default search action
Bryan Hooi
Person information
- affiliation: National University of Singapore, Singapore
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [c115]Cheng Wang, Yiwei Wang, Bryan Hooi, Yujun Cai, Nanyun Peng, Kai-Wei Chang:
Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding. COLING 2025: 1013-1026 - 2024
- [j20]Jun Hu, Bryan Hooi, Shengsheng Qian, Quan Fang, Changsheng Xu:
MGDCF: Distance Learning via Markov Graph Diffusion for Neural Collaborative Filtering. IEEE Trans. Knowl. Data Eng. 36(7): 3281-3296 (2024) - [j19]Wenjie Feng, Li Wang, Bryan Hooi, See-Kiong Ng, Shenghua Liu:
Interrelated Dense Pattern Detection in Multilayer Networks. IEEE Trans. Knowl. Data Eng. 36(11): 6462-6476 (2024) - [j18]Jun Hu, Bryan Hooi, Bingsheng He:
Efficient Heterogeneous Graph Learning via Random Projection. IEEE Trans. Knowl. Data Eng. 36(12): 8093-8107 (2024) - [j17]Chenming Yang, Hui Wen, Bryan Hooi, Liang Zhou:
CapMax: A Framework for Dynamic Network Representation Learning From the View of Multiuser Communication. IEEE Trans. Neural Networks Learn. Syst. 35(4): 4554-4566 (2024) - [c114]Zhiyuan Hu, Chumin Liu, Yue Feng, Anh Tuan Luu, Bryan Hooi:
PoetryDiffusion: Towards Joint Semantic and Metrical Manipulation in Poetry Generation. AAAI 2024: 18279-18288 - [c113]Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu, Bryan Hooi, Shumin Deng:
Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View. ACL (1) 2024: 14544-14607 - [c112]Hewen Wang, Bryan Hooi, Dan He, Juncheng Liu, Xiaokui Xiao:
EGNN-AD: An Effective Graph Neural Network-Based Approach for Anomaly Detection on Edge-Attributed Graphs. DASFAA (6) 2024: 321-331 - [c111]Jihai Zhang, Xiang Lan, Xiaoye Qu, Yu Cheng, Mengling Feng, Bryan Hooi:
Learning the Unlearned: Mitigating Feature Suppression in Contrastive Learning. ECCV (83) 2024: 35-52 - [c110]Nan Chen, Zemin Liu, Bryan Hooi, Bingsheng He, Rizal Fathony, Jun Hu, Jia Chen:
Consistency Training with Learnable Data Augmentation for Graph Anomaly Detection with Limited Supervision. ICLR 2024 - [c109]Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, Bryan Hooi:
Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representation Learning. ICLR 2024 - [c108]Juncheng Liu, Bryan Hooi, Kenji Kawaguchi, Yiwei Wang, Chaosheng Dong, Xiaokui Xiao:
Scalable and Effective Implicit Graph Neural Networks on Large Graphs. ICLR 2024 - [c107]Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, Bryan Hooi:
Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs. ICLR 2024 - [c106]Wei Zhuo, Zemin Liu, Bryan Hooi, Bingsheng He, Guang Tan, Rizal Fathony, Jia Chen:
Partitioning Message Passing for Graph Fraud Detection. ICLR 2024 - [c105]Adrien Benamira, Thomas Peyrin, Trevor Yap, Tristan Guérand, Bryan Hooi:
Truth Table Net: Scalable, Compact & Verifiable Neural Networks with a Dual Convolutional Small Boolean Circuit Networks Form. IJCAI 2024: 13-21 - [c104]Jiaying Wu, Jiafeng Guo, Bryan Hooi:
Fake News in Sheep's Clothing: Robust Fake News Detection Against LLM-Empowered Style Attacks. KDD 2024: 3367-3378 - [c103]Xu Liu, Yuxuan Liang, Chao Huang, Hengchang Hu, Yushi Cao, Bryan Hooi, Roger Zimmermann:
Reinventing Node-centric Traffic Forecasting for Improved Accuracy and Efficiency. ECML/PKDD (3) 2024: 21-38 - [c102]Yuexin Li, Chengyu Huang, Shumin Deng, Mei Lin Lock, Tri Cao, Nay Oo, Hoon Wei Lim, Bryan Hooi:
KnowPhish: Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing Detection. USENIX Security Symposium 2024 - [c101]Haitao Mao, Jianan Zhao, Xiaoxin He, Zhikai Chen, Qian Huang, Zhaocheng Zhu, Jian Tang, Michael M. Bronstein, Xavier Bresson, Bryan Hooi, Haiyang Zhang, Xianfeng Tang, Luo Chen, Jiliang Tang:
The 1st International Workshop on Graph Foundation Models (GFM). WWW (Companion Volume) 2024: 1789-1792 - [c100]Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, Roger Zimmermann:
UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series Forecasting. WWW 2024: 4095-4106 - [i117]Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao, See-Kiong Ng, Anh Tuan Luu, Junxian He, Pang Wei Koh, Bryan Hooi:
Uncertainty of Thoughts: Uncertainty-Aware Planning Enhances Information Seeking in Large Language Models. CoRR abs/2402.03271 (2024) - [i116]Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V. Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson, Bryan Hooi:
G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering. CoRR abs/2402.07630 (2024) - [i115]Jihai Zhang, Xiang Lan, Xiaoye Qu, Yu Cheng, Mengling Feng, Bryan Hooi:
Learning the Unlearned: Mitigating Feature Suppression in Contrastive Learning. CoRR abs/2402.11816 (2024) - [i114]Yufei He, Bryan Hooi:
UniGraph: Learning a Cross-Domain Graph Foundation Model From Natural Language. CoRR abs/2402.13630 (2024) - [i113]Ailin Deng, Zhirui Chen, Bryan Hooi:
Seeing is Believing: Mitigating Hallucination in Large Vision-Language Models via CLIP-Guided Decoding. CoRR abs/2402.15300 (2024) - [i112]Yuexin Li, Chengyu Huang, Shumin Deng, Mei Lin Lock, Tri Cao, Nay Oo, Bryan Hooi, Hoon Wei Lim:
KnowPhish: Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing Detection. CoRR abs/2403.02253 (2024) - [i111]Yuan Sui, Yufei He, Nian Liu, Xiaoxin He, Kun Wang, Bryan Hooi:
FiDeLiS: Faithful Reasoning in Large Language Model for Knowledge Graph Question Answering. CoRR abs/2405.13873 (2024) - [i110]Juncheng Liu, Chenghao Liu, Gerald Woo, Yiwei Wang, Bryan Hooi, Caiming Xiong, Doyen Sahoo:
UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting. CoRR abs/2406.04975 (2024) - [i109]Rishabh Anand, Chaitanya K. Joshi, Alex Morehead, Arian R. Jamasb, Charles Harris, Simon V. Mathis, Kieran Didi, Bryan Hooi, Pietro Liò:
RNA-FrameFlow: Flow Matching for de novo 3D RNA Backbone Design. CoRR abs/2406.13839 (2024) - [i108]Yufei He, Zhenyu Hou, Yukuo Cen, Feng He, Xu Cheng, Bryan Hooi:
Generalizing Graph Transformers Across Diverse Graphs and Tasks via Pre-Training on Industrial-Scale Data. CoRR abs/2407.03953 (2024) - [i107]Adam Goodge, Bryan Hooi, Wee Siong Ng:
When Text and Images Don't Mix: Bias-Correcting Language-Image Similarity Scores for Anomaly Detection. CoRR abs/2407.17083 (2024) - [i106]Huilin Wang, Bryan Hooi:
Automated Phishing Detection Using URLs and Webpages. CoRR abs/2408.01667 (2024) - [i105]Jehyun Lee, Peiyuan Lim, Bryan Hooi, Dinil Mon Divakaran:
Multimodal Large Language Models for Phishing Webpage Detection and Identification. CoRR abs/2408.05941 (2024) - [i104]Tri Cao, Chengyu Huang, Yuexin Li, Huilin Wang, Amy He, Nay Oo, Bryan Hooi:
PhishAgent: A Robust Multimodal Agent for Phishing Webpage Detection. CoRR abs/2408.10738 (2024) - [i103]Zhiyuan Hu, Yuliang Liu, Jinman Zhao, Suyuchen Wang, Yan Wang, Wei Shen, Qing Gu, Anh Tuan Luu, See-Kiong Ng, Zhiwei Jiang, Bryan Hooi:
LongRecipe: Recipe for Efficient Long Context Generalization in Large Language Models. CoRR abs/2409.00509 (2024) - [i102]Cheng Wang, Yiwei Wang, Bryan Hooi, Yujun Cai, Nanyun Peng, Kai-Wei Chang:
Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding. CoRR abs/2409.03363 (2024) - [i101]Shen Li, Jianqing Xu, Jiaying Wu, Miao Xiong, Ailin Deng, Jiazhen Ji, Yuge Huang, Wenjie Feng, Shouhong Ding, Bryan Hooi:
ID3: Identity-Preserving-yet-Diversified Diffusion Models for Synthetic Face Recognition. CoRR abs/2409.17576 (2024) - [i100]Yue Liu, Xiaoxin He, Miao Xiong, Jinlan Fu, Shumin Deng, Bryan Hooi:
FlipAttack: Jailbreak LLMs via Flipping. CoRR abs/2410.02832 (2024) - [i99]Yuan Sui, Bryan Hooi:
Can Knowledge Graphs Make Large Language Models More Trustworthy? An Empirical Study over Open-ended Question Answering. CoRR abs/2410.08085 (2024) - [i98]Zhecheng Li, Yiwei Wang, Bryan Hooi, Yujun Cai, Zhen Xiong, Nanyun Peng, Kai-Wei Chang:
Vulnerability of LLMs to Vertically Aligned Text Manipulations. CoRR abs/2410.20016 (2024) - [i97]Zhecheng Li, Yiwei Wang, Bryan Hooi, Yujun Cai, Naifan Cheung, Nanyun Peng, Kai-Wei Chang:
Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization. CoRR abs/2410.20021 (2024) - [i96]Yulin Chen, Haoran Li, Zihao Zheng, Yangqiu Song, Dekai Wu, Bryan Hooi:
Defense Against Prompt Injection Attack by Leveraging Attack Techniques. CoRR abs/2411.00459 (2024) - [i95]Tri Cao, Minh-Huy Trinh, Ailin Deng, Quoc-Nam Nguyen, Khoa Duong, Ngai-Man Cheung, Bryan Hooi:
Are Anomaly Scores Telling the Whole Story? A Benchmark for Multilevel Anomaly Detection. CoRR abs/2411.14515 (2024) - [i94]Zhecheng Li, Yiwei Wang, Bryan Hooi, Yujun Cai, Nanyun Peng, Kai-Wei Chang:
DRS: Deep Question Reformulation With Structured Output. CoRR abs/2411.17993 (2024) - [i93]Shuyang Hao, Bryan Hooi, Jun Liu, Kai-Wei Chang, Zi Huang, Yujun Cai:
Exploring Visual Vulnerabilities via Multi-Loss Adversarial Search for Jailbreaking Vision-Language Models. CoRR abs/2411.18000 (2024) - [i92]Wei Zhuo, Zemin Liu, Bryan Hooi, Bingsheng He, Guang Tan, Rizal Fathony, Jia Chen:
Partitioning Message Passing for Graph Fraud Detection. CoRR abs/2412.00020 (2024) - [i91]Yuexin Li, Hiok Kuek Tan, Qiaoran Meng, Mei Lin Lock, Tri Cao, Shumin Deng, Nay Oo, Hoon Wei Lim, Bryan Hooi:
PhishIntel: Toward Practical Deployment of Reference-based Phishing Detection. CoRR abs/2412.09057 (2024) - [i90]Jun Hu, Bryan Hooi, Bingsheng He, Yinwei Wei:
Modality-Independent Graph Neural Networks with Global Transformers for Multimodal Recommendation. CoRR abs/2412.13994 (2024) - 2023
- [j16]Chenming Yang, Hui Wen, Bryan Hooi, Yue Wu, Liang Zhou:
A multi-scale reconstruction method for the anomaly detection in stochastic dynamic networks. Neurocomputing 518: 482-495 (2023) - [j15]Chenming Yang, Jingjing Li, Ke Lu, Bryan Hooi, Liang Zhou:
Continuous-time graph directed information maximization for temporal network representation. Inf. Sci. 644: 119240 (2023) - [j14]Shubhranshu Shekhar, Dhivya Eswaran, Bryan Hooi, Jonathan Elmer, Christos Faloutsos, Leman Akoglu:
Benefit-aware early prediction of health outcomes on multivariate EEG time series. J. Biomed. Informatics 139: 104296 (2023) - [j13]Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, Jiashi Feng:
Deep Long-Tailed Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(9): 10795-10816 (2023) - [j12]Shenghua Liu, Bin Zhou, Quan Ding, Bryan Hooi, Zhengbo Zhang, Huawei Shen, Xueqi Cheng:
Time Series Anomaly Detection With Adversarial Reconstruction Networks. IEEE Trans. Knowl. Data Eng. 35(4): 4293-4306 (2023) - [j11]Nicholas Lim, Bryan Hooi, See-Kiong Ng, Yong Liang Goh, Renrong Weng, Rui Tan:
Learning Hierarchical Spatial Tasks with Visiting Relations for Next POI Recommendation. Trans. Recomm. Syst. 1(4): 1-26 (2023) - [c99]Shumin Deng, Shengyu Mao, Ningyu Zhang, Bryan Hooi:
SPEECH: Structured Prediction with Energy-Based Event-Centric Hyperspheres. ACL (1) 2023: 351-363 - [c98]Jiaying Wu, Shen Li, Ailin Deng, Miao Xiong, Bryan Hooi:
Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News Detection. CIKM 2023: 2726-2736 - [c97]Zhiyuan Hu, Yue Feng, Anh Tuan Luu, Bryan Hooi, Aldo Lipani:
Unlocking the Potential of User Feedback: Leveraging Large Language Model as User Simulators to Enhance Dialogue System. CIKM 2023: 3953-3957 - [c96]Yiwei Wang, Bryan Hooi, Fei Wang, Yujun Cai, Yuxuan Liang, Wenxuan Zhou, Jing Tang, Manjuan Duan, Muhao Chen:
How Fragile is Relation Extraction under Entity Replacements? CoNLL 2023: 414-423 - [c95]Jianqing Xu, Shen Li, Ailin Deng, Miao Xiong, Jiaying Wu, Jiaxiang Wu, Shouhong Ding, Bryan Hooi:
Probabilistic Knowledge Distillation of Face Ensembles. CVPR 2023: 3489-3498 - [c94]Yiwei Wang, Yujun Cai, Muhao Chen, Yuxuan Liang, Bryan Hooi:
Primacy Effect of ChatGPT. EMNLP 2023: 108-115 - [c93]Baixiang Huang, Bryan Hooi, Kai Shu:
TAP: A Comprehensive Data Repository for Traffic Accident Prediction in Road Networks. SIGSPATIAL/GIS 2023: 105:1-105:4 - [c92]Shumin Deng, Chengming Wang, Zhoubo Li, Ningyu Zhang, Zelin Dai, Hehong Chen, Feiyu Xiong, Ming Yan, Qiang Chen, Mosha Chen, Jiaoyan Chen, Jeff Z. Pan, Bryan Hooi, Huajun Chen:
Construction and Applications of Billion-Scale Pre-Trained Multimodal Business Knowledge Graph. ICDE 2023: 2988-3002 - [c91]Ailin Deng, Miao Xiong, Bryan Hooi:
Great Models Think Alike: Improving Model Reliability via Inter-Model Latent Agreement. ICML 2023: 7675-7693 - [c90]Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, Xavier Bresson:
A Generalization of ViT/MLP-Mixer to Graphs. ICML 2023: 12724-12745 - [c89]Yuwen Li, Miao Xiong, Bryan Hooi:
GraphCleaner: Detecting Mislabelled Samples in Popular Graph Learning Benchmarks. ICML 2023: 20195-20209 - [c88]Kaixin Wang, Kuangqi Zhou, Jiashi Feng, Bryan Hooi, Xinchao Wang:
Reachability-Aware Laplacian Representation in Reinforcement Learning. ICML 2023: 36670-36693 - [c87]Mingqi Yang, Wenjie Feng, Yanming Shen, Bryan Hooi:
Towards Better Graph Representation Learning with Parameterized Decomposition & Filtering. ICML 2023: 39234-39251 - [c86]Siddharth Bhatia, Mohit Wadhwa, Kenji Kawaguchi, Neil Shah, Philip S. Yu, Bryan Hooi:
Sketch-Based Anomaly Detection in Streaming Graphs. KDD 2023: 93-104 - [c85]Jiaying Wu, Bryan Hooi:
DECOR: Degree-Corrected Social Graph Refinement for Fake News Detection. KDD 2023: 2582-2593 - [c84]Xu Liu, Yutong Xia, Yuxuan Liang, Junfeng Hu, Yiwei Wang, Lei Bai, Chao Huang, Zhenguang Liu, Bryan Hooi, Roger Zimmermann:
LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting. NeurIPS 2023 - [c83]Miao Xiong, Ailin Deng, Pang Wei W. Koh, Jiaying Wu, Shen Li, Jianqing Xu, Bryan Hooi:
Proximity-Informed Calibration for Deep Neural Networks. NeurIPS 2023 - [c82]Yifan Zhang, Daquan Zhou, Bryan Hooi, Kai Wang, Jiashi Feng:
Expanding Small-Scale Datasets with Guided Imagination. NeurIPS 2023 - [c81]Yiwei Wang, Bryan Hooi, Yozen Liu, Neil Shah:
Graph Explicit Neural Networks: Explicitly Encoding Graphs for Efficient and Accurate Inference. WSDM 2023: 348-356 - [i89]Xu Liu, Yuxuan Liang, Chao Huang, Hengchang Hu, Yushi Cao, Bryan Hooi, Roger Zimmermann:
Do We Really Need Graph Neural Networks for Traffic Forecasting? CoRR abs/2301.12603 (2023) - [i88]Ailin Deng, Shen Li, Miao Xiong, Zhirui Chen, Bryan Hooi:
Trust, but Verify: Using Self-Supervised Probing to Improve Trustworthiness. CoRR abs/2302.02628 (2023) - [i87]Aashish Kolluri, Sarthak Choudhary, Bryan Hooi, Prateek Saxena:
RETEXO: Scalable Neural Network Training over Distributed Graphs. CoRR abs/2302.13053 (2023) - [i86]Baixiang Huang, Bryan Hooi, Kai Shu:
TAP: A Comprehensive Data Repository for Traffic Accident Prediction in Road Networks. CoRR abs/2304.08640 (2023) - [i85]Ailin Deng, Miao Xiong, Bryan Hooi:
Great Models Think Alike: Improving Model Reliability via Inter-Model Latent Agreement. CoRR abs/2305.01481 (2023) - [i84]Mingqi Yang, Wenjie Feng, Yanming Shen, Bryan Hooi:
Towards Better Graph Representation Learning with Parameterized Decomposition & Filtering. CoRR abs/2305.06102 (2023) - [i83]Yiwei Wang, Bryan Hooi, Fei Wang, Yujun Cai, Yuxuan Liang, Wenxuan Zhou, Jing Tang, Manjuan Duan, Muhao Chen:
How Fragile is Relation Extraction under Entity Replacements? CoRR abs/2305.13551 (2023) - [i82]Shumin Deng, Shengyu Mao, Ningyu Zhang, Bryan Hooi:
SPEECH: Structured Prediction with Energy-Based Event-Centric Hyperspheres. CoRR abs/2305.13617 (2023) - [i81]Xiaoxin He, Xavier Bresson, Thomas Laurent, Bryan Hooi:
Explanations as Features: LLM-Based Features for Text-Attributed Graphs. CoRR abs/2305.19523 (2023) - [i80]Yuwen Li, Miao Xiong, Bryan Hooi:
GraphCleaner: Detecting Mislabelled Samples in Popular Graph Learning Benchmarks. CoRR abs/2306.00015 (2023) - [i79]Miao Xiong, Ailin Deng, Pang Wei Koh, Jiaying Wu, Shen Li, Jianqing Xu, Bryan Hooi:
Proximity-Informed Calibration for Deep Neural Networks. CoRR abs/2306.04590 (2023) - [i78]Xu Liu, Yutong Xia, Yuxuan Liang, Junfeng Hu, Yiwei Wang, Lei Bai, Chao Huang, Zhenguang Liu, Bryan Hooi, Roger Zimmermann:
LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting. CoRR abs/2306.08259 (2023) - [i77]Zhiyuan Hu, Chumin Liu, Yue Feng, Bryan Hooi:
PoetryDiffusion: Towards Joint Semantic and Metrical Manipulation in Poetry Generation. CoRR abs/2306.08456 (2023) - [i76]Zhiyuan Hu, Yue Feng, Anh Tuan Luu, Bryan Hooi, Aldo Lipani:
Unlocking the Potential of User Feedback: Leveraging Large Language Model as User Simulator to Enhance Dialogue System. CoRR abs/2306.09821 (2023) - [i75]Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, Bryan Hooi:
Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs. CoRR abs/2306.13063 (2023) - [i74]Jiaying Wu, Bryan Hooi:
DECOR: Degree-Corrected Social Graph Refinement for Fake News Detection. CoRR abs/2307.00077 (2023) - [i73]Yuexin Li, Bryan Hooi:
Prompt-Based Zero- and Few-Shot Node Classification: A Multimodal Approach. CoRR abs/2307.11572 (2023) - [i72]Zemin Liu, Yuan Li, Nan Chen, Qian Wang, Bryan Hooi, Bingsheng He:
A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions. CoRR abs/2308.13821 (2023) - [i71]Zhiyuan Hu, Yue Feng, Yang Deng, Zekun Li, See-Kiong Ng, Anh Tuan Luu, Bryan Hooi:
Enhancing Large Language Model Induced Task-Oriented Dialogue Systems Through Look-Forward Motivated Goals. CoRR abs/2309.08949 (2023) - [i70]Jiaying Wu, Shen Li, Ailin Deng, Miao Xiong, Bryan Hooi:
Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News Detection. CoRR abs/2309.16424 (2023) - [i69]Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu, Bryan Hooi, Shumin Deng:
Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View. CoRR abs/2310.02124 (2023) - [i68]Minji Yoon, Jing Yu Koh, Bryan Hooi, Ruslan Salakhutdinov:
Multimodal Graph Learning for Generative Tasks. CoRR abs/2310.07478 (2023) - [i67]Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, Roger Zimmermann:
UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series Forecasting. CoRR abs/2310.09751 (2023) - [i66]Jiaying Wu, Bryan Hooi:
Fake News in Sheep's Clothing: Robust Fake News Detection Against LLM-Empowered Style Attacks. CoRR abs/2310.10830 (2023) - [i65]Yiwei Wang, Yujun Cai, Muhao Chen, Yuxuan Liang, Bryan Hooi:
Primacy Effect of ChatGPT. CoRR abs/2310.13206 (2023) - [i64]Jun Hu, Bryan Hooi, Bingsheng He:
Efficient Heterogeneous Graph Learning via Random Projection. CoRR abs/2310.14481 (2023) - [i63]Shumin Deng, Ningyu Zhang, Nay Oo, Bryan Hooi:
Towards A Unified View of Answer Calibration for Multi-Step Reasoning. CoRR abs/2311.09101 (2023) - [i62]Yifan Zhang, Bryan Hooi:
HiPA: Enabling One-Step Text-to-Image Diffusion Models via High-Frequency-Promoting Adaptation. CoRR abs/2311.18158 (2023) - 2022
- [j10]Minji Yoon, Théophile Gervet, Bryan Hooi, Christos Faloutsos:
Autonomous graph mining algorithm search with best performance trade-off. Knowl. Inf. Syst. 64(6): 1571-1602 (2022) - [j9]Jiaxin Jiang, Yuan Li, Bingsheng He, Bryan Hooi, Jia Chen, Johan Kok Zhi Kang:
Spade: A Real-Time Fraud Detection Framework on Evolving Graphs. Proc. VLDB Endow. 16(3): 461-469 (2022) - [j8]Siddharth Bhatia, Rui Liu, Bryan Hooi, Minji Yoon, Kijung Shin, Christos Faloutsos:
Real-Time Anomaly Detection in Edge Streams. ACM Trans. Knowl. Discov. Data 16(4): 75:1-75:22 (2022) - [j7]Miao Xiong, Shen Li, Wenjie Feng, Ailin Deng, Jihai Zhang, Bryan Hooi:
Birds of a Feather Trust Together: Knowing When to Trust a Classifier via Adaptive Neighborhood Aggregation. Trans. Mach. Learn. Res. 2022 (2022) - [c80]Adam Goodge, Bryan Hooi, See-Kiong Ng, Wee Siong Ng:
LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks. AAAI 2022: 6737-6745 - [c79]Aashish Kolluri, Teodora Baluta, Bryan Hooi, Prateek Saxena:
LPGNet: Link Private Graph Networks for Node Classification. CCS 2022: 1813-1827 - [c78]Ailin Deng, Shen Li, Miao Xiong, Zhirui Chen, Bryan Hooi:
Trust, but Verify: Using Self-supervised Probing to Improve Trustworthiness. ECCV (13) 2022: 361-377 - [c77]Adrien Benamira, Thomas Peyrin, Bryan Hooi Kuen-Yew:
Truth-Table Net: A New Convolutional Architecture Encodable by Design into SAT Formulas. ECCV Workshops (1) 2022: 483-500 - [c76]Xu Liu, Yuxuan Liang, Chao Huang, Yu Zheng, Bryan Hooi, Roger Zimmermann:
When do contrastive learning signals help spatio-temporal graph forecasting? SIGSPATIAL/GIS 2022: 5:1-5:12 - [c75]Kaixin Wang, Navdeep Kumar, Kuangqi Zhou, Bryan Hooi, Jiashi Feng, Shie Mannor:
The Geometry of Robust Value Functions. ICML 2022: 22727-22751 - [c74]Ailin Deng, Adam Goodge, Lang Yi Ang, Bryan Hooi:
CADET: Calibrated Anomaly Detection for Mitigating Hardness Bias. IJCAI 2022: 2002-2008 - [c73]Shen Li, Bryan Hooi:
Neural PCA for Flow-Based Representation Learning. IJCAI 2022: 3229-3235 - [c72]Yiwei Wang, Yujun Cai, Yuxuan Liang, Henghui Ding, Changhu Wang, Bryan Hooi:
Time-Aware Neighbor Sampling on Temporal Graphs. IJCNN 2022: 1-8 - [c71]Yiwei Wang, Bryan Hooi, Yozen Liu, Tong Zhao, Zhichun Guo, Neil Shah:
Flashlight: Scalable Link Prediction With Effective Decoders. LoG 2022: 14 - [c70]Kuangqi Zhou, Kaixin Wang, Jian Tang, Jiashi Feng, Bryan Hooi, Peilin Zhao, Tingyang Xu, Xinchao Wang:
Jointly Modelling Uncertainty and Diversity for Active Molecular Property Prediction. LoG 2022: 29 - [c69]Juncheng Liu, Zequn Sun, Bryan Hooi, Yiwei Wang, Dayiheng Liu, Baosong Yang, Xiaokui Xiao, Muhao Chen:
Dangling-Aware Entity Alignment with Mixed High-Order Proximities. NAACL-HLT (Findings) 2022: 1172-1184 - [c68]Yiwei Wang, Muhao Chen, Wenxuan Zhou, Yujun Cai, Yuxuan Liang, Bryan Hooi:
GraphCache: Message Passing as Caching for Sentence-Level Relation Extraction. NAACL-HLT (Findings) 2022: 1698-1708 - [c67]Yiwei Wang, Muhao Chen, Wenxuan Zhou, Yujun Cai, Yuxuan Liang, Dayiheng Liu, Baosong Yang, Juncheng Liu, Bryan Hooi:
Should We Rely on Entity Mentions for Relation Extraction? Debiasing Relation Extraction with Counterfactual Analysis. NAACL-HLT 2022: 3071-3081 - [c66]Juncheng Liu, Bryan Hooi, Kenji Kawaguchi, Xiaokui Xiao:
MGNNI: Multiscale Graph Neural Networks with Implicit Layers. NeurIPS 2022 - [c65]Yifan Zhang, Bryan Hooi, Lanqing Hong, Jiashi Feng:
Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recognition. NeurIPS 2022 - [c64]Juncheng Liu, Yiwei Wang, Bryan Hooi, Renchi Yang, Xiaokui Xiao:
LSCALE: Latent Space Clustering-Based Active Learning for Node Classification. ECML/PKDD (1) 2022: 55-70 - [c63]Adam Goodge, Bryan Hooi, See-Kiong Ng, Wee Siong Ng:
ARES: Locally Adaptive Reconstruction-Based Anomaly Scoring. ECML/PKDD (1) 2022: 193-208 - [c62]Jiaying Wu, Bryan Hooi:
Probing Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks. ECML/PKDD (2) 2022: 274-290 - [c61]Nicholas Lim, Bryan Hooi, See-Kiong Ng, Yong Liang Goh, Renrong Weng, Rui Tan:
Hierarchical Multi-Task Graph Recurrent Network for Next POI Recommendation. SIGIR 2022: 1133-1143 - [c60]Xiaobing Sun, Wenjie Feng, Shenghua Liu, Yuyang Xie, Siddharth Bhatia, Bryan Hooi, Wenhan Wang, Xueqi Cheng:
MonLAD: Money Laundering Agents Detection in Transaction Streams. WSDM 2022: 976-986 - [c59]Siddharth Bhatia, Arjit Jain, Shivin Srivastava, Kenji Kawaguchi, Bryan Hooi:
MemStream: Memory-Based Streaming Anomaly Detection. WWW 2022: 610-621 - [i61]Xiaobing Sun, Wenjie Feng, Shenghua Liu, Yuyang Xie, Siddharth Bhatia, Bryan Hooi, Wenhan Wang, Xueqi Cheng:
MonLAD: Money Laundering Agents Detection in Transaction Streams. CoRR abs/2201.10051 (2022) - [i60]Kaixin Wang, Navdeep Kumar, Kuangqi Zhou, Bryan Hooi, Jiashi Feng, Shie Mannor:
The Geometry of Robust Value Functions. CoRR abs/2201.12929 (2022) - [i59]Juncheng Liu, Kenji Kawaguchi, Bryan Hooi, Yiwei Wang, Xiaokui Xiao:
EIGNN: Efficient Infinite-Depth Graph Neural Networks. CoRR abs/2202.10720 (2022) - [i58]Juncheng Liu, Zequn Sun, Bryan Hooi, Yiwei Wang, Dayiheng Liu, Baosong Yang, Xiaokui Xiao, Muhao Chen:
Dangling-Aware Entity Alignment with Mixed High-Order Proximities. CoRR abs/2205.02406 (2022) - [i57]Aashish Kolluri, Teodora Baluta, Bryan Hooi, Prateek Saxena:
LPGNet: Link Private Graph Networks for Node Classification. CoRR abs/2205.03105 (2022) - [i56]Yiwei Wang, Muhao Chen, Wenxuan Zhou, Yujun Cai, Yuxuan Liang, Dayiheng Liu, Baosong Yang, Juncheng Liu, Bryan Hooi:
Should We Rely on Entity Mentions for Relation Extraction? Debiasing Relation Extraction with Counterfactual Analysis. CoRR abs/2205.03784 (2022) - [i55]Yiwei Wang, Muhao Chen, Wenxuan Zhou, Yujun Cai, Yuxuan Liang, Bryan Hooi:
GRAPHCACHE: Message Passing as Caching for Sentence-Level Relation Extraction. CoRR abs/2205.03786 (2022) - [i54]Adam Goodge, Bryan Hooi, See-Kiong Ng, Wee Siong Ng:
ARES: Locally Adaptive Reconstruction-based Anomaly Scoring. CoRR abs/2206.07604 (2022) - [i53]Adrien Benamira, Thomas Peyrin, Bryan Hooi Kuen-Yew:
Truth-Table Net: A New Convolutional Architecture Encodable By Design Into SAT Formulas. CoRR abs/2208.08609 (2022) - [i52]Shen Li, Bryan Hooi:
Neural PCA for Flow-Based Representation Learning. CoRR abs/2208.10753 (2022) - [i51]Jiaying Wu, Bryan Hooi:
Probing Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks. CoRR abs/2209.08799 (2022) - [i50]Yiwei Wang, Bryan Hooi, Yozen Liu, Tong Zhao, Zhichun Guo, Neil Shah:
Flashlight: Scalable Link Prediction with Effective Decoders. CoRR abs/2209.10100 (2022) - [i49]Nicholas Lim, Bryan Hooi, See-Kiong Ng, Yong Liang Goh:
Joint Triplet Loss Learning for Next New POI Recommendation. CoRR abs/2209.12162 (2022) - [i48]Shumin Deng, Chengming Wang, Zhoubo Li, Ningyu Zhang, Zelin Dai, Hehong Chen, Feiyu Xiong, Ming Yan, Qiang Chen, Mosha Chen, Jiaoyan Chen, Jeff Z. Pan, Bryan Hooi, Huajun Chen:
Construction and Applications of Billion-Scale Pre-trained Multimodal Business Knowledge Graph. CoRR abs/2209.15214 (2022) - [i47]Juncheng Liu, Bryan Hooi, Kenji Kawaguchi, Xiaokui Xiao:
MGNNI: Multiscale Graph Neural Networks with Implicit Layers. CoRR abs/2210.08353 (2022) - [i46]Kaixin Wang, Kuangqi Zhou, Jiashi Feng, Bryan Hooi, Xinchao Wang:
Reachability-Aware Laplacian Representation in Reinforcement Learning. CoRR abs/2210.13153 (2022) - [i45]Jiaxin Jiang, Yuan Li, Bingsheng He, Bryan Hooi, Jia Chen, Johan Kok Zhi Kang:
Spade: A Real-Time Fraud Detection Framework on Evolving Graphs (Complete Version). CoRR abs/2211.06977 (2022) - [i44]Yifan Zhang, Daquan Zhou, Bryan Hooi, Kai Wang, Jiashi Feng:
Expanding Small-Scale Datasets with Guided Imagination. CoRR abs/2211.13976 (2022) - [i43]Miao Xiong, Shen Li, Wenjie Feng, Ailin Deng, Jihai Zhang, Bryan Hooi:
Birds of a Feather Trust Together: Knowing When to Trust a Classifier via Adaptive Neighborhood Aggregation. CoRR abs/2211.16466 (2022) - [i42]Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, Xavier Bresson:
A Generalization of ViT/MLP-Mixer to Graphs. CoRR abs/2212.13350 (2022) - 2021
- [j6]Wenjie Feng, Shenghua Liu, Christos Faloutsos, Bryan Hooi, Huawei Shen, Xueqi Cheng:
EagleMine: Vision-guided Micro-clusters recognition and collective anomaly detection. Future Gener. Comput. Syst. 115: 236-250 (2021) - [c58]Ailin Deng, Bryan Hooi:
Graph Neural Network-Based Anomaly Detection in Multivariate Time Series. AAAI 2021: 4027-4035 - [c57]Siddharth Bhatia, Arjit Jain, Bryan Hooi:
ExGAN: Adversarial Generation of Extreme Samples. AAAI 2021: 6750-6758 - [c56]Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, Jiashi Feng:
Understanding and Resolving Performance Degradation in Deep Graph Convolutional Networks. CIKM 2021: 2728-2737 - [c55]Hansheng Ren, Miao Xiong, Bryan Hooi:
Robust and Task-Aware Training of Deep Residual Networks for Varying-Lead ECG Classification. CinC 2021: 1-4 - [c54]Shen Li, Jianqing Xu, Xiaqing Xu, Pengcheng Shen, Shaoxin Li, Bryan Hooi:
Spherical Confidence Learning for Face Recognition. CVPR 2021: 15629-15637 - [c53]Kaixin Wang, Kuangqi Zhou, Qixin Zhang, Jie Shao, Bryan Hooi, Jiashi Feng:
Towards Better Laplacian Representation in Reinforcement Learning with Generalized Graph Drawing. ICML 2021: 11003-11012 - [c52]Siddharth Bhatia, Bryan Hooi, Leman Akoglu, Sourav Chatterjee, Xiaodong Jiang, Manish Gupta:
ODD: Outlier Detection and Description. KDD 2021: 4108-4109 - [c51]Yiwei Wang, Yujun Cai, Yuxuan Liang, Henghui Ding, Changhu Wang, Siddharth Bhatia, Bryan Hooi:
Adaptive Data Augmentation on Temporal Graphs. NeurIPS 2021: 1440-1452 - [c50]Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi:
SSMF: Shifting Seasonal Matrix Factorization. NeurIPS 2021: 3863-3873 - [c49]Juncheng Liu, Kenji Kawaguchi, Bryan Hooi, Yiwei Wang, Xiaokui Xiao:
EIGNN: Efficient Infinite-Depth Graph Neural Networks. NeurIPS 2021: 18762-18773 - [c48]Yifan Zhang, Bryan Hooi, Dapeng Hu, Jian Liang, Jiashi Feng:
Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning. NeurIPS 2021: 29848-29860 - [c47]Siddharth Bhatia, Yiwei Wang, Bryan Hooi, Tanmoy Chakraborty:
GraphAnoGAN: Detecting Anomalous Snapshots from Attributed Graphs. ECML/PKDD (2) 2021: 36-51 - [c46]Shixuan Sun, Yuhang Chen, Bingsheng He, Bryan Hooi:
PathEnum: Towards Real-Time Hop-Constrained s-t Path Enumeration. SIGMOD Conference 2021: 1758-1770 - [c45]Nicholas Lim, Bryan Hooi, See-Kiong Ng, Xueou Wang, Yong Liang Goh, Renrong Weng, Rui Tan:
Origin-Aware Next Destination Recommendation with Personalized Preference Attention. WSDM 2021: 382-390 - [c44]Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Bryan Hooi:
CurGraph: Curriculum Learning for Graph Classification. WWW 2021: 1238-1248 - [c43]Siddharth Bhatia, Arjit Jain, Pan Li, Ritesh Kumar, Bryan Hooi:
MStream: Fast Anomaly Detection in Multi-Aspect Streams. WWW 2021: 3371-3382 - [c42]Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Bryan Hooi:
Mixup for Node and Graph Classification. WWW 2021: 3663-3674 - [i41]Yifan Zhang, Bryan Hooi, Dapeng Hu, Jian Liang, Jiashi Feng:
Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning. CoRR abs/2102.06605 (2021) - [i40]Shixuan Sun, Yuhang Chen, Bingsheng He, Bryan Hooi:
PathEnum: Towards Real-Time Hop-Constrained s-t Path Enumeration. CoRR abs/2103.11137 (2021) - [i39]Rui Liu, Siddharth Bhatia, Bryan Hooi:
Isconna: Streaming Anomaly Detection with Frequency and Patterns. CoRR abs/2104.01632 (2021) - [i38]Siddharth Bhatia, Arjit Jain, Shivin Srivastava, Kenji Kawaguchi, Bryan Hooi:
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift. CoRR abs/2106.03837 (2021) - [i37]Siddharth Bhatia, Mohit Wadhwa, Philip S. Yu, Bryan Hooi:
Sketch-Based Streaming Anomaly Detection in Dynamic Graphs. CoRR abs/2106.04486 (2021) - [i36]Ailin Deng, Bryan Hooi:
Graph Neural Network-Based Anomaly Detection in Multivariate Time Series. CoRR abs/2106.06947 (2021) - [i35]Siddharth Bhatia, Yiwei Wang, Bryan Hooi, Tanmoy Chakraborty:
GraphAnoGAN: Detecting Anomalous Snapshots from Attributed Graphs. CoRR abs/2106.15504 (2021) - [i34]Kaixin Wang, Kuangqi Zhou, Qixin Zhang, Jie Shao, Bryan Hooi, Jiashi Feng:
Towards Better Laplacian Representation in Reinforcement Learning with Generalized Graph Drawing. CoRR abs/2107.05545 (2021) - [i33]Yifan Zhang, Bryan Hooi, Lanqing Hong, Jiashi Feng:
Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision. CoRR abs/2107.09249 (2021) - [i32]Xu Liu, Yuxuan Liang, Yu Zheng, Bryan Hooi, Roger Zimmermann:
Spatio-Temporal Graph Contrastive Learning. CoRR abs/2108.11873 (2021) - [i31]Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, Jiashi Feng:
Deep Long-Tailed Learning: A Survey. CoRR abs/2110.04596 (2021) - [i30]Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi:
SSMF: Shifting Seasonal Matrix Factorization. CoRR abs/2110.12763 (2021) - [i29]Shubhranshu Shekhar, Dhivya Eswaran, Bryan Hooi, Jonathan Elmer, Christos Faloutsos, Leman Akoglu:
Benefit-aware Early Prediction of Health Outcomes on Multivariate EEG Time Series. CoRR abs/2111.06032 (2021) - [i28]Yiwei Wang, Yujun Cai, Yuxuan Liang, Wei Wang, Henghui Ding, Muhao Chen, Jing Tang, Bryan Hooi:
Structure-Aware Label Smoothing for Graph Neural Networks. CoRR abs/2112.00499 (2021) - [i27]Shen Li, Jianqing Xu, Bryan Hooi:
Probabilistic Contrastive Loss for Self-Supervised Learning. CoRR abs/2112.01642 (2021) - [i26]Adam Goodge, Bryan Hooi, See-Kiong Ng, Wee Siong Ng:
LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks. CoRR abs/2112.05355 (2021) - [i25]Yiwei Wang, Yujun Cai, Yuxuan Liang, Henghui Ding, Changhu Wang, Bryan Hooi:
Time-Aware Neighbor Sampling for Temporal Graph Networks. CoRR abs/2112.09845 (2021) - 2020
- [j5]Kijung Shin, Sejoon Oh, Jisu Kim, Bryan Hooi, Christos Faloutsos:
Fast, Accurate and Provable Triangle Counting in Fully Dynamic Graph Streams. ACM Trans. Knowl. Discov. Data 14(2): 12:1-12:39 (2020) - [c41]Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, Christos Faloutsos:
Midas: Microcluster-Based Detector of Anomalies in Edge Streams. AAAI 2020: 3242-3249 - [c40]Bryan Hooi, Kijung Shin, Hemank Lamba, Christos Faloutsos:
TellTail: Fast Scoring and Detection of Dense Subgraphs. AAAI 2020: 4150-4157 - [c39]Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He Huang, Xueqi Cheng:
FlowScope: Spotting Money Laundering Based on Graphs. AAAI 2020: 4731-4738 - [c38]Nicholas Lim, Bryan Hooi, See-Kiong Ng, Xueou Wang, Yong Liang Goh, Renrong Weng, Jagannadan Varadarajan:
STP-UDGAT: Spatial-Temporal-Preference User Dimensional Graph Attention Network for Next POI Recommendation. CIKM 2020: 845-854 - [c37]Yiwei Wang, Shenghua Liu, Minji Yoon, Hemank Lamba, Wei Wang, Christos Faloutsos, Bryan Hooi:
Provably Robust Node Classification via Low-Pass Message Passing. ICDM 2020: 621-630 - [c36]Minji Yoon, Théophile Gervet, Bryan Hooi, Christos Faloutsos:
Autonomous Graph Mining Algorithm Search with Best Speed/Accuracy Trade-off. ICDM 2020: 751-760 - [c35]Shen Li, Bryan Hooi, Gim Hee Lee:
Identifying through Flows for Recovering Latent Representations. ICLR 2020 - [c34]Adam Goodge, Bryan Hooi, See-Kiong Ng, Wee Siong Ng:
Robustness of Autoencoders for Anomaly Detection Under Adversarial Impact. IJCAI 2020: 1244-1250 - [c33]Yiwei Wang, Wei Wang, Yujun Cai, Bryan Hooi, Beng Chin Ooi:
Detecting Implementation Bugs in Graph Convolutional Network based Node Classifiers. ISSRE 2020: 313-324 - [c32]Manh Tuan Do, Se-eun Yoon, Bryan Hooi, Kijung Shin:
Structural Patterns and Generative Models of Real-world Hypergraphs. KDD 2020: 176-186 - [c31]Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Juncheng Liu, Bryan Hooi:
NodeAug: Semi-Supervised Node Classification with Data Augmentation. KDD 2020: 207-217 - [c30]Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Bryan Hooi:
Progressive Supervision for Node Classification. ECML/PKDD (1) 2020: 266-281 - [i24]Wesley Joon-Wie Tann, Ee-Chien Chang, Bryan Hooi:
SHADOWCAST: Controlling Network Properties to Explain Graph Generation. CoRR abs/2006.03774 (2020) - [i23]Manh Tuan Do, Se-eun Yoon, Bryan Hooi, Kijung Shin:
Structural Patterns and Generative Models of Real-world Hypergraphs. CoRR abs/2006.07060 (2020) - [i22]Kuangqi Zhou, Yanfei Dong, Wee Sun Lee, Bryan Hooi, Huan Xu, Jiashi Feng:
Effective Training Strategies for Deep Graph Neural Networks. CoRR abs/2006.07107 (2020) - [i21]Siddharth Bhatia, Arjit Jain, Pan Li, Ritesh Kumar, Bryan Hooi:
MStream: Fast Streaming Multi-Aspect Group Anomaly Detection. CoRR abs/2009.08451 (2020) - [i20]Siddharth Bhatia, Rui Liu, Bryan Hooi, Minji Yoon, Kijung Shin, Christos Faloutsos:
Real-Time Streaming Anomaly Detection in Dynamic Graphs. CoRR abs/2009.08452 (2020) - [i19]Siddharth Bhatia, Arjit Jain, Bryan Hooi:
ExGAN: Adversarial Generation of Extreme Samples. CoRR abs/2009.08454 (2020) - [i18]Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Bryan Hooi:
GraphCrop: Subgraph Cropping for Graph Classification. CoRR abs/2009.10564 (2020) - [i17]Nicholas Lim, Bryan Hooi, See-Kiong Ng, Xueou Wang, Yong Liang Goh, Renrong Weng, Jagannadan Varadarajan:
STP-UDGAT: Spatial-Temporal-Preference User Dimensional Graph Attention Network for Next POI Recommendation. CoRR abs/2010.07024 (2020) - [i16]Minji Yoon, Bryan Hooi, Kijung Shin, Christos Faloutsos:
Fast and Accurate Anomaly Detection in Dynamic Graphs with a Two-Pronged Approach. CoRR abs/2011.13085 (2020) - [i15]Minji Yoon, Théophile Gervet, Bryan Hooi, Christos Faloutsos:
Autonomous Graph Mining Algorithm Search with Best Speed/Accuracy Trade-off. CoRR abs/2011.14925 (2020) - [i14]Nicholas Lim, Bryan Hooi, See-Kiong Ng, Xueou Wang, Yong Liang Goh, Renrong Weng, Rui Tan:
Origin-Aware Next Destination Recommendation with Personalized Preference Attention. CoRR abs/2012.01915 (2020) - [i13]Juncheng Liu, Yiwei Wang, Bryan Hooi, Renchi Yang, Xiaokui Xiao:
Active Learning for Node Classification: The Additional Learning Ability from Unlabelled Nodes. CoRR abs/2012.07065 (2020) - [i12]Shimiao Li, Amritanshu Pandey, Bryan Hooi, Christos Faloutsos, Larry T. Pileggi:
Dynamic Graph-Based Anomaly Detection in the Electrical Grid. CoRR abs/2012.15006 (2020)
2010 – 2019
- 2019
- [b1]Bryan Hooi:
Anomaly Detection in Graphs and Time Series: Algorithms and Applications. Carnegie Mellon University, USA, 2019 - [j4]Shenghua Liu, Bryan Hooi, Christos Faloutsos:
A Contrast Metric for Fraud Detection in Rich Graphs. IEEE Trans. Knowl. Data Eng. 31(12): 2235-2248 (2019) - [c29]Bin Zhou, Shenghua Liu, Bryan Hooi, Xueqi Cheng, Jing Ye:
BeatGAN: Anomalous Rhythm Detection using Adversarially Generated Time Series. IJCAI 2019: 4433-4439 - [c28]Minji Yoon, Bryan Hooi, Kijung Shin, Christos Faloutsos:
Fast and Accurate Anomaly Detection in Dynamic Graphs with a Two-Pronged Approach. KDD 2019: 647-657 - [c27]Wenjie Feng, Shenghua Liu, Christos Faloutsos, Bryan Hooi, Huawei Shen, Xueqi Cheng:
Beyond Outliers and on to Micro-clusters: Vision-Guided Anomaly Detection. PAKDD (1) 2019: 541-554 - [c26]Bryan Hooi, Christos Faloutsos:
Branch and Border: Partition-Based Change Detection in Multivariate Time Series. SDM 2019: 504-512 - [c25]Bryan Hooi, Kijung Shin, Shenghua Liu, Christos Faloutsos:
SMF: Drift-Aware Matrix Factorization with Seasonal Patterns. SDM 2019: 621-629 - [i11]Marko Jereminov, Bryan Hooi, Amritanshu Pandey, Hyun Ah Song, Christos Faloutsos, Lawrence T. Pileggi:
Impact of Load Models on Power Flow Optimization. CoRR abs/1902.04154 (2019) - [i10]Shen Li, Bryan Hooi, Gim Hee Lee:
Identifying through Flows for Recovering Latent Representations. CoRR abs/1909.12555 (2019) - [i9]Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, Christos Faloutsos:
MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams. CoRR abs/1911.04464 (2019) - 2018
- [j3]Kijung Shin, Bryan Hooi, Christos Faloutsos:
Fast, Accurate, and Flexible Algorithms for Dense Subtensor Mining. ACM Trans. Knowl. Discov. Data 12(3): 28:1-28:30 (2018) - [c24]Bryan Hooi, Leman Akoglu, Dhivya Eswaran, Amritanshu Pandey, Marko Jereminov, Larry T. Pileggi, Christos Faloutsos:
ChangeDAR: Online Localized Change Detection for Sensor Data on a Graph. CIKM 2018: 507-516 - [c23]Pudi Chen, Shenghua Liu, Chuan Shi, Bryan Hooi, Bai Wang, Xueqi Cheng:
NeuCast: Seasonal Neural Forecast of Power Grid Time Series. IJCAI 2018: 3315-3321 - [c22]Bryan Hooi, Dhivya Eswaran, Hyun Ah Song, Amritanshu Pandey, Marko Jereminov, Larry T. Pileggi, Christos Faloutsos:
GridWatch: Sensor Placement and Anomaly Detection in the Electrical Grid. ECML/PKDD (1) 2018: 71-86 - [c21]Aastha Nigam, Kijung Shin, Ashwin Bahulkar, Bryan Hooi, David Hachen, Boleslaw K. Szymanski, Christos Faloutsos, Nitesh V. Chawla:
ONE-M: Modeling the Co-evolution of Opinions and Network Connections. ECML/PKDD (2) 2018: 122-140 - [c20]Kijung Shin, Jisu Kim, Bryan Hooi, Christos Faloutsos:
Think Before You Discard: Accurate Triangle Counting in Graph Streams with Deletions. ECML/PKDD (2) 2018: 141-157 - [c19]Bryan Hooi, Hyun Ah Song, Amritanshu Pandey, Marko Jereminov, Larry T. Pileggi, Christos Faloutsos:
StreamCast: Fast and Online Mining of Power Grid Time Sequences. SDM 2018: 531-539 - [c18]Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, V. S. Subrahmanian:
REV2: Fraudulent User Prediction in Rating Platforms. WSDM 2018: 333-341 - [i8]Kijung Shin, Bryan Hooi, Jisu Kim, Christos Faloutsos:
Out-of-Core and Distributed Algorithms for Dense Subtensor Mining. CoRR abs/1802.01065 (2018) - 2017
- [j2]Bryan Hooi, Kijung Shin, Hyun Ah Song, Alex Beutel, Neil Shah, Christos Faloutsos:
Graph-Based Fraud Detection in the Face of Camouflage. ACM Trans. Knowl. Discov. Data 11(4): 44:1-44:26 (2017) - [c17]Shenghua Liu, Bryan Hooi, Christos Faloutsos:
HoloScope: Topology-and-Spike Aware Fraud Detection. CIKM 2017: 1539-1548 - [c16]Pedro Costa, Aurélio J. C. Campilho, Bryan Hooi, Asim Smailagic, Kris Kitani, Shenghua Liu, Christos Faloutsos, Adrian Galdran:
EyeQual: Accurate, Explainable, Retinal Image Quality Assessment. ICMLA 2017: 323-330 - [c15]Marko Jereminov, Amritanshu Pandey, Hyun Ah Song, Bryan Hooi, Christos Faloutsos, Larry T. Pileggi:
Linear load model for robust power system analysis. ISGT Europe 2017: 1-6 - [c14]Kijung Shin, Bryan Hooi, Jisu Kim, Christos Faloutsos:
DenseAlert: Incremental Dense-Subtensor Detection in Tensor Streams. KDD 2017: 1057-1066 - [c13]Bryan Hooi, Shenghua Liu, Asim Smailagic, Christos Faloutsos:
BeatLex: Summarizing and Forecasting Time Series with Patterns. ECML/PKDD (2) 2017: 3-19 - [c12]Hemank Lamba, Bryan Hooi, Kijung Shin, Christos Faloutsos, Jürgen Pfeffer:
zooRank: Ranking Suspicious Entities in Time-Evolving Tensors. ECML/PKDD (1) 2017: 68-84 - [c11]Hyun Ah Song, Bryan Hooi, Marko Jereminov, Amritanshu Pandey, Larry T. Pileggi, Christos Faloutsos:
PowerCast: Mining and Forecasting Power Grid Sequences. ECML/PKDD (2) 2017: 606-621 - [c10]Chi Ling Chan, Justin Lai, Bryan Hooi, Todd Davies:
The Message or the Messenger? Inferring Virality and Diffusion Structure from Online Petition Signature Data. SocInfo (1) 2017: 499-517 - [c9]Kijung Shin, Bryan Hooi, Jisu Kim, Christos Faloutsos:
D-Cube: Dense-Block Detection in Terabyte-Scale Tensors. WSDM 2017: 681-689 - [c8]Tsubasa Takahashi, Bryan Hooi, Christos Faloutsos:
AutoCyclone: Automatic Mining of Cyclic Online Activities with Robust Tensor Factorization. WWW 2017: 213-221 - [i7]Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, V. S. Subrahmanian:
FairJudge: Trustworthy User Prediction in Rating Platforms. CoRR abs/1703.10545 (2017) - [i6]Shenghua Liu, Bryan Hooi, Christos Faloutsos:
HoloScope: Topology-and-Spike Aware Fraud Detection. CoRR abs/1705.02505 (2017) - [i5]Kijung Shin, Bryan Hooi, Jisu Kim, Christos Faloutsos:
DenseAlert: Incremental Dense-Subtensor Detection in Tensor Streams. CoRR abs/1706.03374 (2017) - [i4]Chi Ling Chan, Justin Lai, Bryan Hooi, Todd Davies:
The Message or the Messenger? Inferring Virality and Diffusion Structure from Online Petition Signature Data. CoRR abs/1708.03472 (2017) - [i3]Wenjie Feng, Shenghua Liu, Christos Faloutsos, Bryan Hooi, Huawei Shen, Xueqi Cheng:
EagleMine: Vision-Guided Mining in Large Graphs. CoRR abs/1710.08756 (2017) - 2016
- [j1]Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, Christos Faloutsos:
Spotting Suspicious Behaviors in Multimodal Data: A General Metric and Algorithms. IEEE Trans. Knowl. Data Eng. 28(8): 2187-2200 (2016) - [c7]Neil Shah, Alex Beutel, Bryan Hooi, Leman Akoglu, Stephan Günnemann, Disha Makhija, Mohit Kumar, Christos Faloutsos:
EdgeCentric: Anomaly Detection in Edge-Attributed Networks. ICDM Workshops 2016: 327-334 - [c6]Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, Christos Faloutsos:
FRAUDAR: Bounding Graph Fraud in the Face of Camouflage. KDD 2016: 895-904 - [c5]Bryan Hooi, Hyun Ah Song, Evangelos E. Papalexakis, Rakesh Agrawal, Christos Faloutsos:
Matrices, Compression, Learning Curves: Formulation, and the GroupNteach Algorithms. PAKDD (2) 2016: 376-387 - [c4]Kijung Shin, Bryan Hooi, Christos Faloutsos:
M-Zoom: Fast Dense-Block Detection in Tensors with Quality Guarantees. ECML/PKDD (1) 2016: 264-280 - [c3]Bryan Hooi, Neil Shah, Alex Beutel, Stephan Günnemann, Leman Akoglu, Mohit Kumar, Disha Makhija, Christos Faloutsos:
BIRDNEST: Bayesian Inference for Ratings-Fraud Detection. SDM 2016: 495-503 - 2015
- [c2]Bryan Hooi, Hyun Ah Song, Evangelos E. Papalexakis, Rakesh Agrawal, Christos Faloutsos:
Education, Learning and Information Theory. ICDM Workshops 2015: 269-272 - [c1]Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, Christos Faloutsos:
A General Suspiciousness Metric for Dense Blocks in Multimodal Data. ICDM 2015: 781-786 - [i2]Neil Shah, Alex Beutel, Bryan Hooi, Leman Akoglu, Stephan Günnemann, Disha Makhija, Mohit Kumar, Christos Faloutsos:
EdgeCentric: Anomaly Detection in Edge-Attributed Networks. CoRR abs/1510.05544 (2015) - [i1]Bryan Hooi, Neil Shah, Alex Beutel, Stephan Günnemann, Leman Akoglu, Mohit Kumar, Disha Makhija, Christos Faloutsos:
BIRDNEST: Bayesian Inference for Ratings-Fraud Detection. CoRR abs/1511.06030 (2015)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-02-03 21:12 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint