Leuchtdichte

physikalische Größe für die menschliche Wahrnehmung von Helligkeit einer Fläche

Die Leuchtdichte Lv (englisch luminance)[1] liefert detaillierte Information über die Orts- und Richtungsabhängigkeit des von einer Lichtquelle abgegebenen Lichtstroms. Die Leuchtdichte einer Fläche bestimmt, mit welcher Flächenhelligkeit das Auge die Fläche wahrnimmt und hat daher von allen photometrischen Größen den unmittelbarsten Bezug zur optischen Sinneswahrnehmung.

Physikalische Größe
Name Leuchtdichte
Formelzeichen
Größen- und
Einheitensystem
Einheit Dimension
SI cd·m−2 L−2·J

Die Leuchtdichte beschreibt die Helligkeit von ausgedehnten, flächenhaften Lichtquellen; für die Beschreibung der Helligkeit von punktförmigen Lichtquellen ist die Lichtstärke besser geeignet.

Definition

Bearbeiten
 
Die meisten Objekte geben von unterschiedlichen Stellen ihrer Oberfläche unterschiedlich viel Licht ab
 
Die meisten Objekte geben in unterschiedliche Richtungen unterschiedlich viel Licht ab

Für den Helligkeitseindruck einer Lichtquelle sind neben dem ausgesandten Lichtstrom  , gemessen in Lumen (lm), vor allem zwei weitere Größen maßgebend:

  • die Fläche  , von der dieser Lichtstrom ausgeht. Eine kleine Fläche erscheint heller als eine große Fläche, die gleich viel Licht abstrahlt. Die entsprechende photometrische Größe ist die spezifische Lichtausstrahlung  , gemessen in Lumen durch Quadratmeter (lm/m²). Bei nicht gleichmäßiger Ausstrahlung verwendet man den Lichtstrom pro Flächenelement:  .
  • der Raumwinkel  , in den das Licht ausgestrahlt wird. Bei Bündelung in einen kleinen Raumwinkel erscheint die Lichtquelle heller. Die entsprechende photometrische Größe ist die Lichtstärke  , gemessen in Lumen durch Steradiant oder Candela (1 cd = 1 lm/sr). Bei nicht gleichmäßiger Ausstrahlung gilt entsprechend  .

Der Begriff der Leuchtdichte   kombiniert beides und beschreibt auf diese Weise sowohl die Orts- als auch die Richtungsabhängigkeit des abgegebenen Lichtstroms:[2][1]

 

  ist hierbei der Winkel zwischen Abstrahlrichtung und Flächennormale, die senkrecht auf dem Flächenelement   steht. Im Fall einer gleichmäßig leuchtenden ebenen Fläche   mit gleichmäßiger Lichtstärke in den Raumwinkel   vereinfacht sich diese Gleichung zu

 .

Der Faktor   wird hinzugefügt, weil das abstrahlende Flächenelement   um diesen Faktor verkürzt erscheint, der unter dem Polarwinkel   abgegebene Lichtstrom also um den Faktor   geringer ist als der senkrecht abgegebene Lichtstrom. Die Division durch   rechnet diesen geometrischen Effekt heraus, so dass in der Leuchtdichte nur noch eine eventuelle physikalische Richtungsabhängigkeit aufgrund der Oberflächeneigenschaften (z. B. dem Leuchtdichtekoeffizient) übrig bleibt.

Für die Definition der Leuchtdichte ist es unerheblich, ob es sich bei dem vom Flächenelement abgegebenen Licht um (thermische oder nichtthermische) Eigenemission, um transmittiertes oder reflektiertes Licht oder eine Kombination daraus handelt. Die Leuchtdichte ist an jedem Punkt des Raumes definiert, an dem Licht vorhanden ist.[3] Man denke sich anstelle eines Licht abstrahlenden Oberflächenelements gegebenenfalls ein fiktives von Licht durchstrahltes Flächenelement im Raum.

Maßeinheiten

Bearbeiten

Die SI-Einheit der Leuchtdichte ist Candela pro Quadratmeter (cd/m²).

Im englischsprachigen Raum, vor allem in den USA, wird dafür auch die Bezeichnung Nit (Einheitenzeichen nt, von lateinisch nitere = „scheinen“, Mehrzahl Nits) verwendet: 1 nt = 1 cd/m². Das Nit ist in der EU und der Schweiz keine gesetzliche Einheit.

Weitere Einheiten sind:

  • Stilb: 1 sb = 1 cd/cm² = 10.000 cd/m² (cgs-Einheit)
  • Apostilb: 1 asb = 1 blondel = 1/π × 10−4 sb = 1/π cd/m²
  • Lambert: 1 L = 1 la = 104/π cd/m² ≈ 3183 cd/m² (in den USA noch gebräuchlich)
  • Footlambert: 1 fL = 1/π cd/ft² ≈ 3,426 cd/m²

Typische Werte

Bearbeiten

Empfindlichkeit der Augen

Bearbeiten

Der Beobachter nimmt die Leuchtdichten der ihn umgebenden Flächen unmittelbar als deren Flächenhelligkeiten wahr. Aufgrund der Anpassungsfähigkeit des Auges können die wahrnehmbaren Leuchtdichten zahlreiche Größenordnungen überstreichen. Das menschliche Auge hat zwei Arten von Sinneszellen: die besonders lichtempfindlichen Stäbchen und die farbempfindlichen Zapfen.

  • Bei ca. 3e-6 cd/m² liegt die Sehschwelle. Ab dieser Leuchtdichte ist Lichtwahrnehmung mit den Stäbchen (Nachtsehen) möglich.
  • Ab 3…30 · 10−3 cd/m² tragen auch die Zapfen zum Seheindruck bei.
  • Ab 3…30 cd/m² spielt der Beitrag der Stäbchen keine Rolle mehr (reines Tagesehen).
  • Ab 105…106 cd/m² tritt Sättigung der Zapfen (Blendung) auf.

Die angegebenen Werte schwanken von Mensch zu Mensch und sind auch von der Wellenlänge des Lichts abhängig.

Lichtquellen

Bearbeiten
Natürliche Lichtquellen
Leuchtdichte (cd/m²)
bewölkter Nachthimmel 10−6…10−4
sternklarer Nachthimmel 0,001
Nachthimmel bei Vollmond 0,1
mittlerer bedeckter Himmel 2.000
Oberfläche des Mondes 2.500
mittlerer klarer Himmel 8.000
Sonnenscheibe am Horizont 6e5
Sonnenscheibe am Mittag 1600e6
Technische Strahler
Leuchtdichte (cd/m²)
Elektrolumineszenz-Folie 30…200
T8 Fluoreszenzröhre, kaltweiß 11.000
matte 60-W-Glühlampe 120.000
Natriumdampflampe 500.000
Schwarzer Strahler bei 2045 K[4] 600.000
Draht einer Halogenlampe 20… 30e6
weiße LED 50e6
Xenon-Gasentladungslampe[5] 5000e6
Monitore
Leuchtdichte (cd/m²)
Röhrenmonitor: schwarz teilweise < 0,01
LCD: schwarz 0,15…0,8
Röhrenmonitor: weiß 80…200
LCD: weiß 150…500
LED Outdoor Videowall 5.000…7.500

Lambertscher Strahler

Bearbeiten

Mit der oben genannten Definition   kann man umgekehrt den Lichtstrom berechnen, der von einer Abstrahlfläche emittiert wird:

 .

Da   im Allgemeinen vom Ort   auf der Leuchtfläche und von den überstrichenen Richtungen   und   abhängen kann, ergibt sich unter Umständen ein sehr kompliziertes Integral.

Eine wesentliche Vereinfachung tritt ein, wenn die Oberfläche von allen Stellen in alle Richtungen dieselbe Leuchtdichte   abgibt. Einen solchen Körper nennt man diffusen Strahler oder lambertschen Strahler.

Ein Beispiel für eine diffus leuchtende Fläche ist ein beleuchtetes Blatt Papier. Dass das Papier diffus strahlt, also in alle Richtungen dieselbe Leuchtdichte abgibt, bedeutet für den Betrachter, dass es aus allen Richtungen betrachtet dieselbe Flächenhelligkeit aufweist. Da es aber bei schräger Betrachtung um den Projektionsfaktor   verkürzt erscheint (also einen kleineren Raumwinkel einnimmt) erreicht den Betrachter trotz gleich gebliebener Flächenhelligkeit eine geringere Lichtmenge: die Lichtstärke in dieser Richtung ist geringer.

Der von einem lambertschen Strahler in eine bestimmte Richtung abgegebene Lichtstrom   variiert nur noch mit dem Cosinus des Abstrahlwinkels  , und das Integral ist einfach:

 .

Dieses verbleibende Integral hängt nur noch von der Gestalt und Lage des Raumwinkels   ab und kann unabhängig von   gelöst werden. Auf diese Weise können nur von der Sender- und Empfängergeometrie abhängige allgemeine Sichtfaktoren ermittelt und fertig tabelliert werden.

Wird beispielsweise die Lichtausstrahlung in den gesamten von der Leuchtfläche überblickten Halbraum betrachtet, so ergibt sich für das Integral der Wert   und der Lichtstrom in den gesamten Halbraum beträgt

 .

Die spezifische Lichtausstrahlung ist dann entsprechend

 .

Beispiel: Wenn ein Bildschirm mit der Leuchtdichte 200 cd/m² und der Fläche 0,6 m² die Eigenschaften eines lambertschen Strahlers hat, hat er eine spezifische Lichtausstrahlung von 200π lm/m² und emittiert einen Lichtstrom von 120π lm.

Photometrisches Grundgesetz

Bearbeiten

Das Photometrische Grundgesetz[6] (auch: „radiometrisches und photometrisches Grundgesetz“[7]) beschreibt den Lichtaustausch zwischen zwei Flächen. Die Leuchtdichte ist hier eine zentrale Größe.

Lichtausstrahlung

Bearbeiten
 
Zwei Flächen als gegenseitige Strahlungspartner im photometrischen Grundgesetz

Betrachtet man ein Flächenelement  , welches mit der Leuchtdichte   ein im Abstand   befindliches Flächenelement   beleuchtet, so spannt   von   aus betrachtet den Raumwinkel   auf, und aus der ersten Gleichung im vorigen Abschnitt folgt:

 

Dabei sind   und   die Neigungswinkel der Flächenelemente gegen die gemeinsame Verbindungslinie.

Dies ist das photometrische Grundgesetz. Durch Integration über die beiden Flächen ergibt sich der insgesamt von Fläche 1 nach Fläche 2 fließende Lichtstrom  .

Lichteinstrahlung

Bearbeiten

Die Beleuchtungsdichte   ist analog zur Leuchtdichte, jedoch für den Einstrahlungsfall definiert. Sie gibt an, welcher Lichtstrom   aus der durch den Polarwinkel   und den Azimutwinkel   gegebenen Richtung pro projiziertem Flächenelement   und pro Raumwinkelelement   empfangen wird. Die bisher abgeleiteten Gleichungen gelten analog. Insbesondere gilt für den auf Flächenelement   empfangenen, von   abgegebenen Lichtstrom:

 

wobei diesmal der von   aufgespannte Raumwinkel   auftritt.

Folgerung

Bearbeiten

Der von   nach   ausgesandte und der auf   von   empfangene Lichtstrom müssen identisch sein (sofern nicht in einem zwischen den Flächen liegenden Medium Licht durch Absorption oder Streuung verloren geht), und aus dem Vergleich der beiden Gleichungen folgt:

 

Die von Flächenelement   ausgesandte Leuchtdichte ist identisch mit der auf Flächenelement   eintreffenden Beleuchtungsdichte.

Man beachte also, dass die Leuchtdichte nicht mit dem Abstand abnimmt. Bei einer optischen Abbildung hat demzufolge jeder Bildpunkt die gleiche Leuchtdichte wie der entsprechende Objektpunkt.[8]

Der gesamte übertragene Lichtstrom   bzw.   nimmt hingegen wie erwartet mit dem Quadrat des Abstandes ab (aufgrund des Faktors   im Nenner beider Gleichungen), dies liegt daran, dass der von der Senderfläche aufgespannte Raumwinkel aus Sicht der Empfängerfläche quadratisch mit dem Abstand abnimmt.

Beispiel: Vergleicht man eine nahe Plakatwand mit einer identisch beleuchteten weiter entfernten, so erscheinen beide gleich „hell“ (sie haben eine abstandsunabhängige und daher in beiden Fällen identische Leuchtdichte). Die nähere Wand nimmt aber für den Beobachter einen größeren Raumwinkel ein, so dass den Beobachter aus diesem größeren Raumwinkel insgesamt ein größerer Lichtstrom erreicht. Die nähere Wand erzeugt eine größere Beleuchtungsstärke beim Beobachter (photometrisches Entfernungsgesetz).

Wird die Beleuchtungsdichte   über den Raumwinkel integriert, aus dem sie stammt, so ergibt sich die Beleuchtungsstärke genannte Einstrahl-Lichtstromflächendichte   auf der Empfängerfläche in lm/m². Falls die in eine bestimmte Richtung abgegebene Leuchtdichte der Senderfläche bekannt ist, so ist damit sofort auch die mit ihr identische aus derselben Richtung stammende Beleuchtungsdichte der Empfängerfläche bekannt und die Beleuchtungsstärke auf der Empfängerfläche kann aus der Leuchtdichteverteilung der Senderfläche sofort berechnet werden:

 

Beispiel: Die Sonne hat eine Leuchtdichte von L1 ≈ 1,5·109 cd/m² und erscheint von der Erde aus gesehen unter einem Raumwinkel Ω = 6,8·10−5 sr. Da dieser Raumwinkel klein ist, kann man die Integration über den von der Sonnenscheibe eingenommenen Raumwinkel auf eine Multiplikation mit dem Raumwinkel reduzieren. Wenn im Sommer die Sonne auf 60° Höhe (also 30° von Zenit abweichend) steht, wird die Erde demnach mit E2 = L1 · Ω ·cos(30°) = 89 000 lx bestrahlt.

Radiometrische und photometrische Größen im Vergleich

Bearbeiten
radiometrische Größe Symbol a) SI-Einheit Beschreibung photometrische Entsprechung b) Symbol SI-Einheit
Strahlungs­fluss
Strahlungs­leistung, radiant flux, radiant power
  W
(Watt)
Strahlungsenergie durch Zeit Lichtstrom
luminous flux
  lm
(Lumen)
Strahl­stärke
Strahlungs­stärke, radiant intensity
  W/sr Strahlungsfluss durch Raumwinkel Lichtstärke
luminous intensity
  cd = lm/sr
(Candela)
Bestrahlungs­stärke
irradiance
  W/m2 Strahlungsfluss durch Empfänger­fläche Beleuchtungs­stärke
illuminance
  lx = lm/m2
(Lux)
Spezifische Ausstrahlung
Ausstrahlungs­strom­dichte, radiant exitance
  W/m2 Strahlungsfluss durch Sender­fläche Spezifische Lichtausstrahlung
luminous exitance
  lm/m2
Strahldichte
Strahlungsdichte, Radianz, radiance
  W/m2sr Strahlstärke durch effektive Senderfläche Leuchtdichte
luminance
  cd/m2
Strahlungs­energie
Strahlungsmenge, radiant energy
  J
(Joule)
durch Strahlung übertragene Energie Lichtmenge
luminous energy
  lm·s
Bestrahlung
Einstrahlung, radiant exposure
  J/m2 Strahlungsenergie durch Empfänger­fläche Belichtung
luminous exposure
  lx·s
Strahlungs­ausbeute
radiant efficiency
  1 Strahlungsfluss durch auf­ge­nom­mene (meist elek­trische) Leistung Lichtausbeute
(overall) luminous efficacy
  lm/W
a) 
Der Index „e“ dient zur Abgrenzung von den photo­metrischen Größen. Er kann weggelassen werden.
b) 
Die photometrischen Größen sind die radiometrischen Größen, gewichtet mit dem photo­metrischen Strahlungs­äquivalent K, das die Empfindlich­keit des menschlichen Auges angibt.

Siehe auch

Bearbeiten

Literatur

Bearbeiten
  • Hans R. Ris: Beleuchtungstechnik für Praktiker. 2. Auflage, VDE-Verlag GmbH, Berlin/Offenbach 1997, ISBN 3-8007-2163-5.
  • Wilhelm Gerster: Moderne Beleuchtungssysteme für drinnen und draußen. 1. Auflage, Compact Verlag, München 1997, ISBN 3-8174-2395-0.
  • Horst Stöcker: Taschenbuch der Physik. 4. Auflage, Verlag Harry Deutsch, Frankfurt am Main 2000, ISBN 3-8171-1628-4.
  • Günter Springer: Fachkunde Elektrotechnik. 18. Auflage, Verlag Europa-Lehrmittel, Wuppertal 1989, ISBN 3-8085-3018-9.

Einzelnachweise

Bearbeiten
  1. a b International Electrotechnical Commission (IEC): International Electrotechnical Vocabulary. ref. 845-21-050, Luminance (abgerufen am 16. Juni 2021).
  2. DIN 5031 Strahlungsphysik im optischen Bereich und Lichttechnik. Teil 3: Größen, Formelzeichen und Einheiten der Lichttechnik. DIN-Taschenbuch Einheiten und Begriffe für physikalische Größen, Beuth, Berlin 1990.
  3. DIN EN ISO 9288: Wärmeübertragung durch Strahlung – Physikalische Größen und Definitionen. Beuth Verlag, August 1996, für den analogen Fall der radiometrischen Strahldichte.
  4. Nach der Definition der Einheit Candela von 1946 bis 1979, siehe Candela#Geschichte
  5. Datenblatt Xenonstrahler (Memento vom 3. März 2016 im Internet Archive) (PDF; 5,5 MB).
  6. DIN 5031 Strahlungsphysik im optischen Bereich und Lichttechnik. Teil 1: Größen, Formelzeichen und Einheiten der Lichttechnik. DIN-Taschenbuch Einheiten und Begriffe für physikalische Größen, Beuth, Berlin 1990.
  7. International Electrotechnical Commission (IEC): International Electrotechnical Vocabulary. ref. 845-25-088, basic law of radiometry and photometry (abgerufen am 4. Juni 2021).
  8. Markus Bautsch: Digitale bildgebende Verfahren: Leuchtdichte. In: Wikibooks, Sammlung freier Lehr-, Sach- und Fachbücher. Abgerufen am 17. Mai 2023.