32x8 effective matrix multiplication - 1 cycle

2x the work with the same instruction throughput

B: Dense, KxN

TENSOR CORE MATH THROUGHPUT

2x with Sparsity

			Dense	Sparse
INPUT OPERANDS	ACCUMULATOR	TOPS	vs. FFMA	Vs. FFMA
FP32	FP32	19.5	-	-
TF32	FP32	156	8X	16X
FP16	FP32	312	16X	32X
BF16	FP32	312	16X	32X
FP16	FP16	312	16X	32X
INT8	INT32	624	32X	64X
INT4	INT32	1248	64X	128X
BINARY	INT32	4992	256X	-

SPARSE TENSOR CORES

Measured GEMM Performance with Current Software

M	N	K	Speedup
1024	8192	1024	1.44x
1024	16384	1024	1.73x
4096	8192	1024	1.53x
4096	16384	1024	1.78x

SPARSE TENSOR CORES

Measured Convolution Performance With Current Software

Ν	С	K	H,W	R,S	Speedup
32	1024	2048	14	1	1.52x
32	2048	1024	14	1	1.77x
32	2048	4096	7	1	1.64x
32	4096	2048	7	1	1.75x
256	256	512	7	3	1.85x

End to End Inference Speedup

NETWORK	DATA TYPE	SCENARIO	PERFORMANCE
DEDT Large		BS=256, SeqLen=128	6200 seq/s
BERT-Large	INT8	BS=1-256, SeqLen=128	1.3X-1.5X

End to End Inference Speedup

NETWORK	DATA TYPE	SCENARIO	PERFORMANCE
PEDT Large		BS=256, SeqLen=128	6200 seq/s
BERT-Large	INT8	BS=1-256, SeqLen=128	1.3X-1.5X
		BS=256	2700 images/second
	FP16	BS=1-256	Up to 1.3X
ResNeXt-101_32x16d			

End to End Inference Speedup

NETWORK	DATA TYPE	SCENARIO	PERFORMANCE
PEDT Largo	-Large INT8 BS=256, SeqLen=128		6200 seq/s
BERT-Large	INTO	BS=1-256, SeqLen=128	1.3X-1.5X
	FP16	BS=256	2700 images/second
PacNaVt 101 22v16d	- FPI0 -	BS=1-256	Up to 1.3X
ResNeXt-101_32x16d		BS=256	4400 images/second
	INT8	BS=1-256	Up to 1.3X

BERT-Large

1.8x GEMM Performance -> 1.5x Network Performance Some operations remain dense: Non-GEMM layers (Softmax, Residual add, Normalization, Activation functions, ...) GEMMs without weights to be pruned - Attention Batched Matrix Multiplies

CONVOLUTION SPEEDUPS

Layers of ResNeXt-101

Some layers are less compute-limited than others

Unique Layers

TRAINING RECIPE

GOALS FOR A TRAINING RECIPE

Maintains accuracy

Is applicable across various tasks, network architectures, and optimizers

Does not require hyper-parameter searches

RECIPE FOR 2:4 SPARSE NETWORK TRAINING

- 1) Train (or obtain) a dense network
- 2) Prune for 2:4 sparsity
- 3) Repeat the original training procedure
 - Same hyper-parameters as in step-1
 - Initialize to weights from step-2
 - Maintain the 0 pattern from step-2: no need to recompute the mask

Dense weights

Retrained 2:4 sparse weights

Dense matrix W

Single-shot, magnitude-based pruning

For each 1x4 block of weights:

• Set 2 weights with the smallest magnitudes to 0

Layer weights to prune: conv, linear

At Most 2 Non-zeros in Every Contiguous Group of 4 Values

Fine-grained structured pruning 2:4 sparsity: 2 nonzero out of 4 entries

Dense matrix W

Structured-sparse matrix W

= zero value

At Most 2 Non-zeros in Every Contiguous Group of 4 Values

				Fine-grained structured pruning
				2:4 sparsity: 2 non- zero out of 4 entries

Dense matrix W

Structured-sparse matrix W

= zero value

At Most 2 Non-zeros in Every Contiguous Group of 4 Values

	_	_	_	_	_	_	
F St							
-							
2: ze							
26							

Dense matrix W

Structured-sparse matrix W

= zero value

RECIPE STEP 3: RETRAIN

Pruning out 50% of the weight values reduces model accuracy

Retraining recovers accuracy

- Adjusts the remaining weights to compensate for pruning
- Requirement intuition:
 - Need enough updates by optimizer to compensate for pruning
 - Updates need high-enough learning rates to compensate

Simplest retraining:

- Repeat the training session, starting with weight values after pruning (as opposed to random initialization)
- All the same training hyper-parameters
- Do not update weights that were pruned out

EXAMPLE LEARNING RATE SCHEDULE

STEP 3 FOR NETWORKS TRAINED IN MULTIPLE PHASES

Some networks are trained in multiple phases

- Pretrain on one task and dataset, then train (fine-tune) on another task and dataset
- Examples:
 - Retinanet for object detection: 1) train for classification on ImageNet, 2) train for detection on COCO
 - BERT for question answering: 1) train for language modeling on BooksCorpus/Wikipedia, 2) train for question answering on SQuAD

In some cases Step 3 can be applied to only the last phase of original training

- Shortens retraining to recover accuracy
- Generally requires that the last phase(s):
 - Perform enough updates
 - Use datasets large enough to not cause overfitting
- When in doubt retrain from the earliest phase, carry the sparsity through all the phases

STEP3: DETECTOR EXAMPLE

Detection Dataset is Large Enough to Provide Enough Updates and Not Overfit

STEP3: BERT SQUAD EXAMPLE

Squad Dataset and Fine-tuning is Too Small to Compensate for Pruning on its Own

SPARSITY AND QUANTIZATION

Apply Sparsity Before Quantizing

- Quantization
- Generate a floating-point network

Apply quantization (calibration, fine-tuning)

- Quantization+Sparsity
- Generate a floating-point network
- Prune
- Apply quantization (calibration, fine-tuning)

SPARSITY AND QUANTIZATION

Post-Training Quantization

Post-training calibration follows the sparse fine-tuning

SPARSITY AND QUANTIZATION

Quantization Aware Training

Fine-tune for sparsity before fine-tuning for quantization

ACCURACY EVALUATION

ACCURACY

Overview

Tested 34 networks, covering a variety of AI domains, with the described recipe

Run one test without sparsity and one test with sparsity, compare results

Results : accuracy is ~same (within prior observed run-to-run variation of networks)

FP16 networks trained with mixed precision training

INT8 networks generated by:

1st: Retrain a sparse FP16 network first

2nd: Apply traditional quantization techniques:

Post-training calibration

Quantization-Aware fine-tuning

IMAGE CLASSIFICATION

ImageNet

	Accuracy				
Network	Dense FP16	Sparse FP16		Sparse INT	8
ResNet-34	73.7	73.9	0.2	73.7	-
ResNet-50	76.6	76.8	0.2	76.8	0.2
ResNet-101	77.7	78.0	0.3	77.9	-
ResNeXt-50-32x4d	77.6	77.7	0.1	77.7	-
ResNeXt-101-32x16d	79.7	79.9	0.2	79.9	0.2
DenseNet-121	75.5	75.3	-0.2	75.3	-0.2
DenseNet-161	78.8	78.8	-	78.9	0.1
Wide ResNet-50	78.5	78.6	0.1	78.5	-
Wide ResNet-101	78.9	79.2	0.3	79.1	0.2
Inception v3	77.1	77.1	-	77.1	-
Xception	79.2	79.2	-	79.2	-
VGG-16	74.0	74.1	0.1	74.1	0.1
VGG-19	75.0	75.0	-	75.0	-

IMAGE CLASSIFICATION

ImageNet

		Accuracy	
Network	Dense FP16	Sparse FP16	Sparse INT8
ResNet-50 (SWSL)	81.1	80.9 -0.2	80.9 -0.2
ResNeXt-101-32x8d (SWSL)	84.3	84.1 -0.2	83.9 -0.4
ResNeXt-101-32x16d (WSL)	84.2	84.0 -0.2	84.2 -
SUNet-7-128	76.4	76.5 0.1	76.3 -0.1
DRN-105	79.4	79.5 0.1	79.4 -

SEGMENTATION/DETECTION

COCO 2017, bbox AP

	Accuracy				
Network	Dense FP16	Sparse FP16	Sparse INT8		
MaskRCNN-RN50	37.9	37.9 -	37.8 -0.1		
SSD-RN50	24.8	24.8 -	24.9 0.1		
FasterRCNN-RN50-FPN-1x	37.6	38.6 1.0	38.4 0.8		
FasterRCNN-RN50-FPN-3x	39.8	39.9 -0.1	39.4 -0.4		
FasterRCNN-RN101-FPN-3x	41.9	42.0 0.1	41.8 -0.1		
MaskRCNN-RN50-FPN-1x	39.9	40.3 0.4	40.0 0.1		
MaskRCNN-RN50-FPN-3x	40.6	40.7 0.1	40.4 0.2		
MaskRCNN-RN101-FPN-3x	42.9	43.2 0.3	42.8 0.1		
RetinaNet-RN50-FPN-1x	36.4	37.4 1.0	37.2 0.8		
RPN-RN50-FPN-1x	45.8	45.6 -0.2	45.5 0.3		

NLP - TRANSLATION

EN-DE WMT'14

			Accuracy			
Network	Metric	Dense FP16	Sparse FP16	•	Sparse INT	8
GNMT	BLEU	24.6	24.9	0.3	24.9	0.3
FairSeq Transformer	BLEU	28.2	28.5	0.3	28.3	0.1
Levenstein Transformer	Validation Loss	6.16	6.18	-0.2	6.16	-

NLP - LANGUAGE MODELING

Transformer-XL, BERT

				Accuracy		
Network	Task	Metric	Dense FP16	Sparse FP16	Sparse INT8	
Transformer-XL	enwik8	BPC	1.06	1.06 -	-	
BERT-Base	SQuAD v1.1	F1	87.6	88.1 0.5	88.1 0.5	
BERT-Large	SQuAD v1.1	F1	91.1	91.5 0.4	91.5 0.4	

COMPARING 2:4 TO OTHER ALTERNATIVES

Alternatives for 50% smaller models:

- Reduce layer width: model still dense, requires no special hardware
- Block-sparsity: easier to accelerate
- Unstructured fine-grained sparsity: upper bound on accuracy

Let's compare with 2:4 structured sparsity

Simpler Networks

Simpler Networks - From Scratch

Halving the hidden size of encoders gives a smaller, dense network that is simple to accelerate, but the network itself is much worse.

Simpler Networks - Fine-Tuned

Pruning the full network to 50% sparsity with 32x32 blocks then fine tuning can be accelerated on most parallel hardware, but the network performs poorly.

Note: For this and the following pruning techniques, we use the same model size - no growing the model as we prune.

Simpler Networks - Fine-Tuned

Structured Sparsity is easy to accelerate with A100 and converges to nearly the same loss - final accuracy on SQuAD v1.1 is equivalent to dense.

Simpler Networks - Fine-Tuned

Completely unstructured, fine-grained sparsity has similar loss compared to enforcing a 2:4 structure, but at only 50% sparse, it is incredibly hard to exploit.

Simpler Networks - Fine-Tuned

75% unstructured sparsity could be accelerated with standard techniques, but it is still tricky.

However, it does not approach the quality of the dense baseline.

Simpler Networks - Fine-Tuned

Of these options, 2:4 structured sparsity is the only technique that both maintains network quality *and* is easy to accelerate on A100

ASP: AUTOMATIC SPARSITY FOR RETRAINING IN FRAMEWORKS

APEX's Automatic SParsity: ASP

Conceptually simple - 3 step recipe

Simple in practice - 3 lines of code

NVIDIA's APEX library

AMP = Automatic Mixed Precision

ASP = **A**utomatic **SP**arsity

APEX's Automatic SParsity: ASP

import torch

```
device = torch.device('cuda')
```

model = TheModelClass(*args, **kwargs) # Define model structure

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # Define optimizer

```
x, y = DataLoader(...) #load data samples and labels to train the model
for t in range(500):
    y_pred = model(x)
    loss = loss_fn(y_pred, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

torch.save(model.state dict(), 'dense model.pth')

APEX's Automatic SParsity: ASP

```
import torch
from apex.contrib.sparsity import ASP
                                                                               NVIDIA's Sparsity library
device = torch.device('cuda')
model = TheModelClass(*args, **kwargs) # Define model structure
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # Define optimizer
x_{r} = DataLoader(...) #load data samples and labels to train the model
for t in range (500):
    y \text{ pred} = \text{model}(x)
    loss = loss fn(y pred, y)
    optimizer.zero grad()
    loss.backward()
    optimizer.step()
```

torch.save(model.state_dict(), 'pruned_model.pth') # checkpoint has weights and masks

APEX's Automatic SParsity: ASP

```
import torch
from apex.contrib.sparsity import ASP
                                                                               Load the trained model
device = torch.device('cuda')
model = TheModelClass(*args, **kwargs) # Define model structure
model.load state dict(torch.load(`dense model.pth'))
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # Define optimizer
x, y = DataLoader(...) #load data samples and labels to train the model
for t in range (500):
    y \text{ pred} = \text{model}(x)
    loss = loss fn(y pred, y)
    optimizer.zero grad()
    loss.backward()
    optimizer.step()
```

torch.save(model.state_dict(), 'pruned_model.pth') # checkpoint has weights and masks

APEX's Automatic SParsity: ASP

```
import torch
                                                                              Init mask buffers, tell optimizer
                                                                              to mask weights and gradients,
from apex.contrib.sparsity import ASP
                                                                                  compute sparse masks:
device = torch.device('cuda')
                                                                                  Universal Fine Tuning
model = TheModelClass(*args, **kwargs) # Define model structure
model.load state dict(torch.load(`dense model.pth'))
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # Define optimizer
ASP.prune trained model (model, optimizer)
x_{r} = DataLoader(...) #load data samples and labels to train the model
for t in range (500):
    y \text{ pred} = \text{model}(x)
    loss = loss fn(y pred, y)
    optimizer.zero grad()
    loss.backward()
```

torch.save(model.state dict(), 'pruned model.pth') # checkpoint has weights and masks

optimizer.step()

APEX's Automatic SParsity: ASP

torch.save(model.state_dict(), 'pruned_model.pth') # checkpoint has weights and masks

^oyTorch sparse fine-tuning loop

DIRECTIONS FOR FURTHER RESEARCH

SHORTEN RETRAINING

For some networks we were able to shorten retraining (Step-3) to a fraction of Step-1

However, these shortened hyper-parameters didn't apply to all networks

Further research: investigate shorter, universal recipes

	Fine-Tuning Epochs			Accuracy	
Network	Baseline		Dense FP16	Sparse FP16	Short Sparse INT8
ResNet-50	90	15	76.6	76.8	76.6
Inception v3	90	30	77.1	77.1	77.0
DenseNet-161	90	15	78.8	78.8	78.8

ACCELERATE TRAINING WITH SPARSITY

Sparse Tensor Cores can accelerate Step-3 (sparse retraining)

Can we eliminate Step-1?

• Recipe for training with sparsity from scratch (randomly initialized weights)

Research questions:

- How long to train densely ("dense warmup")?
- Whether to periodically re-prune, if so: how frequently?
- How to use sparsity to accelerate weight gradient computation?
 - Input matrices are dense (activations and activation gradients), output is weight gradients (could be sparse)

Lots of active research, but still lacking a simple, general recipe

SUMMARY

Structured Sparsity gives Fast, Accurate Networks

We moved fine-grained weight sparsity from research to production

Fine-grained structured sparsity is:

- 50% sparse, 2 out of 4 elements are zero
- Accurate with our 3-step universal fine-tuning recipe
 - Simple recipe: train dense, prune, re-train sparse
 - Across many tasks, networks, optimizers
- Fast with the NVIDIA Ampere Architecture's Sparse Tensor Cores
 - Up to 1.85x in individual layers
 - Up to 1.5x in end-to-end networks

•	S22082: Mixed-Precision Training of Neural Networks	5/20	2:45pm PDT
•	S21929: Tensor Core Performance on NVIDIA GPUs: The Ultimate Guide	5/21	9:00am PDT
•	S21819: Optimizing Applications for NVIDIA Ampere GPU Architecture	5/21	10:15am PDT

