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ABSTRACT

Language-based audio retrieval is a task, where natural language
textual captions are used as queries to retrieve audio signals from a
dataset. It has been first introduced into DCASE 2022 Challenge as
Subtask 6B of task 6, which aims at developing computational sys-
tems to model relationships between audio signals and free-form
textual descriptions. Compared with audio captioning (Subtask
6A), which is about generating audio captions for audio signals,
language-based audio retrieval (Subtask 6B) focuses on ranking au-
dio signals according to their relevance to natural language textual
captions. In DCASE 2022 Challenge, the provided baseline sys-
tem for Subtask 6B was significantly outperformed, with top per-
formance being 0.276 in mAP@10. This paper presents the out-
come of Subtask 6B in terms of submitted systems' performance
and analysis.

Index Terms— Language-based audio retrieval, DCASE 2022
Challenge, Clotho.

1. INTRODUCTION

With the growth of multimedia content in recent decades, there
is a need for retrieval methods that can efficiently organize the
data based on its content, and retrieve relevant items when doing
searches to datasets. Natural language provides an efficient way
to represent complex information about multimedia. It can repre-
sent high level information about data that goes beyond any fixed
taxonomies. For audio signals, natural language can represent in-
formation related to temporal relationships between sound sources,
and attributes of sounds and their environment.

Language-based multimedia retrieval has received increasing
attention in recent years. The majority of recent works has focused
heavily on the visual domain [1, 2]. For example, there are plenty
of approaches [3] tackling content-based image retrieval with free-
form textual descriptions. In contrast, only a few studies have been
conducted on language-based audio retrieval in the existing litera-
ture. Early works [4, 5] deal with language-based audio retrieval us-
ing multi-word text queries consisting of audio tags or class labels,
rather than sentence-like textual descriptions, e.g., captions. Recent
studies [6, 7] prompt research in this field by exploring human writ-
ten captions as queries. In DCASE 2022 Challenge, language-based
audio retrieval is introduced into as Subtask 6B, which aims to in-
spire further research into audio retrieval with unconstrained textual
descriptions.

In this paper, we present the task setup and submissions for
Subtask 6B of task 6 in DCASE 2022 Challenge. We introduce
the datasets for system development and evaluation, describe the
baseline system for Subtask 6B, and present the challenge submis-
sions. Evaluation and analysis of submitted systems includes gen-
eral statistics on systems and performance and system characteris-
tics.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the task setup, including task description, task
datasets, and evaluation metrics. Then, we introduce the task base-
line system in Section 3. We present the evaluation results and anal-
ysis of challenge submissions in Section 4. Finally, we conclude
this paper in Section 5.

2. TASK SETUP

In this section, we introduce the task description, datasets for system
development and evaluation, and evaluation metrics.

2.1. Task Description

Language-based audio retrieval is concerned with retrieving audio
signals using their sound content textual descriptions (i.e., audio
captions). With this task, the goal is to evaluate audio retrieval
methods, where a retrieval system takes an audio caption as a
text query and ranks audio signals in a fixed dataset according to
their relevance to the caption. In DCASE 2022 Challenge, human-
written natural language audio captions are used as text queries. For
each query, the retrieval task is to retrieve 10 audio files from a given
evaluation dataset and sort them according to their relevance to the
query.

2.2. Development Dataset

The Clotho v2 [8] is provided as the task development dataset,
which consists of audio samples of 15 to 30 seconds duration, with
each audio sample having five captions of eight to 20 words length.
There are 6,974 audio samples with 34,870 captions in total. All
audio samples are sourced from the Freesound platform [9], and
captions are crowd-sourced using a three-step framework [8].

The Clotho v2 [8] is divided into a training split of 3,839 audio
clips with 19,195 captions, a validation split of 1,045 audio clips
with 5,225 captions, and a testing split of 1,045 audio clips with
5,225 captions. These splits are created by first constructing the sets
of unique words of the captions of each audio clip. These sets of
words are combined to form the bag of words of the whole dataset,
from which the frequency of a given word can be derived. With the
unique words of audio files as classes, multi-label stratification is
applied. The data collecting procedure is explained in detail in [8].

2.3. Clotho Retrieval Evaluation Dataset

The task evaluation dataset consists of 1,000 audio samples sourced
from the Freesound platform [9], and one human written caption is
provided for each audio sample. The audio samples are collected
following the procedure described in [8], by optimizing the tag dis-
tribution of the selected samples. The samples were selected from
the set of files not used in Clotho v2. Captions were gathered using
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Figure 1: The baseline system for the language-based audio retrieval subtask.

Dataset Split #Audio #Captions

Development
Training 3839 19195

Validation 1045 5225
Testing 1045 5225

Evaluation 1000 1000

Table 1: Statistics of the development and evaluation datasets.

the first crowd-sourcing step of Clotho v2 manually screened for
typographical errors and speech transcription. Table 1 summarizes
the information about the development and evaluation datasets.

2.4. Evaluation Metrics

In the evaluation, the ground truth relevance of audio samples are
considered binary (i.e., only the audio samples belong to the cap-
tion query are considered relevant, and all the others not relevant).
The submissions for this task will be evaluated using mean average
precision at top-10 (mAP@10) as the main metric, and recall at k
(R@k with k ∈ {1, 5, 10}) as the secondary metrics.

The mAP metric has been widely used for evaluating the per-
formance of cross-modal retrieval algorithms [3]. It is a rank-aware
metric, which measures the mean of average precisions (AP) over
all the queries. The AP for a query is calculated by averaging the
precisions at positions, where relevant items are in the retrieved rank
list. The more relevant items in the top rank list, the higher mAP
value it has. The R@k metric is another standard, rank-unaware
retrieval metric [6], which is defined as the proportion of relevant
items among the top-K retrieved results to all the relevant items in
the evaluation dataset, averaged across all the caption queries. The
challenge submissions will be ranked by the mAP@10 metric.

3. BASELINE SYSTEM

In this section, we describe the task baseline system, as illustrated in
Figure 1. The baseline system is a simplified version of the audio-
text aligning framework presented in [7], which calculates relevant
scores between encoded textual descriptions (i.e., encoded captions)
and encoded audio signals. It consists of two input encoders: one
for audio, and the other for text, as illustrated in Figure 1. These two
modality-specific encoders generate vector representations (i.e., au-
dio embeddings and caption embeddings) for audio clips and textual

descriptions. Then, the relevance score between an audio clip and
a textual description is calculated by the dot product of their vector
representations. The baseline system is optimized with a sampling-
based triplet loss [19] at the training stage, and then applied to re-
trieve audio for caption queries at the testing stage.

3.1. Audio Encoder

A convolutional recurrent neural network (CRNN) [20] is used as
the audio encoder, which extracts frame-wise acoustic embeddings
from audio signals. It consists of five convolution blocks, followed
by a bidirectional gated recurrent unit (BiGRU). Each convolution
block includes an initial batch normalization, a convolutional layer
with padded 3× 3 convolutions, and a LeakyReLU activation with
a slope of −0.1. After the first, third, and fifth convolution blocks,
one L4-Norm subsampling layer is used to reduce the temporal di-
mension of each block's output by a factor of four. A dropout layer
with a rate of 0.3 is placed between the last L4-Norm layer and the
BiGRU. Lastly, an up-sampling operation is applied to ensure the
final output has the same temporal dimension as the CRNN input.

The CRNN audio encoder takes 64-dimensional log mel-band
energies as input. Each audio clip is split into 40 ms Hanning-
windowed frames with a hop length of 20 ms. Then, 64 log mel-
band coefficients are extracted from each frame. A sequence of
300-dimensional frame-wise acoustic embeddings are generated for
each audio clip. The final audio embedding is calculated by averag-
ing the frame-wise acoustic embeddings.

3.2. Text Encoder

Word2Vec (Skip-gram model) [21] is utilized as the text encoder to
convert textual descriptions into sequences of word embeddings. It
is a two-layer fully-connected neural network, which learns word
embeddings that are good at predicting surrounding words in a sen-
tence or a document. For the sake of simplicity, we adopt a publicly
available pre-trained Word2Vec [22], which is trained on Google
News dataset. It consists of 300-dimensional word embeddings for
roughly three million case-sensitive English words and phrases. The
Word2Vec text encoder converts textual descriptions into sequences
of semantic word embeddings word by word. The final caption em-
bedding is computed by averaging the word embeddings.
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Rank Team mAP@10 with 95% CI R@1 with 95% CI R@5 with 95% CI R@10 with 95% CI

1 Xu et al. [10] 0.276 [0.254, 0.299] 0.176 [0.152, 0.200] 0.416 [0.385, 0.447] 0.536 [0.505, 0.567]
2 Mei et al. [11] 0.251 [0.229, 0.273] 0.153 [0.131, 0.175] 0.387 [0.357, 0.417] 0.504 [0.473, 0.535]
3 Lamort et al. [12] 0.221 [0.200, 0.242] 0.131 [0.110, 0.152] 0.343 [0.314, 0.372] 0.466 [0.435, 0.497]
4 Pellegrini [13] 0.216 [0.195, 0.237] 0.127 [0.106, 0.148] 0.321 [0.292, 0.350] 0.463 [0.432, 0.494]
5 Lai et al. [14] 0.215 [0.194, 0.235] 0.122 [0.102, 0.142] 0.328 [0.299, 0.357] 0.478 [0.447, 0.509]
6 Wu et al. [15] 0.188 [0.168, 0.207] 0.107 [0.088, 0.126] 0.303 [0.275, 0.331] 0.413 [0.382, 0.444]
7 Weck et al. [16] 0.128 [0.111, 0.145] 0.077 [0.060, 0.094] 0.188 [0.164, 0.212] 0.284 [0.256, 0.312]
8 Xiao et al. [17] 0.097 [0.083, 0.111] 0.043 [0.030, 0.056] 0.162 [0.139, 0.185] 0.267 [0.240, 0.294]
9 Park et al. [18] 0.075 [0.063, 0.088] 0.033 [0.022, 0.044] 0.127 [0.106, 0.148] 0.208 [0.183, 0.233]

10 Baseline 0.061 [0.049, 0.072] 0.026 [0.016, 0.036] 0.102 [0.083, 0.121] 0.176 [0.152, 0.200]

Table 2: Evaluation results with 95% confidence intervals for the top system of each team.

3.3. Training Objective

The baseline system is trained by optimizing a ranking-based cri-
terion [19], such that audio clips and captions that belong together
are more similar in the embedding space than mismatched audio-
caption pairs. Specifically, across a batch of N audio-caption pairs
{(xn, yn)}Nn=1, where yn is the caption pertaining to an audio clip
xn, we randomly select an imposter clip x̂n and an imposter cap-
tion ŷn for each audio-caption pair (xn, yn). Then, the widely used
sampling-based triplet loss [7, 23] is calculated by

loss =
1

N

N∑
n=1

[max(0, S(xn, ŷn)− S(xn, yn) + 1)

+ max(0, S(x̂n, yn)− S(xn, yn) + 1)],

(1)

where S is the audio-caption relevance score.

3.4. Baseline Results

The baseline system is trained with batches of 32 audio-caption
pairs in the training split for at most 150 epochs, while monitor-
ing the loss (1) on the validation split during the training process.
An Adam optimizer with an initial learning rate of 0.001 is adopted
to optimize the training process. The learning rate is reduced by
a factor of ten once the validation loss does not improve for five
epochs. Training is terminated by early stopping with ten epochs.

As shown in Table 3, the baseline system achieves similar per-
formance in terms of mAP@10 and recall scores on the testing
split and the evaluation dataset. Specifically, with the evaluation
dataset, the theoretical chance levels are 1/1000 = 0.001 for R@1,
1/200 = 0.005 for R@5, and 1/100 = 0.01 for R@10, respec-
tively. In contrast to the theoretical chance levels, the baseline sys-
tem obtains better recall scores, with an R@1 / R@5 / R@10 of
0.026 / 0.102 / 0.176. The experimental results show that the base-
line system can retrieve audio with their corresponding captions,
i.e., perform language-based audio retrieval. On the other hand,
since the baseline system employs a simple pipeline (e.g., averag-
ing frame-wise acoustic embeddings and word embeddings), the re-
trieval performance remains limited.

4. CHALLENGE SUBMISSIONS

In this section, we present the evaluation results and analysis of the
submissions for language-based audio retrieval.

Dataset mAP@10 R@1 R@5 R@10

Testing split 0.068 0.032 0.109 0.188
Evaluation 0.061 0.026 0.102 0.176

Table 3: Baseline results on the testing split and the evaluation
dataset.

4.1. Evaluation Results

The task received a total number of 31 submissions from nine teams,
with maximum four submissions per team allowed. Table 2 shows
the results of evaluation metrics (e.g., mAP@10) with 95% confi-
dence intervals (CIs) for the top system of each team, comparing
with the baseline system. The 95% confidence intervals for evalua-
tion metrics are calculated using the Jackknife estimate [24].

All the submitted systems outperformed the baseline system in
terms of mAP@10 and R@k with k ∈ {1, 5, 10}. Particularly,
Xu et al. [10] achieved the best performance, with a mAP@10 of
0.276 and a 95% CI between 0.254 and 0.299. Mei et al. [11]
ranked second, with their best system having a mAP@10 of 0.251
(95% CI [0.229, 0.273]). The top two teams obtained mAP@10
over 0.250 and R@10 over 0.500, in contrast to those of teams
ranked third - fifth, having mAP@10 around 0.220 and R@10
around 0.470. Out of the nine teams, six teams achieved mAP@10
over 0.180, R@5 over 0.300, and R@10 over 0.410. The baseline
system ranked last with a significantly lower performance.

4.2. Analysis of Submissions

The following analysis is based on the information reported by par-
ticipating teams.

System summary. All the 31 submitted systems and the base-
line system adopted a bi-encoder architecture, which consisted of
an audio encoder and a caption encoder, to associate audio with
captions. For audio encoders, pre-trained convolutional neural net-
works (e.g., PANNs [25]) were the most common choice (27 sys-
tems from eight teams) among the nine participating teams. For
caption encoders, pre-trained Transformer-based language embed-
ding models (e.g., BERT [26] and Sentence-BERT [34]) were fre-
quently employed (28 systems from seven teams). Then, audio and
captions were encoded into a common embedding space, where
their relevance was scored with cosine similarity (24 systems from
six teams) or dot product (seven systems from three teams) of their
embeddings. Most of the submitted systems (23 systems from seven
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Rank Team Audio Modelling Caption Modelling Loss Function

1 Xu et al. [10] PANNs [25] BERT [26], RoBERTa [27] InfoNCE loss [28]
2 Mei et al. [11] PANNs [25] BERT [26] NT-Xent loss [29]
3 Lamort et al. [12] PANNs [25], OpenL3 [30],

VGGSound [31], VGGish [32],
BART [33]

Sentence-BERT [34] Triplet loss [6, 7]

4 Pellegrini [13] PaSST [35] Sentence-BERT [34] Triplet loss [6, 7]
5 Lai et al. [14] ESResNet [36] Transformer [37] CE loss [37]
6 Wu et al. [15] PANNs [25], HTS-AT [38] Transformer [37] CE loss [37]
7 Weck et al. [16] PANNs [25] RoBERTa [27] Contrastive loss [39]
8 Xiao et al. [17] PANNs [25] Word2Vec [21] Triplet loss [6, 7]
9 Park et al. [18] CRNN [20] Word2Vec [21] Triplet loss [6, 7]

10 Baseline CRNN [20] Word2Vec [21] Triplet loss [6, 7]

Table 4: Summary of systems with best performance from all teams.

teams and the baseline) were trained by optimizing some contrastive
losses (e.g., InfoNCE loss [28] and triplet loss [6, 7]).

Audio encoders. Among the submitted systems, PANNs [25]
(e.g., CNN14, Wavegram-Logmel-CNN14 and CNN10) were the
most common choice for encoding audio data. There were in to-
tal 21 systems from six teams utilizing PANNs as their audio en-
coders, including the top three teams [10, 11, 12]. Particularly, the
CNN14 model was most preferred (20 systems). Xu et al. [10] ex-
perimented with multiple pre-trained audio expert models, includ-
ing CNN14 and Wavegram-Logmel-CNN14. With ensemble of dif-
ferent models, they achieved the best performance. Mei et al. [11]
adopted CNN14 as their audio encoder without model ensem-
bles, having their best system ranked second. Tied on third rank,
Lamort et al. [12] experimented with aggregating the most num-
ber of pre-trained audio expert models (i.e., five models in total,
as shown in Table 4). The audio encoders utilized in other systems
were PaSST [35], ESResNet [36], HTS-AT [38], and CRNN [18].

Log-mel energies were frequently taken as input among the
submitted systems. A total number of 28 systems from eight teams
utilized log-mel energies as standalone audio features or in com-
bination with other features (e.g., raw waveform [10]). Other au-
dio features used included log-magnitude spectrogram [12] and log-
power spectrogram [14].

Caption encoders. Most of the participating teams (i.e.,
seven out of nine) preferred Transformer-based language embed-
ding models (e.g., BERT [26]) over word embedding models (e.g.,
Word2Vec [21]), to learn caption embeddings. As shown in Ta-
ble 4, pre-trained Transformer-based language embedding models,
including BERT [26], RoBERTa [27], and Sentence-BERT [34],
were utilized as caption encoders by seven teams (28 systems in
total). The other two teams and the baseline converted captions
into embeddings with pre-trained Word2Vec word vectors [21]. All
teams with Transformer-based models ranked higher than those
with pre-trained Word2Vec [21], which showed that Transformer-
based models learned caption embeddings more efficiently.

Loss functions. The loss functions utilized in the submissions
can be categorized into three groups: contrastive loss (one team),
triplet loss (four teams), and N-pair loss (four teams). Contrastive
loss [40] takes pairs of samples as input and measures the similar-
ity between two inputs. Triplet loss [6, 7] takes as input triplets of
samples, consisting of one anchor sample along with one positive
and one negative sample. Compared to contrastive loss, triplet loss
focuses on the difference of (dis-)similarities between positive and

negative samples to the anchor sample. N-pair loss [40] shares a
similar spirit to triplet loss, but extends to multiple negative sam-
ples, i.e., one positive and multiple negative samples for an anchor
sample. In practice, several versions of N-pair loss were adopted,
including InfoNCE loss [28], NT-Xent loss [29], and symmetric
cross-entropy (CE) loss [37].

Data augmentation and external data. Data augmentation
was adopted by only three participating teams (i.e., Mei et al. [11]
on rank two, Lamort et al. [12] on rank three, and Wu et al. [15] on
rank six) during their systems' training. In contrast, external audio
and textual data was leveraged for optimizing system performance
by most participating teams (i.e., seven out of nine). The submitted
systems were usually pre-trained with a large amount of external
audio and textual data, and then fine-tuned on the task develop-
ment dataset. For example, the top two teams (i.e., Xu et al. [10]
and Mei et al. [11]) pre-trained their systems with AudioCaps [41].
Additionally, Wu et al. [15] trained their systems by involving var-
ious external data, including audio samples and text (e.g., labels,
file names and captions) from seven external datasets in addition to
Clotho v2 [8].

5. CONCLUSIONS

The DCASE 2022 Challenge has introduced the language-based au-
dio retrieval task, which is about using natural language textual cap-
tions as queries to retrieve audio signals from a dataset. This paper
describes setups of the task, including task description, datasets for
system development and evaluation, evaluation metrics, and a task
baseline system. Moreover, this paper reports the final evaluation
results of the task submissions and their analysis. The evaluation
results show that all submitted systems outperformed the baseline
in terms of evaluation metrics, with top performance being 0.276 in
mAP@10 and 0.536 in R@10.

One immediate observation about the submitted systems is that
all of them adopted a bi-encoder architecture consisting of an audio
encoder and a caption encoder. Pre-trained convolutional neural
networks (e.g., PANNs [25]) were commonly employed as audio
encoders, and pre-trained Transformer-based language embedding
models (e.g., BERT [26]) were the preferred caption encoders. In
addition to the task development dataset, external audio and textual
data (e.g., labels and captions) was also frequently leveraged during
system training.
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