default search action
Francis R. Bach
Person information
- affiliation: École Normale Supérieure, Computer Science Department
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j74]Ulysse Marteau-Ferey, Francis R. Bach, Alessandro Rudi:
Second Order Conditions to Decompose Smooth Functions as Sums of Squares. SIAM J. Optim. 34(1): 616-641 (2024) - [j73]Silvère Bonnabel, Marc Lambert, Francis R. Bach:
Low-Rank Plus Diagonal Approximations for Riccati-Like Matrix Differential Equations. SIAM J. Matrix Anal. Appl. 45(3): 1669-1688 (2024) - [j72]Adrien Vacher, Boris Muzellec, Francis R. Bach, François-Xavier Vialard, Alessandro Rudi:
Optimal Estimation of Smooth Transport Maps with Kernel SoS. SIAM J. Math. Data Sci. 6(2): 311-342 (2024) - [c195]Eugene Berta, Francis R. Bach, Michael I. Jordan:
Classifier Calibration with ROC-Regularized Isotonic Regression. AISTATS 2024: 1972-1980 - [c194]Saeed Saremi, Ji Won Park, Francis R. Bach:
Chain of Log-Concave Markov Chains. ICLR 2024 - [i186]Silvère Bonnabel, Marc Lambert, Francis R. Bach:
Low-rank plus diagonal approximations for Riccati-like matrix differential equations. CoRR abs/2407.03373 (2024) - 2023
- [j71]Belinda Tzen, Anant Raj, Maxim Raginsky, Francis R. Bach:
Variational Principles for Mirror Descent and Mirror Langevin Dynamics. IEEE Control. Syst. Lett. 7: 1542-1547 (2023) - [j70]Mathieu Barré, Adrien B. Taylor, Francis R. Bach:
Principled analyses and design of first-order methods with inexact proximal operators. Math. Program. 201(1): 185-230 (2023) - [j69]Marc Lambert, Silvère Bonnabel, Francis R. Bach:
The limited-memory recursive variational Gaussian approximation (L-RVGA). Stat. Comput. 33(3): 70 (2023) - [j68]Céline Moucer, Adrien B. Taylor, Francis R. Bach:
A Systematic Approach to Lyapunov Analyses of Continuous-Time Models in Convex Optimization. SIAM J. Optim. 33(3): 1558-1586 (2023) - [j67]Francis R. Bach, Alessandro Rudi:
Exponential Convergence of Sum-of-Squares Hierarchies for Trigonometric Polynomials. SIAM J. Optim. 33(3): 2137-2159 (2023) - [j66]Francis R. Bach:
Information Theory With Kernel Methods. IEEE Trans. Inf. Theory 69(2): 752-775 (2023) - [c193]Antonio Orvieto, Anant Raj, Hans Kersting, Francis R. Bach:
Explicit Regularization in Overparametrized Models via Noise Injection. AISTATS 2023: 7265-7287 - [c192]Lawrence Stewart, Francis R. Bach, Quentin Berthet, Jean-Philippe Vert:
Regression as Classification: Influence of Task Formulation on Neural Network Features. AISTATS 2023: 11563-11582 - [c191]Loucas Pillaud-Vivien, Francis R. Bach:
Kernelized Diffusion Maps. COLT 2023: 5236-5259 - [c190]Marc Lambert, Silvère Bonnabel, Francis R. Bach:
Variational Gaussian Approximation of the Kushner Optimal Filter. GSI (1) 2023: 395-404 - [c189]Amir Joudaki, Hadi Daneshmand, Francis R. Bach:
On Bridging the Gap between Mean Field and Finite Width Deep Random Multilayer Perceptron with Batch Normalization. ICML 2023: 15388-15400 - [c188]Blake E. Woodworth, Konstantin Mishchenko, Francis R. Bach:
Two Losses Are Better Than One: Faster Optimization Using a Cheaper Proxy. ICML 2023: 37273-37292 - [c187]Amir Joudaki, Hadi Daneshmand, Francis R. Bach:
On the impact of activation and normalization in obtaining isometric embeddings at initialization. NeurIPS 2023 - [c186]Lawrence Stewart, Francis R. Bach, Felipe Llinares-López, Quentin Berthet:
Differentiable Clustering with Perturbed Spanning Forests. NeurIPS 2023 - [i185]Francis R. Bach:
On the relationship between multivariate splines and infinitely-wide neural networks. CoRR abs/2302.03459 (2023) - [i184]Blake E. Woodworth, Konstantin Mishchenko, Francis R. Bach:
Two Losses Are Better Than One: Faster Optimization Using a Cheaper Proxy. CoRR abs/2302.03542 (2023) - [i183]Loucas Pillaud-Vivien, Francis R. Bach:
Kernelized Diffusion maps. CoRR abs/2302.06757 (2023) - [i182]Francis R. Bach:
High-dimensional analysis of double descent for linear regression with random projections. CoRR abs/2303.01372 (2023) - [i181]David Holzmüller, Francis R. Bach:
Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation. CoRR abs/2303.03237 (2023) - [i180]Belinda Tzen, Anant Raj, Maxim Raginsky, Francis R. Bach:
Variational Principles for Mirror Descent and Mirror Langevin Dynamics. CoRR abs/2303.09532 (2023) - [i179]Saeed Saremi, Rupesh Kumar Srivastava, Francis R. Bach:
Universal Smoothed Score Functions for Generative Modeling. CoRR abs/2303.11669 (2023) - [i178]Marc Lambert, Silvère Bonnabel, Francis R. Bach:
The limited-memory recursive variational Gaussian approximation (L-RVGA). CoRR abs/2303.14195 (2023) - [i177]Lawrence Stewart, Francis R. Bach, Felipe Llinares-López, Quentin Berthet:
Differentiable Clustering with Perturbed Spanning Forests. CoRR abs/2305.16358 (2023) - [i176]Amir Joudaki, Hadi Daneshmand, Francis R. Bach:
On the impact of activation and normalization in obtaining isometric embeddings at initialization. CoRR abs/2305.18399 (2023) - [i175]Saeed Saremi, Ji Won Park, Francis R. Bach:
Chain of Log-Concave Markov Chains. CoRR abs/2305.19473 (2023) - [i174]Francis R. Bach, Elisabetta Cornacchia, Luca Pesce, Giovanni Piccioli:
Theory and applications of the Sum-Of-Squares technique. CoRR abs/2306.16255 (2023) - [i173]Marc Lambert, Silvère Bonnabel, Francis R. Bach:
Variational Gaussian approximation of the Kushner optimal filter. CoRR abs/2310.01859 (2023) - [i172]Eugene Berta, Francis R. Bach, Michael I. Jordan:
Classifier Calibration with ROC-Regularized Isotonic Regression. CoRR abs/2311.12436 (2023) - 2022
- [j65]Mathieu Barré, Adrien B. Taylor, Francis R. Bach:
A note on approximate accelerated forward-backward methods with absolute and relative errors, and possibly strongly convex objectives. Open J. Math. Optim. 3: 1-15 (2022) - [j64]Yifan Sun, Francis R. Bach:
Screening for a Reweighted Penalized Conditional Gradient Method. Open J. Math. Optim. 3: 1-35 (2022) - [j63]Théo Ryffel, Pierre Tholoniat, David Pointcheval, Francis R. Bach:
AriaNN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing. Proc. Priv. Enhancing Technol. 2022(1): 291-316 (2022) - [j62]Marc Lambert, Silvère Bonnabel, Francis R. Bach:
The recursive variational Gaussian approximation (R-VGA). Stat. Comput. 32(1): 10 (2022) - [j61]Alexandre Défossez, Léon Bottou, Francis R. Bach, Nicolas Usunier:
A Simple Convergence Proof of Adam and Adagrad. Trans. Mach. Learn. Res. 2022 (2022) - [c185]Ulysse Marteau-Ferey, Francis R. Bach, Alessandro Rudi:
Sampling from Arbitrary Functions via PSD Models. AISTATS 2022: 2823-2861 - [c184]Alex Nowak, Alessandro Rudi, Francis R. Bach:
On the Consistency of Max-Margin Losses. AISTATS 2022: 4612-4633 - [c183]Eloïse Berthier, Justin Carpentier, Alessandro Rudi, Francis R. Bach:
Infinite-Dimensional Sums-of-Squares for Optimal Control. CDC 2022: 577-582 - [c182]Marc Lambert, Silvère Bonnabel, Francis R. Bach:
The continuous-discrete variational Kalman filter (CD-VKF). CDC 2022: 6632-6639 - [c181]Blake E. Woodworth, Francis R. Bach, Alessandro Rudi:
Non-Convex Optimization with Certificates and Fast Rates Through Kernel Sums of Squares. COLT 2022: 4620-4642 - [c180]Antonio Orvieto, Hans Kersting, Frank Proske, Francis R. Bach, Aurélien Lucchi:
Anticorrelated Noise Injection for Improved Generalization. ICML 2022: 17094-17116 - [c179]Anant Raj, Francis R. Bach:
Convergence of Uncertainty Sampling for Active Learning. ICML 2022: 18310-18331 - [c178]Eloïse Berthier, Ziad Kobeissi, Francis R. Bach:
A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning. NeurIPS 2022 - [c177]Vivien Cabannes, Francis R. Bach, Vianney Perchet, Alessandro Rudi:
Active Labeling: Streaming Stochastic Gradients. NeurIPS 2022 - [c176]Benjamin Dubois-Taine, Francis R. Bach, Quentin Berthet, Adrien B. Taylor:
Fast Stochastic Composite Minimization and an Accelerated Frank-Wolfe Algorithm under Parallelization. NeurIPS 2022 - [c175]Marc Lambert, Sinho Chewi, Francis R. Bach, Silvère Bonnabel, Philippe Rigollet:
Variational inference via Wasserstein gradient flows. NeurIPS 2022 - [c174]Aurélien Lucchi, Frank Proske, Antonio Orvieto, Francis R. Bach, Hans Kersting:
On the Theoretical Properties of Noise Correlation in Stochastic Optimization. NeurIPS 2022 - [c173]Konstantin Mishchenko, Francis R. Bach, Mathieu Even, Blake E. Woodworth:
Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays. NeurIPS 2022 - [i171]Théo Ryffel, Francis R. Bach, David Pointcheval:
Differential Privacy Guarantees for Stochastic Gradient Langevin Dynamics. CoRR abs/2201.11980 (2022) - [i170]Antonio Orvieto, Hans Kersting, Frank Proske, Francis R. Bach, Aurélien Lucchi:
Anticorrelated Noise Injection for Improved Generalization. CoRR abs/2202.02831 (2022) - [i169]Ziad Kobeissi, Francis R. Bach:
On a Variance Reduction Correction of the Temporal Difference for Policy Evaluation in the Stochastic Continuous Setting. CoRR abs/2202.07960 (2022) - [i168]Francis R. Bach:
Information Theory with Kernel Methods. CoRR abs/2202.08545 (2022) - [i167]Blake E. Woodworth, Francis R. Bach, Alessandro Rudi:
Non-Convex Optimization with Certificates and Fast Rates Through Kernel Sums of Squares. CoRR abs/2204.04970 (2022) - [i166]Hadi Daneshmand, Francis R. Bach:
Polynomial-time sparse measure recovery. CoRR abs/2204.07879 (2022) - [i165]Benjamin Dubois-Taine, Francis R. Bach, Quentin Berthet, Adrien B. Taylor:
Fast Stochastic Composite Minimization and an Accelerated Frank-Wolfe Algorithm under Parallelization. CoRR abs/2205.12751 (2022) - [i164]Céline Moucer, Adrien B. Taylor, Francis R. Bach:
A systematic approach to Lyapunov analyses of continuous-time models in convex optimization. CoRR abs/2205.12772 (2022) - [i163]Amir Joudaki, Hadi Daneshmand, Francis R. Bach:
Entropy Maximization with Depth: A Variational Principle for Random Neural Networks. CoRR abs/2205.13076 (2022) - [i162]Vivien Cabannes, Francis R. Bach, Vianney Perchet, Alessandro Rudi:
Active Labeling: Streaming Stochastic Gradients. CoRR abs/2205.13255 (2022) - [i161]Marc Lambert, Sinho Chewi, Francis R. Bach, Silvère Bonnabel, Philippe Rigollet:
Variational inference via Wasserstein gradient flows. CoRR abs/2205.15902 (2022) - [i160]Antonio Orvieto, Anant Raj, Hans Kersting, Francis R. Bach:
Explicit Regularization in Overparametrized Models via Noise Injection. CoRR abs/2206.04613 (2022) - [i159]Konstantin Mishchenko, Francis R. Bach, Mathieu Even, Blake E. Woodworth:
Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays. CoRR abs/2206.07638 (2022) - [i158]Francis R. Bach:
Sum-of-Squares Relaxations for Information Theory and Variational Inference. CoRR abs/2206.13285 (2022) - [i157]Aurélien Lucchi, Frank Proske, Antonio Orvieto, Francis R. Bach, Hans Kersting:
On the Theoretical Properties of Noise Correlation in Stochastic Optimization. CoRR abs/2209.09162 (2022) - [i156]Lawrence Stewart, Francis R. Bach, Quentin Berthet, Jean-Philippe Vert:
Regression as Classification: Influence of Task Formulation on Neural Network Features. CoRR abs/2211.05641 (2022) - 2021
- [j60]Robert M. Gower, Peter Richtárik, Francis R. Bach:
Stochastic quasi-gradient methods: variance reduction via Jacobian sketching. Math. Program. 188(1): 135-192 (2021) - [j59]Hadrien Hendrikx, Francis R. Bach, Laurent Massoulié:
An Optimal Algorithm for Decentralized Finite-Sum Optimization. SIAM J. Optim. 31(4): 2753-2783 (2021) - [j58]Francis R. Bach:
On the Effectiveness of Richardson Extrapolation in Data Science. SIAM J. Math. Data Sci. 3(4): 1251-1277 (2021) - [c172]Anant Raj, Francis R. Bach:
Explicit Regularization of Stochastic Gradient Methods through Duality. AISTATS 2021: 1882-1890 - [c171]Vivien A. Cabannes, Francis R. Bach, Alessandro Rudi:
Fast Rates for Structured Prediction. COLT 2021: 823-865 - [c170]Adrien Vacher, Boris Muzellec, Alessandro Rudi, Francis R. Bach, François-Xavier Vialard:
A Dimension-free Computational Upper-bound for Smooth Optimal Transport Estimation. COLT 2021: 4143-4173 - [c169]Eloïse Berthier, Justin Carpentier, Francis R. Bach:
Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems. ECC 2021: 1412-1419 - [c168]Alberto Bietti, Francis R. Bach:
Deep Equals Shallow for ReLU Networks in Kernel Regimes. ICLR 2021 - [c167]Vivien A. Cabannes, Francis R. Bach, Alessandro Rudi:
Disambiguation of Weak Supervision leading to Exponential Convergence rates. ICML 2021: 1147-1157 - [c166]Hadi Daneshmand, Amir Joudaki, Francis R. Bach:
Batch Normalization Orthogonalizes Representations in Deep Random Networks. NeurIPS 2021: 4896-4906 - [c165]Mathieu Even, Raphaël Berthier, Francis R. Bach, Nicolas Flammarion, Hadrien Hendrikx, Pierre Gaillard, Laurent Massoulié, Adrien B. Taylor:
Continuized Accelerations of Deterministic and Stochastic Gradient Descents, and of Gossip Algorithms. NeurIPS 2021: 28054-28066 - [c164]Vivien Cabannes, Loucas Pillaud-Vivien, Francis R. Bach, Alessandro Rudi:
Overcoming the curse of dimensionality with Laplacian regularization in semi-supervised learning. NeurIPS 2021: 30439-30451 - [i155]Vivien Cabannes, Alessandro Rudi, Francis R. Bach:
Fast rates in structured prediction. CoRR abs/2102.00760 (2021) - [i154]Vivien Cabannes, Francis R. Bach, Alessandro Rudi:
Disambiguation of weak supervision with exponential convergence rates. CoRR abs/2102.02789 (2021) - [i153]Raphaël Berthier, Francis R. Bach, Nicolas Flammarion, Pierre Gaillard, Adrien B. Taylor:
A Continuized View on Nesterov Acceleration. CoRR abs/2102.06035 (2021) - [i152]Alex Nowak-Vila, Alessandro Rudi, Francis R. Bach:
Max-Margin is Dead, Long Live Max-Margin! CoRR abs/2105.15069 (2021) - [i151]Hadi Daneshmand, Amir Joudaki, Francis R. Bach:
Batch Normalization Orthogonalizes Representations in Deep Random Networks. CoRR abs/2106.03970 (2021) - [i150]Mathieu Even, Raphaël Berthier, Francis R. Bach, Nicolas Flammarion, Pierre Gaillard, Hadrien Hendrikx, Laurent Massoulié, Adrien B. Taylor:
A Continuized View on Nesterov Acceleration for Stochastic Gradient Descent and Randomized Gossip. CoRR abs/2106.07644 (2021) - [i149]Boris Muzellec, Francis R. Bach, Alessandro Rudi:
A Note on Optimizing Distributions using Kernel Mean Embeddings. CoRR abs/2106.09994 (2021) - [i148]Yifan Sun, Francis R. Bach:
Screening for a Reweighted Penalized Conditional Gradient Method. CoRR abs/2107.01106 (2021) - [i147]Francis R. Bach, Lenaïc Chizat:
Gradient Descent on Infinitely Wide Neural Networks: Global Convergence and Generalization. CoRR abs/2110.08084 (2021) - [i146]Ulysse Marteau-Ferey, Francis R. Bach, Alessandro Rudi:
Sampling from Arbitrary Functions via PSD Models. CoRR abs/2110.10527 (2021) - [i145]Anant Raj, Francis R. Bach:
Convergence of Uncertainty Sampling for Active Learning. CoRR abs/2110.15784 (2021) - [i144]Boris Muzellec, Francis R. Bach, Alessandro Rudi:
Learning PSD-valued functions using kernel sums-of-squares. CoRR abs/2111.11306 (2021) - [i143]Boris Muzellec, Adrien Vacher, Francis R. Bach, François-Xavier Vialard, Alessandro Rudi:
Near-optimal estimation of smooth transport maps with kernel sums-of-squares. CoRR abs/2112.01907 (2021) - 2020
- [j57]Eloïse Berthier, Francis R. Bach:
Max-Plus Linear Approximations for Deterministic Continuous-State Markov Decision Processes. IEEE Control. Syst. Lett. 4(3): 767-772 (2020) - [j56]Damien Scieur, Alexandre d'Aspremont, Francis R. Bach:
Regularized nonlinear acceleration. Math. Program. 179(1): 47-83 (2020) - [j55]Robert M. Gower, Mark Schmidt, Francis R. Bach, Peter Richtárik:
Variance-Reduced Methods for Machine Learning. Proc. IEEE 108(11): 1968-1983 (2020) - [j54]Raphaël Berthier, Francis R. Bach, Pierre Gaillard:
Accelerated Gossip in Networks of Given Dimension Using Jacobi Polynomial Iterations. SIAM J. Math. Data Sci. 2(1): 24-47 (2020) - [c163]Loucas Pillaud-Vivien, Francis R. Bach, Tony Lelièvre, Alessandro Rudi, Gabriel Stoltz:
Statistical Estimation of the Poincaré constant and Application to Sampling Multimodal Distributions. AISTATS 2020: 2753-2763 - [c162]Lénaïc Chizat, Francis R. Bach:
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss. COLT 2020: 1305-1338 - [c161]Marin Ballu, Quentin Berthet, Francis R. Bach:
Stochastic Optimization for Regularized Wasserstein Estimators. ICML 2020: 602-612 - [c160]Vivien Cabannes, Alessandro Rudi, Francis R. Bach:
Structured Prediction with Partial Labelling through the Infimum Loss. ICML 2020: 1230-1239 - [c159]Hadrien Hendrikx, Lin Xiao, Sébastien Bubeck, Francis R. Bach, Laurent Massoulié:
Statistically Preconditioned Accelerated Gradient Method for Distributed Optimization. ICML 2020: 4203-4227 - [c158]Alex Nowak, Francis R. Bach, Alessandro Rudi:
Consistent Structured Prediction with Max-Min Margin Markov Networks. ICML 2020: 7381-7391 - [c157]Raman Sankaran, Francis R. Bach, Chiranjib Bhattacharyya:
Learning With Subquadratic Regularization : A Primal-Dual Approach. IJCAI 2020: 1963-1969 - [c156]Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, Francis R. Bach:
Learning with Differentiable Pertubed Optimizers. NeurIPS 2020 - [c155]Raphaël Berthier, Francis R. Bach, Pierre Gaillard:
Tight Nonparametric Convergence Rates for Stochastic Gradient Descent under the Noiseless Linear Model. NeurIPS 2020 - [c154]Hadi Daneshmand, Jonas Moritz Kohler, Francis R. Bach, Thomas Hofmann, Aurélien Lucchi:
Batch normalization provably avoids ranks collapse for randomly initialised deep networks. NeurIPS 2020 - [c153]Hadrien Hendrikx, Francis R. Bach, Laurent Massoulié:
Dual-Free Stochastic Decentralized Optimization with Variance Reduction. NeurIPS 2020 - [c152]Ulysse Marteau-Ferey, Francis R. Bach, Alessandro Rudi:
Non-parametric Models for Non-negative Functions. NeurIPS 2020 - [i142]Francis R. Bach:
On the Effectiveness of Richardson Extrapolation in Machine Learning. CoRR abs/2002.02835 (2020) - [i141]Lénaïc Chizat, Francis R. Bach:
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss. CoRR abs/2002.04486 (2020) - [i140]Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, Francis R. Bach:
Learning with Differentiable Perturbed Optimizers. CoRR abs/2002.08676 (2020) - [i139]Marin Ballu, Quentin Berthet, Francis R. Bach:
Stochastic Optimization for Regularized Wasserstein Estimators. CoRR abs/2002.08695 (2020) - [i138]Yifan Sun, Francis R. Bach:
Safe Screening for the Generalized Conditional Gradient Method. CoRR abs/2002.09718 (2020) - [i137]Hadrien Hendrikx, Lin Xiao, Sébastien Bubeck, Francis R. Bach, Laurent Massoulié:
Statistically Preconditioned Accelerated Gradient Method for Distributed Optimization. CoRR abs/2002.10726 (2020) - [i136]Vivien Cabannes, Alessandro Rudi, Francis R. Bach:
Structured Prediction with Partial Labelling through the Infimum Loss. CoRR abs/2003.00920 (2020) - [i135]Hadi Daneshmand, Jonas Moritz Kohler, Francis R. Bach, Thomas Hofmann, Aurélien Lucchi:
Theoretical Understanding of Batch-normalization: A Markov Chain Perspective. CoRR abs/2003.01652 (2020) - [i134]Alexandre Défossez, Léon Bottou, Francis R. Bach, Nicolas Usunier:
On the Convergence of Adam and Adagrad. CoRR abs/2003.02395 (2020) - [i133]Anant Raj, Francis R. Bach:
Explicit Regularization of Stochastic Gradient Methods through Duality. CoRR abs/2003.13807 (2020) - [i132]Hadrien Hendrikx, Francis R. Bach, Laurent Massoulié:
An Optimal Algorithm for Decentralized Finite Sum Optimization. CoRR abs/2005.10675 (2020) - [i131]Théo Ryffel, David Pointcheval, Francis R. Bach:
ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing. CoRR abs/2006.04593 (2020) - [i130]Mathieu Barré, Adrien B. Taylor, Francis R. Bach:
Principled Analyses and Design of First-Order Methods with Inexact Proximal Operators. CoRR abs/2006.06041 (2020) - [i129]Raphaël Berthier, Francis R. Bach, Pierre Gaillard:
Tight Nonparametric Convergence Rates for Stochastic Gradient Descent under the Noiseless Linear Model. CoRR abs/2006.08212 (2020) - [i128]Thomas Eboli, Alex Nowak-Vila, Jian Sun, Francis R. Bach, Jean Ponce, Alessandro Rudi:
Structured and Localized Image Restoration. CoRR abs/2006.09261 (2020) - [i127]Hadrien Hendrikx, Francis R. Bach, Laurent Massoulié:
Dual-Free Stochastic Decentralized Optimization with Variance Reduction. CoRR abs/2006.14384 (2020) - [i126]Alex Nowak-Vila, Francis R. Bach, Alessandro Rudi:
Consistent Structured Prediction with Max-Min Margin Markov Networks. CoRR abs/2007.01012 (2020) - [i125]Ulysse Marteau-Ferey, Francis R. Bach, Alessandro Rudi:
Non-parametric Models for Non-negative Functions. CoRR abs/2007.03926 (2020) - [i124]Alberto Bietti, Francis R. Bach:
Deep Equals Shallow for ReLU Networks in Kernel Regimes. CoRR abs/2009.14397 (2020) - [i123]Robert M. Gower, Mark Schmidt, Francis R. Bach, Peter Richtárik:
Variance-Reduced Methods for Machine Learning. CoRR abs/2010.00892 (2020) - [i122]Alessandro Rudi, Ulysse Marteau-Ferey, Francis R. Bach:
Finding Global Minima via Kernel Approximations. CoRR abs/2012.11978 (2020)
2010 – 2019
- 2019
- [j53]Kevin Scaman, Francis R. Bach, Sébastien Bubeck, Yin Tat Lee, Laurent Massoulié:
Optimal Convergence Rates for Convex Distributed Optimization in Networks. J. Mach. Learn. Res. 20: 159:1-159:31 (2019) - [j52]Francis R. Bach:
Submodular functions: from discrete to continuous domains. Math. Program. 175(1-2): 419-459 (2019) - [j51]Lucas Rencker, Francis R. Bach, Wenwu Wang, Mark D. Plumbley:
Sparse Recovery and Dictionary Learning From Nonlinear Compressive Measurements. IEEE Trans. Signal Process. 67(21): 5659-5670 (2019) - [c151]Hadrien Hendrikx, Francis R. Bach, Laurent Massoulié:
Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives. AISTATS 2019: 897-906 - [c150]Sharan Vaswani, Francis R. Bach, Mark Schmidt:
Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron. AISTATS 2019: 1195-1204 - [c149]Pierre Ablin, Alexandre Gramfort, Jean-François Cardoso, Francis R. Bach:
Stochastic algorithms with descent guarantees for ICA. AISTATS 2019: 1564-1573 - [c148]Aude Genevay, Lénaïc Chizat, Francis R. Bach, Marco Cuturi, Gabriel Peyré:
Sample Complexity of Sinkhorn Divergences. AISTATS 2019: 1574-1583 - [c147]Alex Nowak-Vila, Francis R. Bach, Alessandro Rudi:
Sharp Analysis of Learning with Discrete Losses. AISTATS 2019: 1920-1929 - [c146]Anastasia Podosinnikova, Amelia Perry, Alexander S. Wein, Francis R. Bach, Alexandre d'Aspremont, David A. Sontag:
Overcomplete Independent Component Analysis via SDP. AISTATS 2019: 2583-2592 - [c145]Francis R. Bach, Kfir Y. Levy:
A Universal Algorithm for Variational Inequalities Adaptive to Smoothness and Noise. COLT 2019: 164-194 - [c144]Ulysse Marteau-Ferey, Dmitrii Ostrovskii, Francis R. Bach, Alessandro Rudi:
Beyond Least-Squares: Fast Rates for Regularized Empirical Risk Minimization through Self-Concordance. COLT 2019: 2294-2340 - [c143]Adrien B. Taylor, Francis R. Bach:
Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions. COLT 2019: 2934-2992 - [c142]Huy V. Vo, Francis R. Bach, Minsu Cho, Kai Han, Yann LeCun, Patrick Pérez, Jean Ponce:
Unsupervised Image Matching and Object Discovery as Optimization. CVPR 2019: 8287-8296 - [c141]Tatiana Shpakova, Francis R. Bach, Mike E. Davies:
Hyper-parameter Learning for Sparse Structured Probabilistic Models. ICASSP 2019: 3347-3351 - [c140]Othmane Sebbouh, Nidham Gazagnadou, Samy Jelassi, Francis R. Bach, Robert M. Gower:
Towards closing the gap between the theory and practice of SVRG. NeurIPS 2019: 646-656 - [c139]Hadrien Hendrikx, Francis R. Bach, Laurent Massoulié:
An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums. NeurIPS 2019: 952-962 - [c138]Lénaïc Chizat, Edouard Oyallon, Francis R. Bach:
On Lazy Training in Differentiable Programming. NeurIPS 2019: 2933-2943 - [c137]Gauthier Gidel, Francis R. Bach, Simon Lacoste-Julien:
Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks. NeurIPS 2019: 3196-3206 - [c136]Jason M. Altschuler, Francis R. Bach, Alessandro Rudi, Jonathan Niles-Weed:
Massively scalable Sinkhorn distances via the Nyström method. NeurIPS 2019: 4429-4439 - [c135]Théo Ryffel, David Pointcheval, Francis R. Bach, Edouard Dufour-Sans, Romain Gay:
Partially Encrypted Deep Learning using Functional Encryption. NeurIPS 2019: 4519-4530 - [c134]Ali Kavis, Kfir Y. Levy, Francis R. Bach, Volkan Cevher:
UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization. NeurIPS 2019: 6257-6266 - [c133]Carlo Ciliberto, Francis R. Bach, Alessandro Rudi:
Localized Structured Prediction. NeurIPS 2019: 7299-7309 - [c132]Ulysse Marteau-Ferey, Francis R. Bach, Alessandro Rudi:
Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses. NeurIPS 2019: 7634-7644 - [c131]Senanayak Sesh Kumar Karri, Francis R. Bach, Thomas Pock:
Fast Decomposable Submodular Function Minimization using Constrained Total Variation. NeurIPS 2019: 8183-8193 - [i121]Anastasia Podosinnikova, Amelia Perry, Alexander S. Wein, Francis R. Bach, Alexandre d'Aspremont, David A. Sontag:
Overcomplete Independent Component Analysis via SDP. CoRR abs/1901.08334 (2019) - [i120]Hadrien Hendrikx, Francis R. Bach, Laurent Massoulié:
Asynchronous Accelerated Proximal Stochastic Gradient for Strongly Convex Distributed Finite Sums. CoRR abs/1901.09865 (2019) - [i119]Adrien B. Taylor, Francis R. Bach:
Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions. CoRR abs/1902.00947 (2019) - [i118]Francis R. Bach, Kfir Y. Levy:
A Universal Algorithm for Variational Inequalities Adaptive to Smoothness and Noise. CoRR abs/1902.01637 (2019) - [i117]Alex Nowak-Vila, Francis R. Bach, Alessandro Rudi:
A General Theory for Structured Prediction with Smooth Convex Surrogates. CoRR abs/1902.01958 (2019) - [i116]Ulysse Marteau-Ferey, Dmitrii Ostrovskii, Francis R. Bach, Alessandro Rudi:
Beyond Least-Squares: Fast Rates for Regularized Empirical Risk Minimization through Self-Concordance. CoRR abs/1902.03046 (2019) - [i115]Dmitry Babichev, Dmitrii Ostrovskii, Francis R. Bach:
Efficient Primal-Dual Algorithms for Large-Scale Multiclass Classification. CoRR abs/1902.03755 (2019) - [i114]Huy V. Vo, Francis R. Bach, Minsu Cho, Kai Han, Yann LeCun, Patrick Pérez, Jean Ponce:
Unsupervised Image Matching and Object Discovery as Optimization. CoRR abs/1904.03148 (2019) - [i113]Gauthier Gidel, Francis R. Bach, Simon Lacoste-Julien:
Implicit Regularization of Discrete Gradient Dynamics in Deep Linear Neural Networks. CoRR abs/1904.13262 (2019) - [i112]Théo Ryffel, Edouard Dufour Sans, Romain Gay, Francis R. Bach, David Pointcheval:
Partially Encrypted Machine Learning using Functional Encryption. CoRR abs/1905.10214 (2019) - [i111]Senanayak Sesh Kumar Karri, Francis R. Bach, Thomas Pock:
Fast Decomposable Submodular Function Minimization using Constrained Total Variation. CoRR abs/1905.11327 (2019) - [i110]Hadrien Hendrikx, Francis R. Bach, Laurent Massoulié:
An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums. CoRR abs/1905.11394 (2019) - [i109]Francis R. Bach:
Max-Plus Matching Pursuit for Deterministic Markov Decision Processes. CoRR abs/1906.08524 (2019) - [i108]Ulysse Marteau-Ferey, Francis R. Bach, Alessandro Rudi:
Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses. CoRR abs/1907.01771 (2019) - [i107]Othmane Sebbouh, Nidham Gazagnadou, Samy Jelassi, Francis R. Bach, Robert M. Gower:
Towards closing the gap between the theory and practice of SVRG. CoRR abs/1908.02725 (2019) - [i106]Alexandre Défossez, Nicolas Usunier, Léon Bottou, Francis R. Bach:
Demucs: Deep Extractor for Music Sources with extra unlabeled data remixed. CoRR abs/1909.01174 (2019) - [i105]Ali Kavis, Kfir Y. Levy, Francis R. Bach, Volkan Cevher:
UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization. CoRR abs/1910.13857 (2019) - [i104]Alexandre Défossez, Nicolas Usunier, Léon Bottou, Francis R. Bach:
Music Source Separation in the Waveform Domain. CoRR abs/1911.13254 (2019) - 2018
- [c130]Anaël Beaugnon, Pierre Chifflier, Francis R. Bach:
End-to-End Active Learning for Computer Security Experts. AAAI Workshops 2018: 217-224 - [c129]Christophe Dupuy, Francis R. Bach:
Learning Determinantal Point Processes in Sublinear Time. AISTATS 2018: 244-257 - [c128]Robert M. Gower, Nicolas Le Roux, Francis R. Bach:
Tracking the gradients using the Hessian: A new look at variance reducing stochastic methods. AISTATS 2018: 707-715 - [c127]Sashank J. Reddi, Manzil Zaheer, Suvrit Sra, Barnabás Póczos, Francis R. Bach, Ruslan Salakhutdinov, Alexander J. Smola:
A Generic Approach for Escaping Saddle points. AISTATS 2018: 1233-1242 - [c126]Marwa El Halabi, Francis R. Bach, Volkan Cevher:
Combinatorial Penalties: Which structures are preserved by convex relaxations? AISTATS 2018: 1551-1560 - [c125]Achintya Kundu, Francis R. Bach, Chiranjib Bhattacharyya:
Convex Optimization over Intersection of Simple Sets: improved Convergence Rate Guarantees via an Exact Penalty Approach. AISTATS 2018: i - [c124]Loucas Pillaud-Vivien, Alessandro Rudi, Francis R. Bach:
Exponential Convergence of Testing Error for Stochastic Gradient Methods. COLT 2018: 250-296 - [c123]Nilesh Tripuraneni, Nicolas Flammarion, Francis R. Bach, Michael I. Jordan:
Averaging Stochastic Gradient Descent on Riemannian Manifolds. COLT 2018: 650-687 - [c122]Lucas Rencker, Francis R. Bach, Wenwu Wang, Mark D. Plumbley:
Consistent Dictionary Learning for Signal Declipping. LVA/ICA 2018: 446-455 - [c121]Damien Scieur, Edouard Oyallon, Alexandre d'Aspremont, Francis R. Bach:
Nonlinear Acceleration of CNNs. ICLR (Workshop) 2018 - [c120]Francis R. Bach:
Efficient Algorithms for Non-convex Isotonic Regression through Submodular Optimization. NeurIPS 2018: 1-10 - [c119]Junqi Tang, Mohammad Golbabaee, Francis R. Bach, Mike E. Davies:
Rest-Katyusha: Exploiting the Solution's Structure via Scheduled Restart Schemes. NeurIPS 2018: 427-438 - [c118]Edouard Pauwels, Francis R. Bach, Jean-Philippe Vert:
Relating Leverage Scores and Density using Regularized Christoffel Functions. NeurIPS 2018: 1670-1679 - [c117]Kevin Scaman, Francis R. Bach, Sébastien Bubeck, Laurent Massoulié, Yin Tat Lee:
Optimal Algorithms for Non-Smooth Distributed Optimization in Networks. NeurIPS 2018: 2745-2754 - [c116]Lénaïc Chizat, Francis R. Bach:
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport. NeurIPS 2018: 3040-3050 - [c115]Loucas Pillaud-Vivien, Alessandro Rudi, Francis R. Bach:
Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes. NeurIPS 2018: 8125-8135 - [c114]Alexandre Défossez, Neil Zeghidour, Nicolas Usunier, Léon Bottou, Francis R. Bach:
SING: Symbol-to-Instrument Neural Generator. NeurIPS 2018: 9055-9065 - [c113]Dmitry Babichev, Francis R. Bach:
Constant Step Size Stochastic Gradient Descent for Probabilistic Modeling. UAI 2018: 219-228 - [c112]Tatiana Shpakova, Francis R. Bach, Anton Osokin:
Marginal Weighted Maximum Log-likelihood for Efficient Learning of Perturb-and-Map models. UAI 2018: 279-289 - [i103]Nilesh Tripuraneni, Nicolas Flammarion, Francis R. Bach, Michael I. Jordan:
Averaging Stochastic Gradient Descent on Riemannian Manifolds. CoRR abs/1802.09128 (2018) - [i102]Dmitry Babichev, Francis R. Bach:
Constant Step Size Stochastic Gradient Descent for Probabilistic Modeling. CoRR abs/1804.05567 (2018) - [i101]Edouard Pauwels, Francis R. Bach, Jean-Philippe Vert:
Relating Leverage Scores and Density using Regularized Christoffel Functions. CoRR abs/1805.07943 (2018) - [i100]Raphaël Berthier, Francis R. Bach, Pierre Gaillard:
Gossip of Statistical Observations using Orthogonal Polynomials. CoRR abs/1805.08531 (2018) - [i99]Lenaïc Chizat, Francis R. Bach:
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport. CoRR abs/1805.09545 (2018) - [i98]Damien Scieur, Edouard Oyallon, Alexandre d'Aspremont, Francis R. Bach:
Nonlinear Acceleration of Deep Neural Networks. CoRR abs/1805.09639 (2018) - [i97]Pierre Ablin, Alexandre Gramfort, Jean-François Cardoso, Francis R. Bach:
EM algorithms for ICA. CoRR abs/1805.10054 (2018) - [i96]Loucas Pillaud-Vivien, Alessandro Rudi, Francis R. Bach:
Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes. CoRR abs/1805.10074 (2018) - [i95]Damien Scieur, Edouard Oyallon, Alexandre d'Aspremont, Francis R. Bach:
Nonlinear Acceleration of CNNs. CoRR abs/1806.00370 (2018) - [i94]Carlo Ciliberto, Francis R. Bach, Alessandro Rudi:
Localized Structured Prediction. CoRR abs/1806.02402 (2018) - [i93]Hadrien Hendrikx, Laurent Massoulié, Francis R. Bach:
Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives. CoRR abs/1810.02660 (2018) - [i92]Alex Nowak-Vila, Francis R. Bach, Alessandro Rudi:
Sharp Analysis of Learning with Discrete Losses. CoRR abs/1810.06839 (2018) - [i91]Sharan Vaswani, Francis R. Bach, Mark Schmidt:
Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron. CoRR abs/1810.07288 (2018) - [i90]Alexandre Défossez, Neil Zeghidour, Nicolas Usunier, Léon Bottou, Francis R. Bach:
SING: Symbol-to-Instrument Neural Generator. CoRR abs/1810.09785 (2018) - [i89]Jason M. Altschuler, Francis R. Bach, Alessandro Rudi, Jonathan Weed:
Approximating the Quadratic Transportation Metric in Near-Linear Time. CoRR abs/1810.10046 (2018) - [i88]Tatiana Shpakova, Francis R. Bach, Anton Osokin:
Marginal Weighted Maximum Log-likelihood for Efficient Learning of Perturb-and-Map models. CoRR abs/1811.08725 (2018) - [i87]Jason M. Altschuler, Francis R. Bach, Alessandro Rudi, Jonathan Weed:
Massively scalable Sinkhorn distances via the Nyström method. CoRR abs/1812.05189 (2018) - [i86]Lénaïc Chizat, Francis R. Bach:
A Note on Lazy Training in Supervised Differentiable Programming. CoRR abs/1812.07956 (2018) - 2017
- [j50]Francis R. Bach:
Breaking the Curse of Dimensionality with Convex Neural Networks. J. Mach. Learn. Res. 18: 19:1-19:53 (2017) - [j49]Francis R. Bach:
On the Equivalence between Kernel Quadrature Rules and Random Feature Expansions. J. Mach. Learn. Res. 18: 21:1-21:38 (2017) - [j48]Fabian Pedregosa, Francis R. Bach, Alexandre Gramfort:
On the Consistency of Ordinal Regression Methods. J. Mach. Learn. Res. 18: 55:1-55:35 (2017) - [j47]Nicolas Flammarion, Balamurugan Palaniappan, Francis R. Bach:
Robust Discriminative Clustering with Sparse Regularizers. J. Mach. Learn. Res. 18: 80:1-80:50 (2017) - [j46]Aymeric Dieuleveut, Nicolas Flammarion, Francis R. Bach:
Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression. J. Mach. Learn. Res. 18: 101:1-101:51 (2017) - [j45]Christophe Dupuy, Francis R. Bach:
Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling. J. Mach. Learn. Res. 18: 126:1-126:45 (2017) - [j44]K. S. Sesh Kumar, Francis R. Bach:
Active-set Methods for Submodular Minimization Problems. J. Mach. Learn. Res. 18: 132:1-132:31 (2017) - [j43]Mark Schmidt, Nicolas Le Roux, Francis R. Bach:
Minimizing finite sums with the stochastic average gradient. Math. Program. 162(1-2): 83-112 (2017) - [j42]Mark Schmidt, Nicolas Le Roux, Francis R. Bach:
Erratum to: Minimizing finite sums with the stochastic average gradient. Math. Program. 162(1-2): 113 (2017) - [c111]Raman Sankaran, Francis R. Bach, Chiranjib Bhattacharyya:
Identifying Groups of Strongly Correlated Variables through Smoothed Ordered Weighted L1-norms. AISTATS 2017: 1123-1131 - [c110]Thomas Schatz, Francis R. Bach, Emmanuel Dupoux:
ASR Systems as Models of Phonetic Category Perception in Adults. CogSci 2017 - [c109]Nicolas Flammarion, Francis R. Bach:
Stochastic Composite Least-Squares Regression with Convergence Rate $O(1/n)$. COLT 2017: 831-875 - [c108]Rafael S. Rezende, Joaquin Zepeda, Jean Ponce, Francis R. Bach, Patrick Pérez:
Kernel Square-Loss Exemplar Machines for Image Retrieval. CVPR 2017: 7263-7271 - [c107]Felipe Yanez, Francis R. Bach:
Primal-dual algorithms for non-negative matrix factorization with the Kullback-Leibler divergence. ICASSP 2017: 2257-2261 - [c106]Kevin Scaman, Francis R. Bach, Sébastien Bubeck, Yin Tat Lee, Laurent Massoulié:
Optimal Algorithms for Smooth and Strongly Convex Distributed Optimization in Networks. ICML 2017: 3027-3036 - [c105]Thomas Schatz, Rory Turnbull, Francis R. Bach, Emmanuel Dupoux:
A Quantitative Measure of the Impact of Coarticulation on Phone Discriminability. INTERSPEECH 2017: 3033-3037 - [c104]Christophe Dupuy, Francis R. Bach, Christophe Diot:
Qualitative and Descriptive Topic Extraction from Movie Reviews Using LDA. MLDM 2017: 91-106 - [c103]Anton Osokin, Francis R. Bach, Simon Lacoste-Julien:
On Structured Prediction Theory with Calibrated Convex Surrogate Losses. NIPS 2017: 302-313 - [c102]Damien Scieur, Vincent Roulet, Francis R. Bach, Alexandre d'Aspremont:
Integration Methods and Optimization Algorithms. NIPS 2017: 1109-1118 - [c101]Damien Scieur, Francis R. Bach, Alexandre d'Aspremont:
Nonlinear Acceleration of Stochastic Algorithms. NIPS 2017: 3982-3991 - [c100]Anaël Beaugnon, Pierre Chifflier, Francis R. Bach:
ILAB: An Interactive Labelling Strategy for Intrusion Detection. RAID 2017: 120-140 - [i85]Anton Osokin, Francis R. Bach, Simon Lacoste-Julien:
On Structured Prediction Theory with Calibrated Convex Surrogate Losses. CoRR abs/1703.02403 (2017) - [i84]Francis R. Bach:
Efficient Algorithms for Non-convex Isotonic Regression through Submodular Optimization. CoRR abs/1707.09157 (2017) - [i83]Sashank J. Reddi, Manzil Zaheer, Suvrit Sra, Barnabás Póczos, Francis R. Bach, Ruslan Salakhutdinov, Alexander J. Smola:
A Generic Approach for Escaping Saddle points. CoRR abs/1709.01434 (2017) - [i82]Marwa El Halabi, Francis R. Bach, Volkan Cevher:
Combinatorial Penalties: Which structures are preserved by convex relaxations? CoRR abs/1710.06273 (2017) - [i81]Robert M. Gower, Nicolas Le Roux, Francis R. Bach:
Tracking the gradients using the Hessian: A new look at variance reducing stochastic methods. CoRR abs/1710.07462 (2017) - [i80]Alexandre Défossez, Francis R. Bach:
AdaBatch: Efficient Gradient Aggregation Rules for Sequential and Parallel Stochastic Gradient Methods. CoRR abs/1711.01761 (2017) - [i79]Loucas Pillaud-Vivien, Alessandro Rudi, Francis R. Bach:
Exponential convergence of testing error for stochastic gradient methods. CoRR abs/1712.04755 (2017) - 2016
- [c99]Francis R. Bach, Vianney Perchet:
Highly-Smooth Zero-th Order Online Optimization. COLT 2016: 257-283 - [c98]Rémi Lajugie, Piotr Bojanowski, Philippe Cuvillier, Sylvain Arlot, Francis R. Bach:
A weakly-supervised discriminative model for audio-to-score alignment. ICASSP 2016: 2484-2488 - [c97]Anastasia Podosinnikova, Francis R. Bach, Simon Lacoste-Julien:
Beyond CCA: Moment Matching for Multi-View Models. ICML 2016: 458-467 - [c96]Sara El Aouad, Christophe Dupuy, Renata Teixeira, Francis R. Bach, Christophe Diot:
Exploiting Crowd Sourced Reviews to Explain Movie Recommendation. NETYS 2016: 193-201 - [c95]Damien Scieur, Alexandre d'Aspremont, Francis R. Bach:
Regularized Nonlinear Acceleration. NIPS 2016: 712-720 - [c94]Balamurugan Palaniappan, Francis R. Bach:
Stochastic Variance Reduction Methods for Saddle-Point Problems. NIPS 2016: 1408-1416 - [c93]Pascal Germain, Francis R. Bach, Alexandre Lacoste, Simon Lacoste-Julien:
PAC-Bayesian Theory Meets Bayesian Inference. NIPS 2016: 1876-1884 - [c92]Tatiana Shpakova, Francis R. Bach:
Parameter Learning for Log-supermodular Distributions. NIPS 2016: 3234-3242 - [c91]Aude Genevay, Marco Cuturi, Gabriel Peyré, Francis R. Bach:
Stochastic Optimization for Large-scale Optimal Transport. NIPS 2016: 3432-3440 - [i78]Aymeric Dieuleveut, Nicolas Flammarion, Francis R. Bach:
Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression. CoRR abs/1602.05419 (2016) - [i77]Anastasia Podosinnikova, Francis R. Bach, Simon Lacoste-Julien:
Beyond CCA: Moment Matching for Multi-View Models. CoRR abs/1602.09013 (2016) - [i76]Christophe Dupuy, Francis R. Bach:
Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling. CoRR abs/1603.02644 (2016) - [i75]Balamurugan Palaniappan, Francis R. Bach:
Stochastic Variance Reduction Methods for Saddle-Point Problems. CoRR abs/1605.06398 (2016) - [i74]Francis R. Bach, Vianney Perchet:
Highly-Smooth Zero-th Order Online Optimization Vianney Perchet. CoRR abs/1605.08165 (2016) - [i73]Aude Genevay, Marco Cuturi, Gabriel Peyré, Francis R. Bach:
Stochastic Optimization for Large-scale Optimal Transport. CoRR abs/1605.08527 (2016) - [i72]Pascal Germain, Francis R. Bach, Alexandre Lacoste, Simon Lacoste-Julien:
PAC-Bayesian Theory Meets Bayesian Inference. CoRR abs/1605.08636 (2016) - [i71]Tatiana Shpakova, Francis R. Bach:
Parameter Learning for Log-supermodular Distributions. CoRR abs/1608.05258 (2016) - [i70]Nicolas Flammarion, Balamurugan Palaniappan, Francis R. Bach:
Robust Discriminative Clustering with Sparse Regularizers. CoRR abs/1608.08052 (2016) - [i69]Christophe Dupuy, Francis R. Bach:
Learning Determinantal Point Processes in Sublinear Time. CoRR abs/1610.05925 (2016) - 2015
- [j41]Julien Mairal, Michael Elad, Francis R. Bach:
Guest Editorial: Sparse Coding. Int. J. Comput. Vis. 114(2-3): 89-90 (2015) - [j40]Francis R. Bach:
Duality Between Subgradient and Conditional Gradient Methods. SIAM J. Optim. 25(1): 115-129 (2015) - [j39]Fajwel Fogel, Rodolphe Jenatton, Francis R. Bach, Alexandre d'Aspremont:
Convex Relaxations for Permutation Problems. SIAM J. Matrix Anal. Appl. 36(4): 1465-1488 (2015) - [j38]Rémi Gribonval, Rodolphe Jenatton, Francis R. Bach, Martin Kleinsteuber, Matthias Seibert:
Sample Complexity of Dictionary Learning and Other Matrix Factorizations. IEEE Trans. Inf. Theory 61(6): 3469-3486 (2015) - [j37]Rémi Gribonval, Rodolphe Jenatton, Francis R. Bach:
Sparse and Spurious: Dictionary Learning With Noise and Outliers. IEEE Trans. Inf. Theory 61(11): 6298-6319 (2015) - [j36]Nino Shervashidze, Francis R. Bach:
Learning the Structure for Structured Sparsity. IEEE Trans. Signal Process. 63(18): 4894-4902 (2015) - [c90]Alexandre Défossez, Francis R. Bach:
Averaged Least-Mean-Squares: Bias-Variance Trade-offs and Optimal Sampling Distributions. AISTATS 2015 - [c89]Simon Lacoste-Julien, Fredrik Lindsten, Francis R. Bach:
Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering. AISTATS 2015 - [c88]Nicolas Flammarion, Francis R. Bach:
From Averaging to Acceleration, There is Only a Step-size. COLT 2015: 658-695 - [c87]Alberto Bietti, Francis R. Bach, Arshia Cont:
An online EM algorithm in hidden (semi-)Markov models for audio segmentation and clustering. ICASSP 2015: 1881-1885 - [c86]Piotr Bojanowski, Rémi Lajugie, Edouard Grave, Francis R. Bach, Ivan Laptev, Jean Ponce, Cordelia Schmid:
Weakly-Supervised Alignment of Video with Text. ICCV 2015: 4462-4470 - [c85]Anastasia Podosinnikova, Francis R. Bach, Simon Lacoste-Julien:
Rethinking LDA: Moment Matching for Discrete ICA. NIPS 2015: 514-522 - [c84]Rakesh Shivanna, Bibaswan K. Chatterjee, Raman Sankaran, Chiranjib Bhattacharyya, Francis R. Bach:
Spectral Norm Regularization of Orthonormal Representations for Graph Transduction. NIPS 2015: 2215-2223 - [e1]Francis R. Bach, David M. Blei:
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015. JMLR Workshop and Conference Proceedings 37, JMLR.org 2015 [contents] - [i68]Simon Lacoste-Julien, Fredrik Lindsten, Francis R. Bach:
Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering. CoRR abs/1501.02056 (2015) - [i67]Francis R. Bach:
On the Equivalence between Quadrature Rules and Random Features. CoRR abs/1502.06800 (2015) - [i66]K. S. Sesh Kumar, Álvaro Barbero Jiménez, Stefanie Jegelka, Suvrit Sra, Francis R. Bach:
Convex Optimization for Parallel Energy Minimization. CoRR abs/1503.01563 (2015) - [i65]Piotr Bojanowski, Rémi Lajugie, Edouard Grave, Francis R. Bach, Ivan Laptev, Jean Ponce, Cordelia Schmid:
Weakly-Supervised Alignment of Video With Text. CoRR abs/1505.06027 (2015) - [i64]Rémi Lajugie, Piotr Bojanowski, Sylvain Arlot, Francis R. Bach:
Semidefinite and Spectral Relaxations for Multi-Label Classification. CoRR abs/1506.01829 (2015) - [i63]Vincent Roulet, Fajwel Fogel, Alexandre d'Aspremont, Francis R. Bach:
Supervised Clustering in the Data Cube. CoRR abs/1506.04908 (2015) - [i62]Anastasia Podosinnikova, Francis R. Bach, Simon Lacoste-Julien:
Rethinking LDA: moment matching for discrete ICA. CoRR abs/1507.01784 (2015) - [i61]Francis R. Bach:
Submodular Functions: from Discrete to Continous Domains. CoRR abs/1511.00394 (2015) - 2014
- [j35]Toby Dylan Hocking, Valentina Boeva, Guillem Rigaill, Gudrun Schleiermacher, Isabelle Janoueix-Lerosey, Olivier Delattre, Wilfrid Richer, Franck Bourdeaut, Miyuki Suguro, Masao Seto, Francis R. Bach, Jean-Philippe Vert:
SegAnnDB: interactive Web-based genomic segmentation. Bioinform. 30(11): 1539-1546 (2014) - [j34]Julien Mairal, Francis R. Bach, Jean Ponce:
Sparse Modeling for Image and Vision Processing. Found. Trends Comput. Graph. Vis. 8(2-3): 85-283 (2014) - [j33]Francis R. Bach:
Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. J. Mach. Learn. Res. 15(1): 595-627 (2014) - [j32]Alexandre d'Aspremont, Francis R. Bach, Laurent El Ghaoui:
Approximation bounds for sparse principal component analysis. Math. Program. 148(1-2): 89-110 (2014) - [j31]Georgios B. Giannakis, Francis R. Bach, Raphael Cendrillon, Michael W. Mahoney, Jennifer Neville:
Signal Processing for Big Data [From the Guest Editors]. IEEE Signal Process. Mag. 31(5): 15-16 (2014) - [c83]Edouard Grave, Guillaume Obozinski, Francis R. Bach:
A Markovian approach to distributional semantics with application to semantic compositionality. COLING 2014: 1447-1456 - [c82]Piotr Bojanowski, Rémi Lajugie, Francis R. Bach, Ivan Laptev, Jean Ponce, Cordelia Schmid, Josef Sivic:
Weakly Supervised Action Labeling in Videos under Ordering Constraints. ECCV (5) 2014: 628-643 - [c81]Rémi Lajugie, Francis R. Bach, Sylvain Arlot:
Large-Margin Metric Learning for Constrained Partitioning Problems. ICML 2014: 297-305 - [c80]Thomas Schatz, Vijayaditya Peddinti, Xuan-Nga Cao, Francis R. Bach, Hynek Hermansky, Emmanuel Dupoux:
Evaluating speech features with the minimal-pair ABX task (II): resistance to noise. INTERSPEECH 2014: 915-919 - [c79]Aaron Defazio, Francis R. Bach, Simon Lacoste-Julien:
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives. NIPS 2014: 1646-1654 - [c78]Rémi Lajugie, Damien Garreau, Francis R. Bach, Sylvain Arlot:
Metric Learning for Temporal Sequence Alignment. NIPS 2014: 1817-1825 - [c77]Matthias Seibert, Martin Kleinsteuber, Rémi Gribonval, Rodolphe Jenatton, Francis R. Bach:
On the sample complexity of sparse dictionary learning. SSP 2014: 244-247 - [i60]Aaron Defazio, Francis R. Bach, Simon Lacoste-Julien:
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives. CoRR abs/1407.0202 (2014) - [i59]Piotr Bojanowski, Rémi Lajugie, Francis R. Bach, Ivan Laptev, Jean Ponce, Cordelia Schmid, Josef Sivic:
Weakly Supervised Action Labeling in Videos Under Ordering Constraints. CoRR abs/1407.1208 (2014) - [i58]Rémi Gribonval, Rodolphe Jenatton, Francis R. Bach:
Sparse and spurious: dictionary learning with noise and outliers. CoRR abs/1407.5155 (2014) - [i57]Fabian Pedregosa, Francis R. Bach, Alexandre Gramfort:
On the Consistency of Ordinal Regression Methods. CoRR abs/1408.2327 (2014) - [i56]Damien Garreau, Rémi Lajugie, Sylvain Arlot, Francis R. Bach:
Metric Learning for Temporal Sequence Alignment. CoRR abs/1409.3136 (2014) - [i55]Julien Mairal, Francis R. Bach, Jean Ponce:
Sparse Modeling for Image and Vision Processing. CoRR abs/1411.3230 (2014) - [i54]Alexandre Défossez, Francis R. Bach:
Constant Step Size Least-Mean-Square: Bias-Variance Trade-offs and Optimal Sampling Distributions. CoRR abs/1412.0156 (2014) - [i53]Felipe Yanez, Francis R. Bach:
Primal-Dual Algorithms for Non-negative Matrix Factorization with the Kullback-Leibler Divergence. CoRR abs/1412.1788 (2014) - [i52]Francis R. Bach:
Breaking the Curse of Dimensionality with Convex Neural Networks. CoRR abs/1412.8690 (2014) - 2013
- [j30]Toby Dylan Hocking, Gudrun Schleiermacher, Isabelle Janoueix-Lerosey, Valentina Boeva, Julie Cappo, Olivier Delattre, Francis R. Bach, Jean-Philippe Vert:
Learning smoothing models of copy number profiles using breakpoint annotations. BMC Bioinform. 14: 164 (2013) - [j29]Francis R. Bach:
Learning with Submodular Functions: A Convex Optimization Perspective. Found. Trends Mach. Learn. 6(2-3): 145-373 (2013) - [j28]Bamdev Mishra, Gilles Meyer, Francis R. Bach, Rodolphe Sepulchre:
Low-Rank Optimization with Trace Norm Penalty. SIAM J. Optim. 23(4): 2124-2149 (2013) - [j27]Zaïd Harchaoui, Francis R. Bach, Olivier Cappé, Eric Moulines:
Kernel-Based Methods for Hypothesis Testing: A Unified View. IEEE Signal Process. Mag. 30(4): 87-97 (2013) - [c76]Francis R. Bach:
Sharp analysis of low-rank kernel matrix approximations. COLT 2013: 185-209 - [c75]Edouard Grave, Guillaume Obozinski, Francis R. Bach:
Hidden Markov tree models for semantic class induction. CoNLL 2013: 94-103 - [c74]Anil Kumar Nelakanti, Cédric Archambeau, Julien Mairal, Francis R. Bach, Guillaume Bouchard:
Structured Penalties for Log-Linear Language Models. EMNLP 2013: 233-243 - [c73]Piotr Bojanowski, Francis R. Bach, Ivan Laptev, Jean Ponce, Cordelia Schmid, Josef Sivic:
Finding Actors and Actions in Movies. ICCV 2013: 2280-2287 - [c72]Toby Hocking, Guillem Rigaill, Jean-Philippe Vert, Francis R. Bach:
Learning Sparse Penalties for Change-point Detection using Max Margin Interval Regression. ICML (3) 2013: 172-180 - [c71]K. S. Sesh Kumar, Francis R. Bach:
Convex Relaxations for Learning Bounded-Treewidth Decomposable Graphs. ICML (1) 2013: 525-533 - [c70]Emile Richard, Francis R. Bach, Jean-Philippe Vert:
Intersecting singularities for multi-structured estimation. ICML (3) 2013: 1157-1165 - [c69]Thomas Schatz, Vijayaditya Peddinti, Francis R. Bach, Aren Jansen, Hynek Hermansky, Emmanuel Dupoux:
Evaluating speech features with the minimal-pair ABX task: analysis of the classical MFC/PLP pipeline. INTERSPEECH 2013: 1781-1785 - [c68]Francis R. Bach, Eric Moulines:
Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n). NIPS 2013: 773-781 - [c67]Fajwel Fogel, Rodolphe Jenatton, Francis R. Bach, Alexandre d'Aspremont:
Convex Relaxations for Permutation Problems. NIPS 2013: 1016-1024 - [c66]Stefanie Jegelka, Francis R. Bach, Suvrit Sra:
Reflection methods for user-friendly submodular optimization. NIPS 2013: 1313-1321 - [c65]Nicolas Le Roux, Francis R. Bach:
Local Component Analysis. ICLR (Poster) 2013 - [i51]Francis R. Bach, Michael I. Jordan:
Tree-dependent Component Analysis. CoRR abs/1301.0554 (2013) - [i50]Rémi Lajugie, Sylvain Arlot, Francis R. Bach:
Large-Margin Metric Learning for Partitioning Problems. CoRR abs/1303.1280 (2013) - [i49]Francis R. Bach:
Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. CoRR abs/1303.6149 (2013) - [i48]Francis R. Bach, Eric Moulines:
Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n). CoRR abs/1306.2119 (2013) - [i47]Mark Schmidt, Nicolas Le Roux, Francis R. Bach:
Minimizing Finite Sums with the Stochastic Average Gradient. CoRR abs/1309.2388 (2013) - [i46]K. S. Sesh Kumar, Francis R. Bach:
Maximizing submodular functions using probabilistic graphical models. CoRR abs/1309.2593 (2013) - [i45]Francis R. Bach:
Convex relaxations of structured matrix factorizations. CoRR abs/1309.3117 (2013) - [i44]Stefanie Jegelka, Francis R. Bach, Suvrit Sra:
Reflection methods for user-friendly submodular optimization. CoRR abs/1311.4296 (2013) - [i43]Rémi Gribonval, Rodolphe Jenatton, Francis R. Bach, Martin Kleinsteuber, Matthias Seibert:
Sample Complexity of Dictionary Learning and other Matrix Factorizations. CoRR abs/1312.3790 (2013) - [i42]Edouard Grave, Guillaume Obozinski, Francis R. Bach:
Domain adaptation for sequence labeling using hidden Markov models. CoRR abs/1312.4092 (2013) - 2012
- [j26]Francis R. Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski:
Optimization with Sparsity-Inducing Penalties. Found. Trends Mach. Learn. 4(1): 1-106 (2012) - [j25]Matthieu Solnon, Sylvain Arlot, Francis R. Bach:
Multi-task regression using minimal penalties. J. Mach. Learn. Res. 13: 2773-2812 (2012) - [j24]Julien Mairal, Francis R. Bach, Jean Ponce:
Task-Driven Dictionary Learning. IEEE Trans. Pattern Anal. Mach. Intell. 34(4): 791-804 (2012) - [j23]Rodolphe Jenatton, Alexandre Gramfort, Vincent Michel, Guillaume Obozinski, Evelyn Eger, Francis R. Bach, Bertrand Thirion:
Multiscale Mining of fMRI Data with Hierarchical Structured Sparsity. SIAM J. Imaging Sci. 5(3): 835-856 (2012) - [c64]Armand Joulin, Francis R. Bach, Jean Ponce:
Multi-class cosegmentation. CVPR 2012: 542-549 - [c63]Francis R. Bach, Simon Lacoste-Julien, Guillaume Obozinski:
On the Equivalence between Herding and Conditional Gradient Algorithms. ICML 2012 - [c62]Armand Joulin, Francis R. Bach:
A convex relaxation for weakly supervised classifiers. ICML 2012 - [c61]Francis R. Bach:
Structured Sparsity and Convex Optimization. ICPRAM (1) 2012 - [c60]Augustin Lefèvre, Francis R. Bach, Cédric Févotte:
Semi-supervised NMF with Time-frequency Annotations for Single-channel Source Separation. ISMIR 2012: 115-120 - [c59]Hachem Kadri, Alain Rakotomamonjy, Francis R. Bach, Philippe Preux:
Multiple Operator-valued Kernel Learning. NIPS 2012: 2438-2446 - [c58]Nicolas Le Roux, Mark Schmidt, Francis R. Bach:
A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets. NIPS 2012: 2672-2680 - [i41]Nicolas Le Roux, Mark Schmidt, Francis R. Bach:
A Stochastic Gradient Method with an Exponential Convergence Rate for Strongly-Convex Optimization with Finite Training Sets. CoRR abs/1202.6258 (2012) - [i40]Hachem Kadri, Alain Rakotomamonjy, Francis R. Bach, Philippe Preux:
Multiple Operator-valued Kernel Learning. CoRR abs/1203.1596 (2012) - [i39]Francis R. Bach, Simon Lacoste-Julien, Guillaume Obozinski:
On the Equivalence between Herding and Conditional Gradient Algorithms. CoRR abs/1203.4523 (2012) - [i38]Guillaume Obozinski, Francis R. Bach:
Convex Relaxation for Combinatorial Penalties. CoRR abs/1205.1240 (2012) - [i37]Francis R. Bach:
Sharp analysis of low-rank kernel matrix approximations. CoRR abs/1208.2015 (2012) - [i36]Rodolphe Jenatton, Rémi Gribonval, Francis R. Bach:
Local stability and robustness of sparse dictionary learning in the presence of noise. CoRR abs/1210.0685 (2012) - [i35]Francis R. Bach:
Duality between subgradient and conditional gradient methods. CoRR abs/1211.6302 (2012) - [i34]Simon Lacoste-Julien, Mark Schmidt, Francis R. Bach:
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method. CoRR abs/1212.2002 (2012) - [i33]K. S. Sesh Kumar, Francis R. Bach:
Convex Relaxations for Learning Bounded Treewidth Decomposable Graphs. CoRR abs/1212.2573 (2012) - 2011
- [j22]Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, Francis R. Bach:
Proximal Methods for Hierarchical Sparse Coding. J. Mach. Learn. Res. 12: 2297-2334 (2011) - [j21]Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis R. Bach:
Convex and Network Flow Optimization for Structured Sparsity. J. Mach. Learn. Res. 12: 2681-2720 (2011) - [j20]Rodolphe Jenatton, Jean-Yves Audibert, Francis R. Bach:
Structured Variable Selection with Sparsity-Inducing Norms. J. Mach. Learn. Res. 12: 2777-2824 (2011) - [j19]Alexandre d'Aspremont, Francis R. Bach, Inderjit S. Dhillon, Bin Yu:
Preface. Math. Program. 127(1): 1-2 (2011) - [j18]Olivier Duchenne, Francis R. Bach, In-So Kweon, Jean Ponce:
A Tensor-Based Algorithm for High-Order Graph Matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(12): 2383-2395 (2011) - [c57]Louise Benoît, Julien Mairal, Francis R. Bach, Jean Ponce:
Sparse image representation with epitomes. CVPR 2011: 2913-2920 - [c56]Augustin Lefèvre, Francis R. Bach, Cédric Févotte:
Itakura-Saito nonnegative matrix factorization with group sparsity. ICASSP 2011: 21-24 - [c55]Y-Lan Boureau, Nicolas Le Roux, Francis R. Bach, Jean Ponce, Yann LeCun:
Ask the locals: Multi-way local pooling for image recognition. ICCV 2011: 2651-2658 - [c54]Toby Hocking, Jean-Philippe Vert, Francis R. Bach, Armand Joulin:
Clusterpath: an Algorithm for Clustering using Convex Fusion Penalties. ICML 2011: 745-752 - [c53]Francis R. Bach:
Shaping Level Sets with Submodular Functions. NIPS 2011: 10-18 - [c52]Francis R. Bach, Eric Moulines:
Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning. NIPS 2011: 451-459 - [c51]Mark Schmidt, Nicolas Le Roux, Francis R. Bach:
Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization. NIPS 2011: 1458-1466 - [c50]Edouard Grave, Guillaume Obozinski, Francis R. Bach:
Trace Lasso: a trace norm regularization for correlated designs. NIPS 2011: 2187-2195 - [c49]Rodolphe Jenatton, Alexandre Gramfort, Vincent Michel, Guillaume Obozinski, Francis R. Bach, Bertrand Thirion:
Multi-scale Mining of fMRI Data with Hierarchical Structured Sparsity. PRNI 2011: 69-72 - [c48]Augustin Lefèvre, Francis R. Bach, Cédric Févotte:
Online algorithms for nonnegative matrix factorization with the Itakura-Saito divergence. WASPAA 2011: 313-316 - [i32]Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis R. Bach:
Convex and Network Flow Optimization for Structured Sparsity. CoRR abs/1104.1872 (2011) - [i31]Francis R. Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski:
Optimization with Sparsity-Inducing Penalties. CoRR abs/1108.0775 (2011) - [i30]Edouard Grave, Guillaume Obozinski, Francis R. Bach:
Trace Lasso: a trace norm regularization for correlated designs. CoRR abs/1109.1990 (2011) - [i29]Francis R. Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski:
Structured sparsity through convex optimization. CoRR abs/1109.2397 (2011) - [i28]Mark Schmidt, Nicolas Le Roux, Francis R. Bach:
Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization. CoRR abs/1109.2415 (2011) - [i27]Florent Couzinie-Devy, Julien Mairal, Francis R. Bach, Jean Ponce:
Dictionary Learning for Deblurring and Digital Zoom. CoRR abs/1110.0957 (2011) - [i26]Louise Benoît, Julien Mairal, Francis R. Bach, Jean Ponce:
Sparse Image Representation with Epitomes. CoRR abs/1110.2855 (2011) - [i25]Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis R. Bach:
Learning Hierarchical and Topographic Dictionaries with Structured Sparsity. CoRR abs/1110.4481 (2011) - [i24]Francis R. Bach:
Learning with Submodular Functions: A Convex Optimization Perspective. CoRR abs/1111.6453 (2011) - [i23]Bamdev Mishra, Gilles Meyer, Francis R. Bach, Rodolphe Sepulchre:
Low-rank optimization with trace norm penalty. CoRR abs/1112.2318 (2011) - 2010
- [j17]Julien Mairal, Francis R. Bach, Jean Ponce, Guillermo Sapiro:
Online Learning for Matrix Factorization and Sparse Coding. J. Mach. Learn. Res. 11: 19-60 (2010) - [j16]Michel Journée, Francis R. Bach, Pierre-Antoine Absil, Rodolphe Sepulchre:
Low-Rank Optimization on the Cone of Positive Semidefinite Matrices. SIAM J. Optim. 20(5): 2327-2351 (2010) - [c47]Armand Joulin, Francis R. Bach, Jean Ponce:
Discriminative clustering for image co-segmentation. CVPR 2010: 1943-1950 - [c46]Y-Lan Boureau, Francis R. Bach, Yann LeCun, Jean Ponce:
Learning mid-level features for recognition. CVPR 2010: 2559-2566 - [c45]Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, Francis R. Bach:
Proximal Methods for Sparse Hierarchical Dictionary Learning. ICML 2010: 487-494 - [c44]Francis R. Bach:
Structured sparsity-inducing norms through submodular functions. NIPS 2010: 118-126 - [c43]Matthew D. Hoffman, David M. Blei, Francis R. Bach:
Online Learning for Latent Dirichlet Allocation. NIPS 2010: 856-864 - [c42]Armand Joulin, Francis R. Bach, Jean Ponce:
Efficient Optimization for Discriminative Latent Class Models. NIPS 2010: 1045-1053 - [c41]Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis R. Bach:
Network Flow Algorithms for Structured Sparsity. NIPS 2010: 1558-1566 - [c40]Mikhail Zaslavskiy, Francis R. Bach, Jean-Philippe Vert:
Many-to-Many Graph Matching: A Continuous Relaxation Approach. ECML/PKDD (3) 2010: 515-530 - [c39]Rodolphe Jenatton, Guillaume Obozinski, Francis R. Bach:
Structured Sparse Principal Component Analysis. AISTATS 2010: 366-373 - [i22]Mikhail Zaslavskiy, Francis R. Bach, Jean-Philippe Vert:
Many-to-Many Graph Matching: a Continuous Relaxation Approach. CoRR abs/1004.4965 (2010) - [i21]Francis R. Bach, Selin Damla Ahipasaoglu, Alexandre d'Aspremont:
Convex Relaxations for Subset Selection. CoRR abs/1006.3601 (2010) - [i20]Francis R. Bach:
Structured sparsity-inducing norms through submodular functions. CoRR abs/1008.4220 (2010) - [i19]Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis R. Bach:
Network Flow Algorithms for Structured Sparsity. CoRR abs/1008.5209 (2010) - [i18]Francis R. Bach:
Convex Analysis and Optimization with Submodular Functions: a Tutorial. CoRR abs/1010.4207 (2010) - [i17]Francis R. Bach:
Shaping Level Sets with Submodular Functions. CoRR abs/1012.1501 (2010)
2000 – 2009
- 2009
- [j15]Mikhail Zaslavskiy, Francis R. Bach, Jean-Philippe Vert:
Global alignment of protein-protein interaction networks by graph matching methods. Bioinform. 25(12) (2009) - [j14]Jacob D. Abernethy, Francis R. Bach, Theodoros Evgeniou, Jean-Philippe Vert:
A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization. J. Mach. Learn. Res. 10: 803-826 (2009) - [j13]Mikhail Zaslavskiy, Francis R. Bach, Jean-Philippe Vert:
A Path Following Algorithm for the Graph Matching Problem. IEEE Trans. Pattern Anal. Mach. Intell. 31(12): 2227-2242 (2009) - [c38]Olivier Duchenne, Francis R. Bach, In-So Kweon, Jean Ponce:
A tensor-based algorithm for high-order graph matching. CVPR 2009: 1980-1987 - [c37]Olivier Duchenne, Ivan Laptev, Josef Sivic, Francis R. Bach, Jean Ponce:
Automatic annotation of human actions in video. ICCV 2009: 1491-1498 - [c36]Julien Mairal, Francis R. Bach, Jean Ponce, Guillermo Sapiro, Andrew Zisserman:
Non-local sparse models for image restoration. ICCV 2009: 2272-2279 - [c35]Julien Mairal, Francis R. Bach, Jean Ponce, Guillermo Sapiro:
Online dictionary learning for sparse coding. ICML 2009: 689-696 - [c34]Sylvain Arlot, Francis R. Bach:
Data-driven calibration of linear estimators with minimal penalties. NIPS 2009: 46-54 - [c33]Percy Liang, Francis R. Bach, Guillaume Bouchard, Michael I. Jordan:
Asymptotically Optimal Regularization in Smooth Parametric Models. NIPS 2009: 1132-1140 - [i16]Francis R. Bach:
Model-Consistent Sparse Estimation through the Bootstrap. CoRR abs/0901.3202 (2009) - [i15]Julien Mairal, Francis R. Bach, Jean Ponce, Guillermo Sapiro:
Online Learning for Matrix Factorization and Sparse Coding. CoRR abs/0908.0050 (2009) - [i14]Francis R. Bach:
High-Dimensional Non-Linear Variable Selection through Hierarchical Kernel Learning. CoRR abs/0909.0844 (2009) - [i13]Francis R. Bach:
Self-concordant analysis for logistic regression. CoRR abs/0910.4627 (2009) - 2008
- [j12]Francis R. Bach:
Consistency of Trace Norm Minimization. J. Mach. Learn. Res. 9: 1019-1048 (2008) - [j11]Francis R. Bach:
Consistency of the Group Lasso and Multiple Kernel Learning. J. Mach. Learn. Res. 9: 1179-1225 (2008) - [j10]Alexandre d'Aspremont, Francis R. Bach, Laurent El Ghaoui:
Optimal Solutions for Sparse Principal Component Analysis. J. Mach. Learn. Res. 9: 1269-1294 (2008) - [c32]Julien Mairal, Francis R. Bach, Jean Ponce, Guillermo Sapiro, Andrew Zisserman:
Discriminative learned dictionaries for local image analysis. CVPR 2008 - [c31]Julien Mairal, Marius Leordeanu, Francis R. Bach, Martial Hebert, Jean Ponce:
Discriminative Sparse Image Models for Class-Specific Edge Detection and Image Interpretation. ECCV (3) 2008: 43-56 - [c30]Mikhail Zaslavskiy, Francis R. Bach, Jean-Philippe Vert:
A Path Following Algorithm for Graph Matching. ICISP 2008: 329-337 - [c29]Francis R. Bach:
Graph kernels between point clouds. ICML 2008: 25-32 - [c28]Francis R. Bach:
Bolasso: model consistent Lasso estimation through the bootstrap. ICML 2008: 33-40 - [c27]Cédric Archambeau, Francis R. Bach:
Sparse probabilistic projections. NIPS 2008: 73-80 - [c26]Francis R. Bach:
Exploring Large Feature Spaces with Hierarchical Multiple Kernel Learning. NIPS 2008: 105-112 - [c25]Zaïd Harchaoui, Francis R. Bach, Eric Moulines:
Kernel Change-point Analysis. NIPS 2008: 609-616 - [c24]Laurent Jacob, Francis R. Bach, Jean-Philippe Vert:
Clustered Multi-Task Learning: A Convex Formulation. NIPS 2008: 745-752 - [c23]Julien Mairal, Francis R. Bach, Jean Ponce, Guillermo Sapiro, Andrew Zisserman:
Supervised Dictionary Learning. NIPS 2008: 1033-1040 - [i12]Mikhail Zaslavskiy, Francis R. Bach, Jean-Philippe Vert:
Path following algorithm for the graph matching problem. CoRR abs/0801.3654 (2008) - [i11]Francis R. Bach, Jacob D. Abernethy, Jean-Philippe Vert, Theodoros Evgeniou:
A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization. CoRR abs/0802.1430 (2008) - [i10]Francis R. Bach:
Bolasso: model consistent Lasso estimation through the bootstrap. CoRR abs/0804.1302 (2008) - [i9]Francis R. Bach:
Exploring Large Feature Spaces with Hierarchical Multiple Kernel Learning. CoRR abs/0809.1493 (2008) - [i8]Laurent Jacob, Francis R. Bach, Jean-Philippe Vert:
Clustered Multi-Task Learning: A Convex Formulation. CoRR abs/0809.2085 (2008) - [i7]Julien Mairal, Francis R. Bach, Jean Ponce, Guillermo Sapiro, Andrew Zisserman:
Supervised Dictionary Learning. CoRR abs/0809.3083 (2008) - [i6]Francis R. Bach, Julien Mairal, Jean Ponce:
Convex Sparse Matrix Factorizations. CoRR abs/0812.1869 (2008) - 2007
- [j9]Yoshihiro Yamanishi, Francis R. Bach, Jean-Philippe Vert:
Glycan classification with tree kernels. Bioinform. 23(10): 1211-1216 (2007) - [j8]Kenji Fukumizu, Francis R. Bach, Arthur Gretton:
Statistical Consistency of Kernel Canonical Correlation Analysis. J. Mach. Learn. Res. 8: 361-383 (2007) - [j7]Jérôme Louradour, Khalid Daoudi, Francis R. Bach:
Feature Space Mahalanobis Sequence Kernels: Application to SVM Speaker Verification. IEEE Trans. Speech Audio Process. 15(8): 2465-2475 (2007) - [c22]Zaïd Harchaoui, Francis R. Bach:
Image Classification with Segmentation Graph Kernels. CVPR 2007 - [c21]Alexandre d'Aspremont, Francis R. Bach, Laurent El Ghaoui:
Full regularization path for sparse principal component analysis. ICML 2007: 177-184 - [c20]Alain Rakotomamonjy, Francis R. Bach, Stéphane Canu, Yves Grandvalet:
More efficiency in multiple kernel learning. ICML 2007: 775-782 - [c19]Aurélien Cord, Dominique Jeulin, Francis R. Bach:
Segmentation of random textures by morphological and linear operators. ISMM (1) 2007: 387-398 - [c18]Francis R. Bach, Zaïd Harchaoui:
DIFFRAC: a discriminative and flexible framework for clustering. NIPS 2007: 49-56 - [c17]Zaïd Harchaoui, Francis R. Bach, Eric Moulines:
Testing for Homogeneity with Kernel Fisher Discriminant Analysis. NIPS 2007: 609-616 - [i5]Alexandre d'Aspremont, Francis R. Bach, Laurent El Ghaoui:
Optimal Solutions for Sparse Principal Component Analysis. CoRR abs/0707.0705 (2007) - [i4]Francis R. Bach:
Consistency of the group Lasso and multiple kernel learning. CoRR abs/0707.3390 (2007) - [i3]Francis R. Bach:
Consistency of trace norm minimization. CoRR abs/0710.2848 (2007) - [i2]Francis R. Bach:
Graph kernels between point clouds. CoRR abs/0712.3402 (2007) - 2006
- [j6]Francis R. Bach, David Heckerman, Eric Horvitz:
Considering Cost Asymmetry in Learning Classifiers. J. Mach. Learn. Res. 7: 1713-1741 (2006) - [j5]Francis R. Bach, Michael I. Jordan:
Learning Spectral Clustering, With Application To Speech Separation. J. Mach. Learn. Res. 7: 1963-2001 (2006) - [c16]Francis R. Bach:
Active learning for misspecified generalized linear models. NIPS 2006: 65-72 - [c15]Jérôme Louradour, Khalid Daoudi, Francis R. Bach:
SVM Speaker Verification using an Incomplete Cholesky Decomposition Sequence Kernel. Odyssey 2006: 1-5 - [i1]Jacob D. Abernethy, Francis R. Bach, Theodoros Evgeniou, Jean-Philippe Vert:
Low-rank matrix factorization with attributes. CoRR abs/cs/0611124 (2006) - 2005
- [c14]Francis R. Bach, David Heckerman, Eric Horvitz:
On the Path to an Ideal ROC Curve: Considering Cost Asymmetry in Learning Classifiers. AISTATS 2005: 9-16 - [c13]Michael I. Jordan, Francis R. Bach:
Modèles de Markov cachés pour l'estimation de plusieurs fréquences fondamentales. EGC (Ateliers) 2005: 49-52 - [c12]Francis R. Bach, Michael I. Jordan:
Discriminative training of hidden Markov models for multiple pitch tracking [speech processing examples]. ICASSP (5) 2005: 489-492 - [c11]Francis R. Bach, Michael I. Jordan:
Predictive low-rank decomposition for kernel methods. ICML 2005: 33-40 - [c10]Kenji Fukumizu, Francis R. Bach, Arthur Gretton:
Statistical Convergence of Kernel CCA. NIPS 2005: 387-394 - 2004
- [j4]Kenji Fukumizu, Francis R. Bach, Michael I. Jordan:
Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces. J. Mach. Learn. Res. 5: 73-99 (2004) - [j3]Francis R. Bach, Michael I. Jordan:
Learning graphical models for stationary time series. IEEE Trans. Signal Process. 52(8): 2189-2199 (2004) - [c9]Francis R. Bach, Gert R. G. Lanckriet, Michael I. Jordan:
Multiple kernel learning, conic duality, and the SMO algorithm. ICML 2004 - [c8]Francis R. Bach, Michael I. Jordan:
Blind One-microphone Speech Separation: A Spectral Learning Approach. NIPS 2004: 65-72 - [c7]Francis R. Bach, Romain Thibaux, Michael I. Jordan:
Computing regularization paths for learning multiple kernels. NIPS 2004: 73-80 - 2003
- [j2]Francis R. Bach, Michael I. Jordan:
Beyond Independent Components: Trees and Clusters. J. Mach. Learn. Res. 4: 1205-1233 (2003) - [c6]Francis R. Bach, Michael I. Jordan:
Kernel independent component analysis. ICASSP (4) 2003: 876-879 - [c5]Kenji Fukumizu, Francis R. Bach, Michael I. Jordan:
Kernel Dimensionality Reduction for Supervised Learning. NIPS 2003: 81-88 - [c4]Francis R. Bach, Michael I. Jordan:
Learning Spectral Clustering. NIPS 2003: 305-312 - 2002
- [j1]Francis R. Bach, Michael I. Jordan:
Kernel Independent Component Analysis. J. Mach. Learn. Res. 3: 1-48 (2002) - [c3]Francis R. Bach, Michael I. Jordan:
Learning Graphical Models with Mercer Kernels. NIPS 2002: 1009-1016 - [c2]Francis R. Bach, Michael I. Jordan:
Tree-dependent Component Analysis. UAI 2002: 36-44 - 2001
- [c1]Francis R. Bach, Michael I. Jordan:
Thin Junction Trees. NIPS 2001: 569-576
Coauthor Index
aka: Vivien A. Cabannes
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-04 03:29 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint