default search action
R. Devon Hjelm
Person information
- affiliation: Microsoft Research Montreal, Canada
- affiliation: Mila - Quebec AI Institute, Montreal, QC, Canada
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j4]Alex Fedorov, Eloy Geenjaar, Lei Wu, Tristan Sylvain, Thomas P. DeRamus, Margaux Luck, Maria B. Misiura, Girish Mittapalle, R. Devon Hjelm, Sergey M. Plis, Vince D. Calhoun:
Self-supervised multimodal learning for group inferences from MRI data: Discovering disorder-relevant brain regions and multimodal links. NeuroImage 285: 120485 (2024) - [c33]Amitis Shidani, R. Devon Hjelm, Jason Ramapuram, Russell Webb, Eeshan Gunesh Dhekane, Dan Busbridge:
Poly-View Contrastive Learning. ICLR 2024 - [c32]Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan Mazoure, Rin Metcalf, Walter Talbott, Natalie Mackraz, R. Devon Hjelm, Alexander T. Toshev:
Large Language Models as Generalizable Policies for Embodied Tasks. ICLR 2024 - [i42]Amitis Shidani, R. Devon Hjelm, Jason Ramapuram, Russ Webb, Eeshan Gunesh Dhekane, Dan Busbridge:
Poly-View Contrastive Learning. CoRR abs/2403.05490 (2024) - [i41]Andrew Szot, Bogdan Mazoure, Harsh Agrawal, R. Devon Hjelm, Zsolt Kira, Alexander Toshev:
Grounding Multimodal Large Language Models in Actions. CoRR abs/2406.07904 (2024) - [i40]Martin Klissarov, R. Devon Hjelm, Alexander Toshev, Bogdan Mazoure:
On the Modeling Capabilities of Large Language Models for Sequential Decision Making. CoRR abs/2410.05656 (2024) - 2023
- [i39]Bogdan Mazoure, Walter Talbott, Miguel Ángel Bautista, R. Devon Hjelm, Alexander Toshev, Joshua M. Susskind:
Value function estimation using conditional diffusion models for control. CoRR abs/2306.07290 (2023) - [i38]Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan Mazoure, Walter Talbott, Katherine Metcalf, Natalie Mackraz, R. Devon Hjelm, Alexander Toshev:
Large Language Models as Generalizable Policies for Embodied Tasks. CoRR abs/2310.17722 (2023) - 2022
- [c31]Xu Ji, Razvan Pascanu, R. Devon Hjelm, Balaji Lakshminarayanan, Andrea Vedaldi:
Test Sample Accuracy Scales with Training Sample Density in Neural Networks. CoLLAs 2022: 629-646 - [c30]Ching-Yao Chuang, R. Devon Hjelm, Xin Wang, Vibhav Vineet, Neel Joshi, Antonio Torralba, Stefanie Jegelka, Yale Song:
Robust Contrastive Learning against Noisy Views. CVPR 2022: 16649-16660 - [c29]Bogdan Mazoure, Ahmed M. Ahmed, R. Devon Hjelm, Andrey Kolobov, Patrick MacAlpine:
Cross-Trajectory Representation Learning for Zero-Shot Generalization in RL. ICLR 2022 - [i37]Ching-Yao Chuang, R. Devon Hjelm, Xin Wang, Vibhav Vineet, Neel Joshi, Antonio Torralba, Stefanie Jegelka, Yale Song:
Robust Contrastive Learning against Noisy Views. CoRR abs/2201.04309 (2022) - [i36]R. Devon Hjelm, Bogdan Mazoure, Florian Golemo, Felipe Frujeri, Mihai Jalobeanu, Andrey Kolobov:
The Sandbox Environment for Generalizable Agent Research (SEGAR). CoRR abs/2203.10351 (2022) - [i35]Alex Fedorov, Eloy Geenjaar, Lei Wu, Tristan Sylvain, Thomas P. DeRamus, Margaux Luck, Maria B. Misiura, R. Devon Hjelm, Sergey M. Plis, Vince D. Calhoun:
Self-supervised multimodal neuroimaging yields predictive representations for a spectrum of Alzheimer's phenotypes. CoRR abs/2209.02876 (2022) - [i34]Gabriele Prato, Yale Song, Janarthanan Rajendran, R. Devon Hjelm, Neel Joshi, Sarath Chandar:
PatchBlender: A Motion Prior for Video Transformers. CoRR abs/2211.14449 (2022) - 2021
- [c28]Tristan Sylvain, Pengchuan Zhang, Yoshua Bengio, R. Devon Hjelm, Shikhar Sharma:
Object-Centric Image Generation from Layouts. AAAI 2021: 2647-2655 - [c27]Aristide Baratin, Thomas George, César Laurent, R. Devon Hjelm, Guillaume Lajoie, Pascal Vincent, Simon Lacoste-Julien:
Implicit Regularization via Neural Feature Alignment. AISTATS 2021: 2269-2277 - [c26]Tristan Sylvain, Francis Dutil, Tess Berthier, Lisa Di-Jorio, Margaux Luck, R. Devon Hjelm, Yoshua Bengio:
CMIM: Cross-Modal Information Maximization For Medical Imaging. ICASSP 2021: 1190-1194 - [c25]Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, Philip Bachman:
Data-Efficient Reinforcement Learning with Self-Predictive Representations. ICLR 2021 - [c24]Arian Hosseini, Siva Reddy, Dzmitry Bahdanau, R. Devon Hjelm, Alessandro Sordoni, Aaron C. Courville:
Understanding by Understanding Not: Modeling Negation in Language Models. NAACL-HLT 2021: 1301-1312 - [c23]Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R. Devon Hjelm, Philip Bachman, Aaron C. Courville:
Pretraining Representations for Data-Efficient Reinforcement Learning. NeurIPS 2021: 12686-12699 - [i33]Arian Hosseini, Siva Reddy, Dzmitry Bahdanau, R. Devon Hjelm, Alessandro Sordoni, Aaron C. Courville:
Understanding by Understanding Not: Modeling Negation in Language Models. CoRR abs/2105.03519 (2021) - [i32]Bogdan Mazoure, Ahmed M. Ahmed, Patrick MacAlpine, R. Devon Hjelm, Andrey Kolobov:
Cross-Trajectory Representation Learning for Zero-Shot Generalization in RL. CoRR abs/2106.02193 (2021) - [i31]Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R. Devon Hjelm, Philip Bachman, Aaron C. Courville:
Pretraining Representations for Data-Efficient Reinforcement Learning. CoRR abs/2106.04799 (2021) - [i30]Xu Ji, Razvan Pascanu, R. Devon Hjelm, Andrea Vedaldi, Balaji Lakshminarayanan, Yoshua Bengio:
Predicting Unreliable Predictions by Shattering a Neural Network. CoRR abs/2106.08365 (2021) - 2020
- [c22]Tristan Sylvain, Linda Petrini, R. Devon Hjelm:
Locality and Compositionality in Zero-Shot Learning. ICLR 2020 - [c21]João Monteiro, Isabela Albuquerque, Jahangir Alam, R. Devon Hjelm, Tiago H. Falk:
An end-to-end approach for the verification problem: learning the right distance. ICML 2020: 7022-7033 - [c20]Bogdan Mazoure, Remi Tachet des Combes, Thang Doan, Philip Bachman, R. Devon Hjelm:
Deep Reinforcement and InfoMax Learning. NeurIPS 2020 - [i29]João Monteiro, Isabela Albuquerque, Jahangir Alam, R. Devon Hjelm, Tiago H. Falk:
An end-to-end approach for the verification problem: learning the right distance. CoRR abs/2002.09469 (2020) - [i28]Tristan Sylvain, Pengchuan Zhang, Yoshua Bengio, R. Devon Hjelm, Shikhar Sharma:
Object-Centric Image Generation from Layouts. CoRR abs/2003.07449 (2020) - [i27]Bogdan Mazoure, Remi Tachet des Combes, Thang Doan, Philip Bachman, R. Devon Hjelm:
Deep Reinforcement and InfoMax Learning. CoRR abs/2006.07217 (2020) - [i26]Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, Philip Bachman:
Data-Efficient Reinforcement Learning with Momentum Predictive Representations. CoRR abs/2007.05929 (2020) - [i25]R. Devon Hjelm, Philip Bachman:
Representation Learning with Video Deep InfoMax. CoRR abs/2007.13278 (2020) - [i24]Aristide Baratin, Thomas George, César Laurent, R. Devon Hjelm, Guillaume Lajoie, Pascal Vincent, Simon Lacoste-Julien:
Implicit Regularization in Deep Learning: A View from Function Space. CoRR abs/2008.00938 (2020) - [i23]Tristan Sylvain, Francis Dutil, Tess Berthier, Lisa Di-Jorio, Margaux Luck, R. Devon Hjelm, Yoshua Bengio:
Cross-Modal Information Maximization for Medical Imaging: CMIM. CoRR abs/2010.10593 (2020) - [i22]Tristan Sylvain, Linda Petrini, R. Devon Hjelm:
Zero-Shot Learning from scratch (ZFS): leveraging local compositional representations. CoRR abs/2010.13320 (2020)
2010 – 2019
- 2019
- [c19]Thang Doan, João Monteiro, Isabela Albuquerque, Bogdan Mazoure, Audrey Durand, Joelle Pineau, R. Devon Hjelm:
On-Line Adaptative Curriculum Learning for GANs. AAAI 2019: 3470-3477 - [c18]Alex Fedorov, R. Devon Hjelm, Anees Abrol, Zening Fu, Yuhui Du, Sergey M. Plis, Vince D. Calhoun:
Prediction of Progression to Alzheimer's disease with Deep InfoMax. BHI 2019: 1-5 - [c17]Bogdan Mazoure, Thang Doan, Audrey Durand, Joelle Pineau, R. Devon Hjelm:
Leveraging exploration in off-policy algorithms via normalizing flows. CoRL 2019: 430-444 - [c16]Mikolaj Binkowski, R. Devon Hjelm, Aaron C. Courville:
Batch Weight for Domain Adaptation With Mass Shift. ICCV 2019: 1844-1853 - [c15]Alaaeldin El-Nouby, Shikhar Sharma, Hannes Schulz, R. Devon Hjelm, Layla El Asri, Samira Ebrahimi Kahou, Yoshua Bengio, Graham W. Taylor:
Tell, Draw, and Repeat: Generating and Modifying Images Based on Continual Linguistic Instruction. ICCV 2019: 10303-10311 - [c14]Christopher Beckham, Sina Honari, Alex Lamb, Vikas Verma, Farnoosh Ghadiri, R. Devon Hjelm, Christopher J. Pal:
Adversarial Mixup Resynthesizers. DGS@ICLR 2019 - [c13]R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman, Adam Trischler, Yoshua Bengio:
Learning deep representations by mutual information estimation and maximization. ICLR 2019 - [c12]Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, R. Devon Hjelm:
Deep Graph Infomax. ICLR (Poster) 2019 - [c11]Christopher Beckham, Sina Honari, Vikas Verma, Alex Lamb, Farnoosh Ghadiri, R. Devon Hjelm, Yoshua Bengio, Chris Pal:
On Adversarial Mixup Resynthesis. NeurIPS 2019: 4348-4359 - [c10]Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, R. Devon Hjelm:
Unsupervised State Representation Learning in Atari. NeurIPS 2019: 8766-8779 - [c9]Philip Bachman, R. Devon Hjelm, William Buchwalter:
Learning Representations by Maximizing Mutual Information Across Views. NeurIPS 2019: 15509-15519 - [i21]Christopher Beckham, Sina Honari, Alex Lamb, Vikas Verma, Farnoosh Ghadiri, R. Devon Hjelm, Christopher J. Pal:
Adversarial Mixup Resynthesizers. CoRR abs/1903.02709 (2019) - [i20]Felix L. Opolka, Aaron Solomon, Catalina Cangea, Petar Velickovic, Pietro Liò, R. Devon Hjelm:
Spatio-Temporal Deep Graph Infomax. CoRR abs/1904.06316 (2019) - [i19]Alex Fedorov, R. Devon Hjelm, Anees Abrol, Zening Fu, Yuhui Du, Sergey M. Plis, Vince D. Calhoun:
Prediction of Progression to Alzheimer's disease with Deep InfoMax. CoRR abs/1904.10931 (2019) - [i18]Bogdan Mazoure, Thang Doan, Audrey Durand, R. Devon Hjelm, Joelle Pineau:
Leveraging exploration in off-policy algorithms via normalizing flows. CoRR abs/1905.06893 (2019) - [i17]Mikolaj Binkowski, R. Devon Hjelm, Aaron C. Courville:
Batch weight for domain adaptation with mass shift. CoRR abs/1905.12760 (2019) - [i16]Philip Bachman, R. Devon Hjelm, William Buchwalter:
Learning Representations by Maximizing Mutual Information Across Views. CoRR abs/1906.00910 (2019) - [i15]Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, R. Devon Hjelm:
Unsupervised State Representation Learning in Atari. CoRR abs/1906.08226 (2019) - [i14]Thang Doan, Bogdan Mazoure, Audrey Durand, Joelle Pineau, R. Devon Hjelm:
Attraction-Repulsion Actor-Critic for Continuous Control Reinforcement Learning. CoRR abs/1909.07543 (2019) - [i13]Tristan Sylvain, Linda Petrini, R. Devon Hjelm:
Locality and compositionality in zero-shot learning. CoRR abs/1912.12179 (2019) - 2018
- [j3]Sergey M. Plis, Md Faijul Amin, Adam Chekroud, R. Devon Hjelm, Eswar Damaraju, Hyo Jong Lee, Juan R. Bustillo, KyungHyun Cho, Godfrey D. Pearlson, Vince D. Calhoun:
Reading the (functional) writing on the (structural) wall: Multimodal fusion of brain structure and function via a deep neural network based translation approach reveals novel impairments in schizophrenia. NeuroImage 181: 734-747 (2018) - [c8]R. Devon Hjelm, Athul Paul Jacob, Adam Trischler, Gerry Che, Kyunghyun Cho, Yoshua Bengio:
Boundary Seeking GANs. ICLR (Poster) 2018 - [c7]Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, R. Devon Hjelm, Aaron C. Courville:
Mutual Information Neural Estimation. ICML 2018: 530-539 - [i12]Ishmael Belghazi, Sai Rajeswar, Aristide Baratin, R. Devon Hjelm, Aaron C. Courville:
MINE: Mutual Information Neural Estimation. CoRR abs/1801.04062 (2018) - [i11]Thang Doan, João Monteiro, Isabela Albuquerque, Bogdan Mazoure, Audrey Durand, Joelle Pineau, R. Devon Hjelm:
Online Adaptative Curriculum Learning for GANs. CoRR abs/1808.00020 (2018) - [i10]R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Adam Trischler, Yoshua Bengio:
Learning deep representations by mutual information estimation and maximization. CoRR abs/1808.06670 (2018) - [i9]Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, R. Devon Hjelm:
Deep Graph Infomax. CoRR abs/1809.10341 (2018) - [i8]Alaaeldin El-Nouby, Shikhar Sharma, Hannes Schulz, R. Devon Hjelm, Layla El Asri, Samira Ebrahimi Kahou, Yoshua Bengio, Graham W. Taylor:
Keep Drawing It: Iterative language-based image generation and editing. CoRR abs/1811.09845 (2018) - 2017
- [c6]Vince D. Calhoun, Md Faijul Amin, R. Devon Hjelm, Eswar Damaraju, Sergey M. Plis:
A deep-learning approach to translate between brain structure and functional connectivity. ICASSP 2017: 6155-6159 - [c5]Alex Lamb, R. Devon Hjelm, Yaroslav Ganin, Joseph Paul Cohen, Aaron C. Courville, Yoshua Bengio:
GibbsNet: Iterative Adversarial Inference for Deep Graphical Models. NIPS 2017: 5089-5098 - [i7]Tong Che, Yanran Li, Ruixiang Zhang, R. Devon Hjelm, Wenjie Li, Yangqiu Song, Yoshua Bengio:
Maximum-Likelihood Augmented Discrete Generative Adversarial Networks. CoRR abs/1702.07983 (2017) - [i6]R. Devon Hjelm, Athul Paul Jacob, Tong Che, Kyunghyun Cho, Yoshua Bengio:
Boundary-Seeking Generative Adversarial Networks. CoRR abs/1702.08431 (2017) - [i5]Anirudh Goyal, Nan Rosemary Ke, Alex Lamb, R. Devon Hjelm, Chris Pal, Joelle Pineau, Yoshua Bengio:
ACtuAL: Actor-Critic Under Adversarial Learning. CoRR abs/1711.04755 (2017) - [i4]Alex Lamb, R. Devon Hjelm, Yaroslav Ganin, Joseph Paul Cohen, Aaron C. Courville, Yoshua Bengio:
GibbsNet: Iterative Adversarial Inference for Deep Graphical Models. CoRR abs/1712.04120 (2017) - 2016
- [c4]R. Devon Hjelm, Russ Salakhutdinov, Kyunghyun Cho, Nebojsa Jojic, Vince D. Calhoun, Junyoung Chung:
Iterative Refinement of the Approximate Posterior for Directed Belief Networks. NIPS 2016: 4691-4699 - [c3]Md Faijul Amin, Sergey M. Plis, Eswar Damaraju, R. Devon Hjelm, Kyunghyun Cho, Vince D. Calhoun:
Multimodal fusion of brain structural and functional imaging with a deep neural machine translation approach. SSIAI 2016: 1-4 - [i3]R. Devon Hjelm, Sergey M. Plis, Vince D. Calhoun:
Variational Autoencoders for Feature Detection of Magnetic Resonance Imaging Data. CoRR abs/1603.06624 (2016) - [i2]R. Devon Hjelm, Sergey M. Plis, Vince D. Calhoun:
Recurrent Neural Networks for Spatiotemporal Dynamics of Intrinsic Networks from fMRI Data. CoRR abs/1611.00864 (2016) - 2015
- [j2]Qingbao Yu, Erik B. Erhardt, Jing Sui, Yuhui Du, Hao He, R. Devon Hjelm, Mustafa S. Çetin, Srinivas Rachakonda, Robyn L. Miller, Godfrey D. Pearlson, Vince D. Calhoun:
Assessing dynamic brain graphs of time-varying connectivity in fMRI data: Application to healthy controls and patients with schizophrenia. NeuroImage 107: 345-355 (2015) - [c2]Eduardo Castro, R. Devon Hjelm, Sergey M. Plis, Laurent Dinh, Jessica A. Turner, Vince D. Calhoun:
Deep independence network analysis of structural brain imaging: A simulation study. MLSP 2015: 1-6 - [i1]R. Devon Hjelm, Kyunghyun Cho, Junyoung Chung, Ruslan Salakhutdinov, Vince D. Calhoun, Nebojsa Jojic:
Iterative Refinement of Approximate Posterior for Training Directed Belief Networks. CoRR abs/1511.06382 (2015) - 2014
- [j1]R. Devon Hjelm, Vince D. Calhoun, Ruslan Salakhutdinov, Elena A. Allen, Tülay Adali, Sergey M. Plis:
Restricted Boltzmann machines for neuroimaging: An application in identifying intrinsic networks. NeuroImage 96: 245-260 (2014) - [c1]Sergey M. Plis, R. Devon Hjelm, Ruslan Salakhutdinov, Vince D. Calhoun:
Deep learning for neuroimaging: a validation study. ICLR (Workshop Poster) 2014
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-19 21:47 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint