default search action
Ryan J. Tibshirani
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j13]Daniel LeJeune, Pratik Patil, Hamid Javadi, Richard G. Baraniuk, Ryan J. Tibshirani:
Asymptotics of the Sketched Pseudoinverse. SIAM J. Math. Data Sci. 6(1): 199-225 (2024) - [c20]Pratik Patil, Yuchen Wu, Ryan J. Tibshirani:
Failures and Successes of Cross-Validation for Early-Stopped Gradient Descent. AISTATS 2024: 2260-2268 - [c19]Pratik Patil, Jin-Hong Du, Ryan J. Tibshirani:
Optimal Ridge Regularization for Out-of-Distribution Prediction. ICML 2024 - [i20]Pratik Patil, Yuchen Wu, Ryan J. Tibshirani:
Failures and Successes of Cross-Validation for Early-Stopped Gradient Descent. CoRR abs/2402.16793 (2024) - [i19]Pratik Patil, Jin-Hong Du, Ryan J. Tibshirani:
Optimal Ridge Regularization for Out-of-Distribution Prediction. CoRR abs/2404.01233 (2024) - [i18]Pratik Patil, Jin-Hong Du, Ryan J. Tibshirani:
Revisiting Optimism and Model Complexity in the Wake of Overparameterized Machine Learning. CoRR abs/2410.01259 (2024) - 2023
- [j12]Rasool Fakoor, Taesup Kim, Jonas Mueller, Alexander J. Smola, Ryan J. Tibshirani:
Flexible Model Aggregation for Quantile Regression. J. Mach. Learn. Res. 24: 162:1-162:45 (2023) - [c18]Anastasios Angelopoulos, Emmanuel J. Candès, Ryan J. Tibshirani:
Conformal PID Control for Time Series Prediction. NeurIPS 2023 - [c17]Tiffany Ding, Anastasios Angelopoulos, Stephen Bates, Michael I. Jordan, Ryan J. Tibshirani:
Class-Conditional Conformal Prediction with Many Classes. NeurIPS 2023 - [i17]Tiffany Ding, Anastasios N. Angelopoulos, Stephen Bates, Michael I. Jordan, Ryan J. Tibshirani:
Class-Conditional Conformal Prediction With Many Classes. CoRR abs/2306.09335 (2023) - [i16]Anastasios N. Angelopoulos, Emmanuel J. Candès, Ryan J. Tibshirani:
Conformal PID Control for Time Series Prediction. CoRR abs/2307.16895 (2023) - [i15]Seunghoon Paik, Michael Celentano, Alden Green, Ryan J. Tibshirani:
Maximum Mean Discrepancy Meets Neural Networks: The Radon-Kolmogorov-Smirnov Test. CoRR abs/2309.02422 (2023) - 2022
- [j11]Ryan J. Tibshirani:
Divided Differences, Falling Factorials, and Discrete Splines: Another Look at Trend Filtering and Related Problems. Found. Trends Mach. Learn. 15(6): 694-846 (2022) - [j10]Aaron Rumack, Ryan J. Tibshirani, Roni Rosenfeld:
Recalibrating probabilistic forecasts of epidemics. PLoS Comput. Biol. 18(12): 1010771 (2022) - [c16]Pratik Patil, Alessandro Rinaldo, Ryan J. Tibshirani:
Estimating Functionals of the Out-of-Sample Error Distribution in High-Dimensional Ridge Regression. AISTATS 2022: 6087-6120 - [i14]Daniel LeJeune, Pratik Patil, Hamid Javadi, Richard G. Baraniuk, Ryan J. Tibshirani:
Asymptotics of the Sketched Pseudoinverse. CoRR abs/2211.03751 (2022) - [i13]Addison J. Hu, Alden Green, Ryan J. Tibshirani:
The Voronoigram: Minimax Estimation of Bounded Variation Functions From Scattered Data. CoRR abs/2212.14514 (2022) - 2021
- [j9]Alden Green, Sivaraman Balakrishnan, Ryan J. Tibshirani:
Statistical Guarantees for Local Spectral Clustering on Random Neighborhood Graphs. J. Mach. Learn. Res. 22: 247:1-247:71 (2021) - [j8]Roni Rosenfeld, Ryan J. Tibshirani:
Epidemic tracking and forecasting: Lessons learned from a tumultuous year. Proc. Natl. Acad. Sci. USA 118(51): e2111456118 (2021) - [c15]Alden Green, Sivaraman Balakrishnan, Ryan J. Tibshirani:
Minimax Optimal Regression over Sobolev Spaces via Laplacian Regularization on Neighborhood Graphs. AISTATS 2021: 2602-2610 - [c14]Pratik Patil, Yuting Wei, Alessandro Rinaldo, Ryan J. Tibshirani:
Uniform Consistency of Cross-Validation Estimators for High-Dimensional Ridge Regression. AISTATS 2021: 3178-3186 - [i12]Taesup Kim, Rasool Fakoor, Jonas Mueller, Alexander J. Smola, Ryan J. Tibshirani:
Deep Quantile Aggregation. CoRR abs/2103.00083 (2021) - [i11]Aaron Rumack, Ryan J. Tibshirani, Roni Rosenfeld:
Recalibrating probabilistic forecasts of epidemics. CoRR abs/2112.06305 (2021) - [i10]Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Addison J. Hu, Ryan J. Tibshirani:
Multivariate Trend Filtering for Lattice Data. CoRR abs/2112.14758 (2021) - 2020
- [c13]Alnur Ali, Edgar Dobriban, Ryan J. Tibshirani:
The Implicit Regularization of Stochastic Gradient Flow for Least Squares. ICML 2020: 233-244 - [i9]Ryan J. Tibshirani:
Divided Differences, Falling Factorials, and Discrete Splines: Another Look at Trend Filtering and Related Problems. CoRR abs/2003.03886 (2020) - [i8]Alnur Ali, Edgar Dobriban, Ryan J. Tibshirani:
The Implicit Regularization of Stochastic Gradient Flow for Least Squares. CoRR abs/2003.07802 (2020)
2010 – 2019
- 2019
- [c12]Alnur Ali, J. Zico Kolter, Ryan J. Tibshirani:
A Continuous-Time View of Early Stopping for Least Squares Regression. AISTATS 2019: 1370-1378 - [c11]Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Aaditya Ramdas, Ryan J. Tibshirani:
A Higher-Order Kolmogorov-Smirnov Test. AISTATS 2019: 2621-2630 - [c10]Ryan J. Tibshirani, Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas:
Conformal Prediction Under Covariate Shift. NeurIPS 2019: 2526-2536 - [c9]Maria Jahja, David C. Farrow, Roni Rosenfeld, Ryan J. Tibshirani:
Kalman Filter, Sensor Fusion, and Constrained Regression: Equivalences and Insights. NeurIPS 2019: 13166-13175 - [i7]Trevor Hastie, Andrea Montanari, Saharon Rosset, Ryan J. Tibshirani:
Surprises in High-Dimensional Ridgeless Least Squares Interpolation. CoRR abs/1903.08560 (2019) - [i6]Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Aaditya Ramdas, Ryan J. Tibshirani:
A Higher-Order Kolmogorov-Smirnov Test. CoRR abs/1903.10083 (2019) - 2018
- [j7]Logan C. Brooks, David C. Farrow, Sangwon Hyun, Ryan J. Tibshirani, Roni Rosenfeld:
Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions. PLoS Comput. Biol. 14(6) (2018) - [i5]Alnur Ali, J. Zico Kolter, Ryan J. Tibshirani:
A Continuous-Time View of Early Stopping for Least Squares Regression. CoRR abs/1810.10082 (2018) - 2017
- [j6]Oscar Hernan Madrid Padilla, James Sharpnack, James G. Scott, Ryan J. Tibshirani:
The DFS Fused Lasso: Linear-Time Denoising over General Graphs. J. Mach. Learn. Res. 18: 176:1-176:36 (2017) - [j5]David C. Farrow, Logan C. Brooks, Sangwon Hyun, Ryan J. Tibshirani, Donald S. Burke, Roni Rosenfeld:
A human judgment approach to epidemiological forecasting. PLoS Comput. Biol. 13(3) (2017) - [c8]Ryan J. Tibshirani:
Dykstra's Algorithm, ADMM, and Coordinate Descent: Connections, Insights, and Extensions. NIPS 2017: 517-528 - [c7]Veeranjaneyulu Sadhanala, Yu-Xiang Wang, James Sharpnack, Ryan J. Tibshirani:
Higher-Order Total Variation Classes on Grids: Minimax Theory and Trend Filtering Methods. NIPS 2017: 5800-5810 - [c6]Kevin Lin, James Sharpnack, Alessandro Rinaldo, Ryan J. Tibshirani:
A Sharp Error Analysis for the Fused Lasso, with Application to Approximate Changepoint Screening. NIPS 2017: 6884-6893 - 2016
- [j4]Yu-Xiang Wang, James Sharpnack, Alexander J. Smola, Ryan J. Tibshirani:
Trend Filtering on Graphs. J. Mach. Learn. Res. 17: 105:1-105:41 (2016) - [c5]Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Ryan J. Tibshirani:
Graph Sparsification Approaches for Laplacian Smoothing. AISTATS 2016: 1250-1259 - [c4]Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Ryan J. Tibshirani:
Total Variation Classes Beyond 1d: Minimax Rates, and the Limitations of Linear Smoothers. NIPS 2016: 3513-3521 - [c3]Alnur Ali, J. Zico Kolter, Ryan J. Tibshirani:
The Multiple Quantile Graphical Model. NIPS 2016: 3747-3755 - 2015
- [j3]Ryan J. Tibshirani:
A general framework for fast stagewise algorithms. J. Mach. Learn. Res. 16: 2543-2588 (2015) - [j2]Logan C. Brooks, David C. Farrow, Sangwon Hyun, Ryan J. Tibshirani, Roni Rosenfeld:
Flexible Modeling of Epidemics with an Empirical Bayes Framework. PLoS Comput. Biol. 11(8) (2015) - [c2]Yu-Xiang Wang, James Sharpnack, Alexander J. Smola, Ryan J. Tibshirani:
Trend Filtering on Graphs. AISTATS 2015 - 2014
- [c1]Yu-Xiang Wang, Alexander J. Smola, Ryan J. Tibshirani:
The Falling Factorial Basis and Its Statistical Applications. ICML 2014: 730-738 - [i4]Taylor B. Arnold, Ryan J. Tibshirani:
Efficient Implementations of the Generalized Lasso Dual Path Algorithm. CoRR abs/1405.3222 (2014) - [i3]Aaditya Ramdas, Ryan J. Tibshirani:
Fast and Flexible ADMM Algorithms for Trend Filtering. CoRR abs/1406.2082 (2014) - [i2]Yu-Xiang Wang, James Sharpnack, Alexander J. Smola, Ryan J. Tibshirani:
Trend Filtering on Graphs. CoRR abs/1410.7690 (2014) - 2011
- [j1]Ryan J. Tibshirani, Holger Höfling, Robert Tibshirani:
Nearly-Isotonic Regression. Technometrics 53(1): 54-61 (2011)
2000 – 2009
- 2008
- [i1]Ryan J. Tibshirani:
Fast computation of the median by successive binning. CoRR abs/0806.3301 (2008)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-13 02:06 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint