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Satellite retrievals of information about the Earth’s surface are widely used to 

monitor global terrestrial photosynthesis and primary production and to examine 

the ecological impacts of droughts. Methods for estimating photosynthesis from 

space commonly combine information on vegetation greenness, incoming 

radiation, temperature, and atmospheric demand for water (vapour-pressure 

deficit), but do not account for the direct effects of low soil moisture. They 

instead rely on vapour-pressure deficit as a proxy for dryness, despite 

widespread evidence that soil moisture deficits have a direct impact on 

vegetation, independent of vapour-pressure deficit. Here, we use a globally 

distributed measurement network to assess the effect of soil moisture on 

photosynthesis, and identify a common bias in an ensemble of satellite-based 

estimates of photosynthesis that is governed by the magnitude of soil moisture 

effects on photosynthetic light-use efficiency. We develop methods to account for 

the influence of soil moisture and estimate that soil moisture effects reduce 

global annual photosynthesis by ~15%, increase interannual variability by more 

than 100% across 25% of the global vegetated land surface, and amplify the 

impacts of extreme events on primary production. These results demonstrate the 

importance of soil moisture effects for monitoring carbon-cycle variability and 

drought impacts on vegetation productivity from space. 

Accurate estimates of photosynthesis and vegetation primary production across large 

spatial scales are required for monitoring yields in agriculture and forestry and for 
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understanding drivers of the terrestrial carbon (C) balance and changes in the C cycle. 

In particular, the severity of drought impacts in natural and managed ecosystems is of 

wide societal relevance. These impacts are largely determined by the sensitivity of 

ecosystem-scale apparent photosynthesis (gross primary production, GPP) and plant 

mortality in response to dry conditions1. Remote sensing data-driven models (RS 

models) are widely used for estimating GPP2,3 and underlie research, for example on 

the impacts of drought on global4 and continental primary production5, vegetation 

recovery from drought6, or the drivers of recent trends in the terrestrial C balance7,8. RS 

models commonly rely on the light use efficiency (LUE) concept9 which states that, at 

time scales of weeks to months, GPP can be formulated as the product of the incident 

photosynthetically active radiation (PAR), the fraction of absorbed PAR (fAPAR), and 

LUE9:


GPP = PAR × fAPAR × LUE	 	 Eq.1 

This formulation robustly captures the relationship between GPP and light through 

PAR. It also incorporates effects of changes in green vegetation cover through fAPAR, 

which reflects water and temperature-driven phenology and captures lagged 

responses of plant mortality and ecosystem structural change induced by drought. 

Biome-level differences and responses of leaf-level physiology to ambient conditions 

are represented by LUE, which is commonly modelled using information on vegetation 

type and accounting for the effects of changes in air or land-surface temperature and 

vapour-pressure deficit (VPD). 
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Although low soil moisture is known to affect plant physiology10–12, RS models 

commonly assume that information contained in fAPAR and VPD is sufficient to 

accurately estimate the responses of GPP to drought13. However, deficits in soil 

moisture and their effects on GPP are not necessarily captured by fAPAR or VPD. VPD 

gets progressively decoupled from soil moisture under very dry conditions14,15, and 

GPP can become decoupled from fAPAR during soil moisture droughts due to stomatal 

and biochemical responses and resulting variations in LUE16. Recent research has 

emphasised that both drivers of dryness effects, VPD and soil moisture, should be 

accounted for to explain and simulate observed changes in ecosystem fluxes and 

LUE17–21. 


Here, we use a set of state-of-the-art RS models that follow different approaches for 

simulating GPP and dryness effects. Common to all of them is that soil moisture is not 

explicitly used as a model input nor accounted for as a model variable. Model 

predictions are evaluated using data from a globally distributed network of ecosystem 

flux measurements. We show that all assessed RS models exhibit a similar bias under 

dry conditions and that this bias matches the timing and magnitude of the apparent 

soil moisture-related reduction in LUE (termed fLUE). To quantify the soil moisture 

effect, separated from other drivers, we use an estimate of fLUE by ref. 20 that 

combines observations and a machine-learning algorithm. We demonstrate that the 

bias in RS models’ GPP estimates can largely be resolved by empirical methods based 

on readily available global datasets and simple soil water-balance models. We use 

these methods in combination with an RS model (P-model) to assess the implications 
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of including soil-moisture stress for GPP across the globe, its interannual variability, 

and the probability of large negative GPP extreme events.


Resolving the bias 

We find a consistent pattern in the bias of GPP estimated from RS models that is due 

to the timing and magnitude of drought impacts on GPP (Fig. 1a). In all RS models 

assessed using data from 36 sites (see Table S1 and Fig. S1), the bias progressively 

increases during the course of droughts and closely tracks the apparent impacts of soil 

moisture on LUE, estimated by fLUE20. This is also reflected by the systematic 

relationship between the bias and the magnitude of fLUE (Fig. 1b). We additionally 

investigated relationships between the model bias and drought impacts for an 

extended set of sites (N=71), relaxing the criterium that fLUE data is available, but 

instead estimate the severity of drought impacts by the daily ratio of actual to potential 

evapotranspiration (AET/PET) derived from the water and energy balance of the land 

surface22. The same pattern emerges (Fig. S2) and confirms that these RS models 

systematically underestimate drought impacts on GPP.


This bias is common to all RS models assessed here (MODIS MOD17A2H3, VPM23, 

BESS24, P-model25). MODIS, VPM, and BESS tend to underestimate GPP under 

moderate soil-moisture stress and have a tendency towards a positive bias with 

increasing soil-moisture stress (Fig. S3), which balances errors and reduces the overall 

bias in estimates for mean GPP across all levels of soil dryness. We normalised 

simulated GPP to levels where impacts of soil moisture are small, distilling the common 

general pattern of an increasingly positive bias in simulated GPP as soil moisture 
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progressively reduces LUE, shown in Fig. 1. The bias for each RS model individually is 

shown in Fig. S4.


These findings imply that accurately estimating the degree to which soil moisture 

reduces LUE and GPP, in addition to effects of greenness (fAPAR), VPD and other 

factors, could resolve the systematic bias and reduce errors in GPP estimates across 

all levels of dryness. The power of this bias correction is illustrated by the near 

complete disappearance of the bias and a substantial error reduction of normalised 

GPP values, simulated by RS models, after correction by fLUE (blue boxes in Fig. 1b; 

the mean bias decreases from 1.65 to 0.031 gC m-2 d-1 and RMSE decreases from 2.52 

to 0.94 g C m-2 d-1 across the lower four fLUE bins).


Global implications 

To assess the implications of the drought-related bias in RS estimates of GPP across 

the globe and its variability, we construct a set of empirical soil moisture stress 

functions (termed β functions) based on the apparent soil moisture impacts on LUE 

derived from local measurements20. In combination with data that can be accessed 

with coverage across the globe and the entire satellite era, here 1982-2016, these β 

functions thus provide a basis for upscaling in time and space. Plant-available soil 

moisture, used as input to the β functions, is estimated from the surface water and 

energy balance22, using daily precipitation and radiation data and a high-resolution soil 

dataset26. Three β functions (termed βa, βb, and βc) are parameterised with different 

levels of sensitivity to low soil moisture and using information on vegetation type and 

mean aridity (see Methods). The range of the β functions generally covers the 

estimated range of soil moisture effects on LUE (Fig. S5). Correcting simulated GPP 
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from the RS models by the intermediate β function (βb) reduces the mean bias from 

1.65 to 0.25 g C m-2 d-1 and RMSE from 2.52 to 1.32 g C m-2 d-1 during droughts, i.e. 

across the lower four fLUE bins (green boxes in Fig. 1b).


Next, we conduct global simulations to investigate effects of soil moisture stress on 

GPP, its temporal trend, interannual variability, and negative GPP extreme events. We 

use the P-model (see Methods), where fAPAR is prescribed from satellite 

observations27 and LUE is simulated based on an optimality principle that accounts for 

climate and CO2 effects on the balance between costs of assimilation and 

transpiration25. By quantifying the difference in variables from a simulation without 

(termed s0), and three alternative simulations that include the β functions (s1a, s1b, s1c 

using functions βa, βb, and βc, respectively), we isolate soil moisture effects from other 

environmental and anthropogenic drivers.


We find that soil moisture stress reduces global GPP on average by 15% (10%-19%, 

based on different simulations, Figs. 2 and S6). Local effects in semi-arid grasslands 

and savannahs are larger, reducing mean annual GPP by more than 50%. The 

correction by applying the β functions in P-model simulations improves its performance 

of simulating spatial, i.e. across-site, variations in mean annual GPP (Figs. S7 and S8), 

and brings global totals closer to estimates by other RS models (Fig. 2b). We find no 

significant temporal trend in the soil moisture-related relative reduction of global GPP 

over the last 30 years, but significantly positive and negative trends in different regions 

(Figs. 2c, and d). While the Sahel region, southern Africa, and northern Australia have 

seen a trend towards relief from soil moisture stress, GPP reductions are simulated to 
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have become increasingly strong in the Gran Chaco in South America, the Middle East, 

and in the dry regions of Mexico and Southwestern U.S.


Soil moisture effects on GPP variability across scales 

Soil moisture limitation not only affects mean annual GPP but also its year-to-year 

(interannual) variability (IAV). IAV in precipitation and hence soil moisture increases GPP 

IAV  across all vegetated land (Fig. 3). Relative variability (quantified as the variance in 

annual GPP divided by its mean) increases by more than 100% (doubling) across 

across 25% of the global vegetated land surface. The mean amplification factor across 

all grid cells is 1.8 (80% increase), with the largest effects of soil moisture on relative 

and absolute (Fig. S9) GPP variability in regions of intermediate aridity (Fig. S10). 


Although soil moisture effects substantially increase GPP IAV locally, effects on the IAV 

of global total GPP are found here to be minor. The mean amplification decreases from 

a factor of 1.8, derived from model simulations at a spatial resolution of 0.5º in 

longitude and latitude, to 1.3 when annual GPP is aggregated to 180º and to 1.08 at 

the global level (Fig. 3a). This decrease is due to compensating contributions from 

different regions across the globe (Fig. 4). Positive contributions, where the effect of 

soil moisture on GPP is in phase with global GPP IAV are compensated by negative 

contributions. The frequency distribution of these contributions is approximately 

symmetrical, hence balancing out at the global scale. 


Impacts of climatic extremes on natural and managed ecosystems are strongly 

governed by GPP anomalies that simultaneously occur across large regions and that 

persist over an extended period of time1,28,29. Most of such large-scale GPP extreme 

events are associated with precipitation deficits29. Here we find that water limitation 
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increases the magnitude of such GPP extreme events (Fig. 5). While the shape of the 

size distribution of individual events is largely conserved (minor changes in the power-

law exponent related to soil moisture effects), their distribution is generally shifted 

towards larger sizes. By additionally accounting for soil moisture effects, the probability 

of GPP extreme events of a given size increases by 16-66%, with the largest 

amplification in Australia. Our approach implies that anomalies and impacts are not 

larger by definition when additionally accounting for soil moisture stress. However, our 

results indicate that the effects of soil moisture amplify GPP variability and the 

magnitude of temporally and spatially clustered negative anomalies. 


Discussion 

Multiple studies have indicated that RS models tend to overestimate vegetation 

productivity under dry conditions30–33, but precise quantitative insights into this bias 

regarding its timing, magnitude, underlying causes, and implications for global GPP 

estimates have been lacking. We used an observation-based estimate of separate soil 

moisture effects (fLUE20) for comparison with the bias of RS models’ GPP estimates 

and to formulate and calibrate β functions. The strong bias reduction by including β 

functions in GPP estimates suggests that soil moisture effects on LUE, additional to 

VPD and greenness changes drive the progressive overestimation in GPP during 

droughts. The remaining bias may be reduced by accounting for additional factors that 

are known to affect the sensitivity of vegetation productivity to dry soil conditions, e.g., 

groundwater access34,35, but are not included in the RS models investigated here, nor 

in β functions36.
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RS models are typically calibrated to minimise errors compared to CO2 flux-derived 

GPP estimates. While this yields relatively accurate annual mean GPP estimates across 

sites25,37, it tends to underestimate GPP under moist and overestimate it under dry 

conditions as shown here. This also indicates that the tendency of RS models to 

overestimate GPP under droughts does not necessarily imply a general overestimation 

of annual or global totals. However, the systematic relationship of their bias with soil 

moisture limits the potential to minimise overall errors. Furthermore, our results 

demonstrate that the systematic bias implies a substantial underestimation of the IAV 

of GPP and the impacts of extreme droughts on GPP. However, this does not have 

direct implications for the estimates of the global land C balance as GPP data are not 

commonly used for this purpose38.


To remediate the drought-related bias in GPP estimates, attempts have been made to 

use remotely sensed surface reflectance data to estimate water availability39,40 or to 

directly measure physiological responses to water stress and resulting changes in LUE. 

An index of surface water availability is implemented in VPM but does not resolve its 

bias under water-stressed conditions. Empirical relationships between LUE and 

atmospheric dryness (VPD), as implemented in MODIS, may partly account for soil 

moisture effects but are limited by a lack of correlation between VPD and soil moisture 

which is particularly prevalent under very dry conditions14,15,20. BESS and the P-model 

implement standard process-based models to mechanistically simulate photosynthetic 

responses to VPD but do not include information on soil moisture. Alternative indices of 

optical reflectance (PRI41,42 or NIRV43) and solar-induced fluorescence (SIF44) add 

information about the effects of environmental stress on LUE, but their association with 
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greenness changes poses a challenge for using them to estimate the independent 

effect of drought on photosynthesis45,46. Directly using soil moisture as input to RS 

models has thus-far been hampered by data availability across space. New soil 

moisture data products based on microwave remote sensing47 may resolve this 

constraint but are generally representative only for upper soil layers, which limits their 

applicability for deep-rooted vegetation, and are subject to data gaps in regions with 

dense vegetation cover47. Recent efforts to estimate root-zone soil moisture48 

combined with estimates of the global distribution of plant rooting depth49 may prove 

useful to address limitations.


Using a global satellite data-driven GPP model, we have translated meteorological 

droughts (low precipitation) into soil moisture droughts and into more directly impact-

relevant GPP drought events covering an expanse in space and time. Our results 

suggest that the influence of soil moisture substantially increases IAV in GPP and the 

size of GPP extreme events. However, our results suggest that even without 

accounting for the effect of increasing plant water-use efficiency50 on soil moisture, 

drought impacts have not become more severe over the past three decades and that 

there is no general global trend of increasing soil moisture limitation on GPP. This 

finding is in line with other studies51–53.


We further found a compensatory role of water limitation in different regions that leads 

to a reduced apparent soil moisture effect on IAV in global GPP. This reflects findings 

by ref. 54 of the declining importance of water availability on GPP and the land C 

balance when moving from local to global scales. However, we note that the model 

used for our analysis, as well as the one used by ref. 54 accounts for relatively shallow 
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soil water storage only, without accounting for the possible role of other types of water 

storage that may be relevant for vegetation productivity (e.g. groundwater), control its 

interannual variability, and may preserve a strong soil moisture effect on C cycle 

variability at the global scale55.


Our results highlight shortcomings in widely used4,6–8 RS-based GPP estimates and 

contrast findings of increasing drought stress over past decades6. We have 

demonstrated that soil moisture is an important forcing of global vegetation primary 

production and year-to-year carbon cycle variability that cannot be replaced by 

information on atmospheric dryness and should therefore be accounted for in satellite 

data-driven estimates.
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Figure Captions 

Fig. 1 Bias in GPP estimates. (a) Bias in GPP simulated by different RS models, and 

apparent effects of soil moisture on LUE (inverse of fLUE) during drought events. The 

bias is expressed here as the ratio of simulated over observed GPP. Lines represent the 

median for each day, derived from 36 sites (group 1 in Table S1) and multiple drought 

events. The grey band is the interquartile range of fLUE-1. Bias values are normalised to 

a median of 1 for the 20 days before the onset of drought events. (b) Bias of simulated 

daily GPP in different fLUE bins, calculated as simulated minus observed GPP at 36 

sites (group 1 in Table S1). Uncorrected data (purple) from the different RS models are 

pooled and normalised to the median ratio of simulated to observed GPP in the highest 

fLUE bin (0.8-1.0). Pooled and normalised data are multiplied by the apparent 

reduction in LUE associated with soil moisture, fLUE20 (blue boxes) and empirical soil 
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moisture stress functions (βa, βb, and βc) with different sensitivities (green and yellow 

boxes). Boxes represent the interquartile range of values.


Fig. 2 Effect of soil moisture limitation on GPP. (a) Percentage GPP reduction due to 

effects of soil moisture (%), calculated as the difference in the mean for 1982-2016 

from simulations s0 and s1b. (b) Time series of global total GPP from different RS 

models. (c) Trend in soil moisture impacts on GPP, calculated as the linear trend in the 

percentage difference in annual GPP from simulations s0 and s1b, covering 1982-2016  

(% yr-1). Blank gridcells indicate no significant trend, red colors indicate a trend 

towards stronger GPP reductions by soil moisture effects. (d) Percentage difference in 

global annual GPP from simulations s0 and s1b (%). The linear regression (red line), its 

95% confidence interval (grey range), and the slope with its 95% confidence interval 

(annotation) are given.


Fig. 3  Amplification of GPP IAV due to the effects of soil moisture. IAV is calculated as 

the variance in annual values divided by their mean; ‘amplification’ is calculated as the 

ratio in IAV of simulation s1b to s0. (a) Distribution of amplification factors (unitless) 

depending on the spatial resolution of aggregation. Shaded bands are the upper and 

lower 1, 5, 10, and 25% quantiles, and the solid line is the median. The horizontal 

dotted line at 1 indicates no amplification. (b) Amplification of GPP IAV across the 

globe (unitless). The inset shows the empirical cumulative distribution function (ECDF) 

of amplification factors for all grid cells. The solid line represents amplification factors 
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derived from simulation s1b, the shaded red band covers the range of values for 

simulations s1a and s1c. The dotted vertical line at 1 indicates no amplification.


Fig. 4  Contributing regions where the effects of soil moisture increase (positive values) 

and reduce global GPP IAV, based on detrended annual GPP anomalies of years 

1982-2016. Values are calculated following ref. 56 (see Methods, Eq. 4), are unitless 

and are multiplied by 10,000 for readability. The distribution of values is given by the 

histogram inset.


Fig. 5  Soil moisture effects on GPP extreme events. (a-e) Cumulative size distribution 

of the largest N GPP extreme events by continent (note the logarithmic scales of both 

axes). The x-axis (impact) represents the cumulative negative GPP anomaly across 

contingent regions in space-time for the largest N events following the method by ref. 

57 (see also Methods). The number of events (N), exponents of fitted power law 

distributions !, and the mean soil moisture-related amplification of the probability for a 

given event size (A) are given in the top-right corner. A is calculated based on the 

events as fitted by the power law distributions (mean upward shift of the events as 

estimated by the straight lines) derived using the R package poweRlaw58. (f) Boxplots 

of the distribution of amplification factors of the size of individual events for each 

continent. Bold lines inside boxes are the medians and the boxes are the interquartile 

ranges.  NA: North America, SA: South America, EA: Eurasia, AF: Africa, AU: Australia.
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Methods 

Observational data 

GPP predictions by the RS models are compared to daily GPP estimates, aggregated 

to 8-day intervals, from the FLUXNET 2015 Tier 1 data set (downloaded on 13 

November, 2016). We use GPP based on the nighttime partitioning method1 

(GPP_NT_VUT_REF). We filter negative daily GPP values, data for which more than 

50% of the half-hourly data are gap-filled and for which the daytime and nighttime 

partitioning methods (GPP_DT_VUT_REF and GPP_NT_VUT_REF, respectively) are 

inconsistent, i.e., the upper and lower 2.5% quantiles of the difference between GPP 

values quantified by each method. The comparison is limited to data from 36 sites (see 

Table S1 and Figure S1), where the effects of soil moisture is reliably identified2, and to 

periods with clearly identified soil moisture effects based on ref. 2. 


RS models 

We use four RS global GPP models that also provide site-scale outputs for comparison 

to observations from FLUXNET sites. 


MODIS MOD17A2H3, Version 6, is an empirical LUE model (Eq. 1), based on MODIS 

FPAR at 500 m resolution using 8-day periods. Biome-specific maximum LUE values 

are prescribed and multiplied by empirical stress functions to reduce GPP at high VPD 

and low temperature. Site-level data are extracted for the single pixel of the flux tower 

location at each site, using Google Earth Engine4 and the gee_subset library5. 
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BESS6 is a process-based GPP model using remotely sensed data for the atmospheric 

state, land surface and air temperatures, leaf area index, spatially distributed CO2 

concentrations, and canopy information (height, clumping). BESS explicitly simulates 

canopy radiative transfer, the surface energy balance, and photosynthesis7 using 

parameters for plant functional type-specific maximum carboxylation capacity (Vcmax). 

Original BESS outputs are given at a resolution of 1 km. 


VPM8 is an empirical LUE model (Eq. 1), similar to MODIS, but driven by the remotely 

sensed MODIS Enhanced Vegetation Index (EVI from MOD09A1 C6, 500 m, 8-day) and 

reanalysis climate data. It distinguishes between C3 and C4 vegetation, modifies LUE 

by an additional water-stress scalar estimated by the Land Surface Water Index9, and 

estimates absorption by chlorophyll specifically instead of absorption across a wider 

range of wavelengths as implemented in MODIS and other RS models by deriving 

fAPAR as a linear function of EVI. As in MODIS, VPM uses a temperature scalar to 

modify LUE, but does not use VPD data.


P-model10 is a LUE model (Eq. 1) where LUE is internally predicted, varying over time 

and across space, based on changing environmental conditions (monthly mean air 

temperature, VPD, elevation, and CO2 concentration) and on an optimality principle11 

that predicts stomatal conductance and foliar photosynthetic traits (i.a. Vcmax) based on 

the standard model for C3 plant photosynthesis7. The model thus does not rely on 

prescribed plant functional types or biome-specific parameters. For site-scale 

evaluations, the P-model is driven by MODIS FPAR  (MCD15A3H Version 6, 500 m, 4-

day) extracted using Google Earth Engine4 and the ‘gee_subset’ library5 and 

meteorological data provided through the FLUXNET 2015 data set. We have calibrated 
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the apparent quantum yield efficiency parameter of the P-model, which acts as a linear 

scalar of LUE in Eq. 1, to observed GPP at high levels of soil moisture from the 

FLUXNET 2015 dataset. This yielded a value of 0.0579 mol CO2 m-2 s-1 (factor implicitly 

included in LUE).  


Empirical soil moisture stress functions 

We correct simulated GPP from different RS models (GPPmod) using a set of empirical 

soil moisture stress functions (β(θ)) as


GPP = β(θ) ∙ GPPmod


We use data on the apparent soil moisture-related reduction in light use efficiency 

(fLUE), estimated by ref. 2, to fit β functions (β(θ) ≈ fLUE),  based on two general 

patterns:


1. The functional form of β(θ) is general across all sites and can be approximated 

by a quadratic function that approaches 1 for soil moisture at a certain threshold 

θ* and held constant at 1 for soil moisture values above that. Here θ is the plant-

available soil water, expressed as a fraction of field capacity. The general form 

is:


 	 	 	 Eq. 2 

1. The sensitivity of β(θ) to extreme soil dryness (θ→0) is correlated with the mean 

aridity at the site. The decrease in β(θ) associated with dryness is particularly 
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strong at the driest sites (mostly deserts, grasslands, and savannahs), whereas 

sites with intermediate aridity (mostly Mediterranean) have a smaller reduction in 

β(θ) when soil water becomes depleted. The sensitivity parameter q in Eq. 2 is 

defined by the maximum β reduction at low soil moisture β0 = β(θ=θ0), leading to 

q = (β0-1)/(θ*-θ0)2. Note that q has a negative value. β0 is modelled as a linear 

function of the mean aridity, quantified by the mean annual ratio of AET/PET, 

termed α′:


 	 	 Eq. 3


Note that θ0 and θ* differ slightly between approaches, and that α′ relates to α in the 

Priestley-Taylor equation12 as  α′= α ⁄ 1.26. 


We have tested several approaches to fit parameters p0 and p1 for empirical soil 

moisture stress functions β(θ). Final fitted functions based on different approaches 

bracket fLUE values derived at our selected sites (group 1 in Table S1, Fig. S6). More 

information on the fitting procedure and parameter values are given in the SI, Section 

5. Three parameterisations of β functions were used to estimate uncertainty in the 

sensitivity of β(θ): function βa for low sensitivity, function βb for intermediate sensitivity 

and distinguishing parameters between woody and herbaceous vegetation, and 

function βc for high sensitivity.


Global P-model simulations 

We developed a new P-model implementation to estimate GPP for global and site-level 

simulations within the same modelling framework (model code SOFUN v1.1.0)13. 
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Global simulations are done here for years 1982-2016 and are driven by FPAR3g data14 

for fAPAR; WATCH-WFDEI elevation and climate data15 for temperature, shortwave 

radiation, and specific humidity, converted to VPD (see SI); and measured globally 

uniform atmospheric CO2 concentrations. β functions were applied to daily GPP, 

calculated based on soil moisture simulated by the SPLASH model16, which is 

implemented within the global SOFUN modelling framework13. The soil moisture model 

is forced by WATCH-WFDEI precipitation as input and estimates potential 

evapotranspiration (PET) based on the Priestley-Taylor equation. The soil water balance 

is determined based on a spatially varying plant-available soil water holding capacity 

(WHC, Fig. S12), derived from SoilGrids17 data for texture and soil depth (see also SI 

Section 5.4). Four simulations were carried out. s0: without soil moisture effects, s1a: 

using βa, s1b: using βb, s1c: using βc.


Mapping contributing regions 

We adopted and modified the method proposed by ref. 18 and calculated an index f 

based on their Eq. 1 to quantify the fractional contribution of each grid cell to the 

amplification of GPP IAV through soil moisture effects:


	  Eq. 4


Here, xjt is the difference in the detrended annual GPP of grid cell j and year t, caused 

by the effects of soil moisture, calculated as the difference of detrended annual GPP in 

simulations s1b and s0. Xt is the global detrended annual GPP in simulation s1b. 
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Identification of GPP extreme events 

GPP extreme events were identified following the method proposed by ref. 19 as 

contiguous domains in longitude-latitude-time space, where the monthly detrended 

GPP anomaly from its mean seasonal cycle is below the lower 2% quantile of all 

anomaly values within the respective continent. The domains are determined based on 

simulation s1b using the R package neuroim20. The impacts of events were calculated 

for each simulation (s0 and s1b) as the monthly detrended GPP anomaly relative to the 

mean seasonal cycle in the respective simulation, cumulated over the domain (grid 

cells and months) of the respective event. 


Data availability 

P-model outputs from site-scale and global simulations are available on Zenodo with 

DOI 10.5281/zenodo.1423484.


Code availability 

Reproducible code is available through github (https://github.com/stineb/soilm_global) 

and published on Zenodo with DOI 10.5281/zenodo.2543324.


�29

https://paperpile.com/c/MVPfnF/Sv87k
https://paperpile.com/c/MVPfnF/18y3O
https://github.com/stineb/soilm_global


References only in Methods 

1.	 Reichstein, M. et al. On the separation of net ecosystem exchange into 

assimilation and ecosystem respiration: review and improved algorithm. Glob. 

Chang. Biol. 11, 1424–1439 (2005).


2.	 Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across 

biomes. New Phytol. (2018). doi:10.1111/nph.15123


3.	 Running, S. W. et al. A Continuous Satellite-Derived Measure of Global Terrestrial 

Primary Production. Bioscience 54, 547–560 (2004).


4.	 Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for 

everyone. Remote Sens. Environ. 202, 18–27 (2017).


5.	 Hufkens, K. khufkens/gee_subset: Google Earth Engine subset script & library. 

(2017). doi:10.5281/zenodo.833789


6.	 Jiang, C. & Ryu, Y. Multi-scale evaluation of global gross primary productivity and 

evapotranspiration products derived from Breathing Earth System Simulator 

(BESS). Remote Sens. Environ. 186, 528–547 (2016).


7.	 Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of 

photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).


8.	 Zhang, Y. et al. A global moderate resolution dataset of gross primary production 

of vegetation for 2000–2016. Scientific Data 4, 170165 (2017).


9.	 Xiao, X. et al. Observation of flooding and rice transplanting of paddy rice fields at 

the site to landscape scales in China using VEGETATION sensor data. Int. J. 

Remote Sens. 23, 3009–3022 (2002).


�30

http://paperpile.com/b/MVPfnF/kzuvs
http://paperpile.com/b/MVPfnF/kzuvs
http://paperpile.com/b/MVPfnF/kzuvs
http://paperpile.com/b/MVPfnF/kzuvs
http://paperpile.com/b/MVPfnF/kzuvs
http://paperpile.com/b/MVPfnF/kzuvs
http://paperpile.com/b/MVPfnF/kzuvs
http://paperpile.com/b/MVPfnF/kzuvs
http://paperpile.com/b/MVPfnF/kzuvs
http://paperpile.com/b/MVPfnF/rpzSX
http://paperpile.com/b/MVPfnF/rpzSX
http://paperpile.com/b/MVPfnF/rpzSX
http://paperpile.com/b/MVPfnF/rpzSX
http://paperpile.com/b/MVPfnF/rpzSX
http://paperpile.com/b/MVPfnF/rpzSX
http://dx.doi.org/10.1111/nph.15123
http://paperpile.com/b/MVPfnF/xpxV7
http://paperpile.com/b/MVPfnF/xpxV7
http://paperpile.com/b/MVPfnF/xpxV7
http://paperpile.com/b/MVPfnF/xpxV7
http://paperpile.com/b/MVPfnF/xpxV7
http://paperpile.com/b/MVPfnF/xpxV7
http://paperpile.com/b/MVPfnF/xpxV7
http://paperpile.com/b/MVPfnF/xpxV7
http://paperpile.com/b/MVPfnF/xpxV7
http://paperpile.com/b/MVPfnF/3S5gN
http://paperpile.com/b/MVPfnF/3S5gN
http://paperpile.com/b/MVPfnF/3S5gN
http://paperpile.com/b/MVPfnF/3S5gN
http://paperpile.com/b/MVPfnF/3S5gN
http://paperpile.com/b/MVPfnF/3S5gN
http://paperpile.com/b/MVPfnF/3S5gN
http://paperpile.com/b/MVPfnF/3S5gN
http://paperpile.com/b/MVPfnF/LrnMa
http://paperpile.com/b/MVPfnF/LrnMa
http://paperpile.com/b/MVPfnF/LrnMa
http://paperpile.com/b/MVPfnF/LrnMa
http://dx.doi.org/10.5281/zenodo.833789
http://paperpile.com/b/MVPfnF/yqq2j
http://paperpile.com/b/MVPfnF/yqq2j
http://paperpile.com/b/MVPfnF/yqq2j
http://paperpile.com/b/MVPfnF/yqq2j
http://paperpile.com/b/MVPfnF/yqq2j
http://paperpile.com/b/MVPfnF/yqq2j
http://paperpile.com/b/MVPfnF/yqq2j
http://paperpile.com/b/MVPfnF/dm7qB
http://paperpile.com/b/MVPfnF/dm7qB
http://paperpile.com/b/MVPfnF/dm7qB
http://paperpile.com/b/MVPfnF/dm7qB
http://paperpile.com/b/MVPfnF/dm7qB
http://paperpile.com/b/MVPfnF/dm7qB
http://paperpile.com/b/MVPfnF/9udLD
http://paperpile.com/b/MVPfnF/9udLD
http://paperpile.com/b/MVPfnF/9udLD
http://paperpile.com/b/MVPfnF/9udLD
http://paperpile.com/b/MVPfnF/9udLD
http://paperpile.com/b/MVPfnF/9udLD
http://paperpile.com/b/MVPfnF/9udLD
http://paperpile.com/b/MVPfnF/9udLD
http://paperpile.com/b/MVPfnF/9udLD
http://paperpile.com/b/MVPfnF/ijpmW
http://paperpile.com/b/MVPfnF/ijpmW
http://paperpile.com/b/MVPfnF/ijpmW
http://paperpile.com/b/MVPfnF/ijpmW
http://paperpile.com/b/MVPfnF/ijpmW
http://paperpile.com/b/MVPfnF/ijpmW
http://paperpile.com/b/MVPfnF/ijpmW
http://paperpile.com/b/MVPfnF/ijpmW
http://paperpile.com/b/MVPfnF/ijpmW
http://paperpile.com/b/MVPfnF/ijpmW


10.	 Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat 

Plants 3, 734–741 (2017).


11.	 Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the 

costs of carbon gain and water transport: testing a new theoretical framework for 

plant functional ecology. Ecol. Lett. 17, 82–91 (2014).


12.	 Priestley, C. H. B. & Taylor, R. J. On the Assessment of Surface Heat Flux and 

Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 100, 81–92 (1972).


13.	 Stocker, B. sofun: v1.1.0. (2018). doi:10.5281/zenodo.1213758


14.	 Zhu, Z. et al. Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction 

of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory 

Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index 

(NDVI3g) for the Period 1981 to 2011. Remote Sensing 5, 927–948 (2013).


15.	 Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing 

Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 

7505–7514 (2014).


16.	 Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH 

v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture. 

Geoscientific Model Development 10, 689–708 (2017).


17.	 Hengl, T. et al. SoilGrids1km--global soil information based on automated 

mapping. PLoS One 9, e105992 (2014).


18.	 Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and 

variability of the land CO2 sink. Science 348, 895–899 (2015).


19.	 Zscheischler, J., Mahecha, M. D., Harmeling, S. & Reichstein, M. Detection and 

�31

http://paperpile.com/b/MVPfnF/ufEgC
http://paperpile.com/b/MVPfnF/ufEgC
http://paperpile.com/b/MVPfnF/ufEgC
http://paperpile.com/b/MVPfnF/ufEgC
http://paperpile.com/b/MVPfnF/ufEgC
http://paperpile.com/b/MVPfnF/ufEgC
http://paperpile.com/b/MVPfnF/ufEgC
http://paperpile.com/b/MVPfnF/ufEgC
http://paperpile.com/b/MVPfnF/ioEM4
http://paperpile.com/b/MVPfnF/ioEM4
http://paperpile.com/b/MVPfnF/ioEM4
http://paperpile.com/b/MVPfnF/ioEM4
http://paperpile.com/b/MVPfnF/ioEM4
http://paperpile.com/b/MVPfnF/ioEM4
http://paperpile.com/b/MVPfnF/ioEM4
http://paperpile.com/b/MVPfnF/ivVas
http://paperpile.com/b/MVPfnF/ivVas
http://paperpile.com/b/MVPfnF/ivVas
http://paperpile.com/b/MVPfnF/ivVas
http://paperpile.com/b/MVPfnF/ivVas
http://paperpile.com/b/MVPfnF/ivVas
http://paperpile.com/b/MVPfnF/ab1nA
http://dx.doi.org/10.5281/zenodo.1213758
http://paperpile.com/b/MVPfnF/jLxXS
http://paperpile.com/b/MVPfnF/jLxXS
http://paperpile.com/b/MVPfnF/jLxXS
http://paperpile.com/b/MVPfnF/jLxXS
http://paperpile.com/b/MVPfnF/jLxXS
http://paperpile.com/b/MVPfnF/jLxXS
http://paperpile.com/b/MVPfnF/jLxXS
http://paperpile.com/b/MVPfnF/jLxXS
http://paperpile.com/b/MVPfnF/jLxXS
http://paperpile.com/b/MVPfnF/jLxXS
http://paperpile.com/b/MVPfnF/jLxXS
http://paperpile.com/b/MVPfnF/oVioz
http://paperpile.com/b/MVPfnF/oVioz
http://paperpile.com/b/MVPfnF/oVioz
http://paperpile.com/b/MVPfnF/oVioz
http://paperpile.com/b/MVPfnF/oVioz
http://paperpile.com/b/MVPfnF/oVioz
http://paperpile.com/b/MVPfnF/oVioz
http://paperpile.com/b/MVPfnF/oVioz
http://paperpile.com/b/MVPfnF/oVioz
http://paperpile.com/b/MVPfnF/oVioz
http://paperpile.com/b/MVPfnF/w0Wm5
http://paperpile.com/b/MVPfnF/w0Wm5
http://paperpile.com/b/MVPfnF/w0Wm5
http://paperpile.com/b/MVPfnF/w0Wm5
http://paperpile.com/b/MVPfnF/w0Wm5
http://paperpile.com/b/MVPfnF/w0Wm5
http://paperpile.com/b/MVPfnF/w0Wm5
http://paperpile.com/b/MVPfnF/w0Wm5
http://paperpile.com/b/MVPfnF/HA4Og
http://paperpile.com/b/MVPfnF/HA4Og
http://paperpile.com/b/MVPfnF/HA4Og
http://paperpile.com/b/MVPfnF/HA4Og
http://paperpile.com/b/MVPfnF/HA4Og
http://paperpile.com/b/MVPfnF/HA4Og
http://paperpile.com/b/MVPfnF/HA4Og
http://paperpile.com/b/MVPfnF/HA4Og
http://paperpile.com/b/MVPfnF/wazHV
http://paperpile.com/b/MVPfnF/wazHV
http://paperpile.com/b/MVPfnF/wazHV
http://paperpile.com/b/MVPfnF/wazHV
http://paperpile.com/b/MVPfnF/wazHV
http://paperpile.com/b/MVPfnF/wazHV
http://paperpile.com/b/MVPfnF/wazHV
http://paperpile.com/b/MVPfnF/wazHV
http://paperpile.com/b/MVPfnF/wazHV
http://paperpile.com/b/MVPfnF/Sv87k


attribution of large spatiotemporal extreme events in Earth observation data. Ecol. 

Inform. 15, 66–73 (2013).


20.	 Buchsbaum, B. R. neuroim: Data Structures and Handling for Neuroimaging Data. 

(2016).

�32

http://paperpile.com/b/MVPfnF/Sv87k
http://paperpile.com/b/MVPfnF/Sv87k
http://paperpile.com/b/MVPfnF/Sv87k
http://paperpile.com/b/MVPfnF/Sv87k
http://paperpile.com/b/MVPfnF/Sv87k
http://paperpile.com/b/MVPfnF/Sv87k
http://paperpile.com/b/MVPfnF/18y3O
http://paperpile.com/b/MVPfnF/18y3O


Days after drought onset

fL
UE

−1
an

d 
bi

as
 (m

od
./o

bs
., 

fra
ct

io
n)

1.0

1.5

2.0

2.5

−20 0 20 40 60 80−20 0 20 40 60 80

fLUE−1

P−model
BESS
MODIS
VPM

a)

fLUE bin

Bi
as

 (m
od

.−
ob

s.
, g

 C
 m

−2
d−

1 )

(0.8,1] (0.6,0.8] (0.4,0.6] (0.2,0.4] (0,0.2]

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

Pooled models, normalised
Corrected by fLUE
Corrected by βa
Corrected by βb
Corrected by βc

b)



60° S

30° S

0°

30° N

60° N

180° W 120° W 60° W 0° 60° E 120° E 180° E

a)

0

10

20

30

40

50

60

70

1985 1990 1995 2000 2005 2010 2015
100

110

120

130

140

150

160

Year

G
lo

ba
l G

PP
 (P

g 
C 

yr
−1

)

P−model, s0
P−model, s1b (grey range: s1a − s1c)
MODIS
VPM
BESS

b)

60° S

30° S

0°

30° N

60° N

180° W 120° W 60° W 0° 60° E 120° E 180° E

c)

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1985 1990 1995 2000 2005 2010 2015
−16.0

−15.5

−15.0

−14.5

−14.0

Year

Re
du

ct
io

n 
in

 g
lo

ba
l G

PP
 (%

)

slope = 0.0036 [−0.011 − 0.018] yr−1

d)



0

2

4

6

8

10

Spatial resolution (°)

Am
pl

ifi
ca

tio
n

0.5 1.5 3 4 5 6 9 12 18 22.5 36 60 180

a)

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

60° S

30° S

0°

30° N

60° N

180° W 120° W 60° W 0° 60° E 120° E 180° E

b)

1 2 5 10 20
0.001

0.005
0.010

0.050
0.100

0.500
1.000

Amplification

EC
D

F



−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

60° S

30° S

0°

30° N

60° N

180° W 120° W 60° W 0° 60° E 120° E 180° Earr

D
en
si
ty

−0.6 −0.2 0.2 0.6



● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●

●
●

●

●

●

●

0.005 0.010 0.020 0.050 0.100 0.200 0.500 1.000

0.005

0.010

0.020

0.050

0.100

0.200

0.500

1.000

Impact (Pg C)

p(
 Im

pa
ct

 >
 x

 )

●

●

s1b
s0

a) North America
N = 275

αs0 = 2.37
αs1b = 2.47

A = 1.2

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

0.001 0.005 0.050 0.500

0.01

0.02

0.05

0.10

0.20

0.50

1.00

Impact (Pg C)

p(
 Im

pa
ct

 >
 x

 )

b) South America
N = 138
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d) Africa
N = 190

αs0 = 1.94
αs1b = 1.95

A = 1.3
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e) Australia
N = 113

αs0 = 2.48
αs1b = 2.37
A = 1.66
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