![](https://dblp.org/img/logo.320x120.png)
![search dblp search dblp](https://dblp.org/img/search.dark.16x16.png)
![search dblp](https://dblp.org/img/search.dark.16x16.png)
default search action
Marc Sebban
Person information
Refine list
![note](https://dblp.org/img/note-mark.dark.12x12.png)
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c75]Jorge Azorín López, Marc Sebban, Nahuel E. Garcia-D'Urso, Amaury Habrard, Andrés Fuster Guilló:
Generative shape deformation with optimal transport using learned transformations. IJCNN 2024: 1-8 - [c74]Benjamin Girault, Rémi Emonet, Amaury Habrard, Jordan Patracone, Marc Sebban:
Approximation Error of Sobolev Regular Functions with Tanh Neural Networks: Theoretical Impact on PINNs. ECML/PKDD (4) 2024: 266-282 - 2023
- [c73]Eduardo Brandao
, Stefan Duffner
, Rémi Emonet
, Amaury Habrard
, François Jacquenet
, Marc Sebban
:
Is My Neural Net Driven by the MDL Principle? ECML/PKDD (2) 2023: 173-189 - [c72]Nahuel E. Garcia-D'Urso, Pablo Ramon Guevara, Jorge Azorín López, Marc Sebban, Amaury Habrard, Andrés Fuster Guilló:
Predictive Modeling of Body Shape Changes in Individuals on Dietetic Treatment Using Recurrent Networks. UCAmI (2) 2023: 100-111 - 2022
- [j34]Luis Felipe Borja-Borja
, Jorge Azorín López
, Marcelo Saval-Calvo
, Andrés Fuster Guilló
, Marc Sebban:
Architecture for Automatic Recognition of Group Activities Using Local Motions and Context. IEEE Access 10: 79874-79889 (2022) - [j33]Eduardo Brandao
, Jean-Philippe Colombier
, Stefan Duffner
, Rémi Emonet
, Florence Garrelie
, Amaury Habrard
, François Jacquenet
, Anthony Nakhoul
, Marc Sebban
:
Learning PDE to Model Self-Organization of Matter. Entropy 24(8): 1096 (2022) - [j32]Rémi Viola
, Léo Gautheron, Amaury Habrard, Marc Sebban
:
MetaAP: A meta-tree-based ranking algorithm optimizing the average precision from imbalanced data. Pattern Recognit. Lett. 161: 161-167 (2022) - [c71]Tanguy Kerdoncuff, Rémi Emonet, Michaël Perrot, Marc Sebban:
Optimal Tensor Transport. AAAI 2022: 7124-7132 - [c70]Rehan Jhuboo, Ievgen Redko, Alain Guignandon, Françoise Peyrin, Marc Sebban:
Why do State-of-the-art Super-Resolution Methods not work well for Bone Microstructure CT Imaging? EUSIPCO 2022: 1283-1287 - [c69]Sibylle Marcotte, Amélie Barbe, Rémi Gribonval, Titouan Vayer, Marc Sebban, Pierre Borgnat, Paulo Gonçalves:
Fast Multiscale Diffusion On Graphs. ICASSP 2022: 5627-5631 - 2021
- [j31]Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou, Marc Sebban:
A Nearest Neighbor Algorithm for Imbalanced Classification. Int. J. Artif. Intell. Tools 30(3): 2150013:1-2150013:27 (2021) - [j30]Tanguy Kerdoncuff
, Rémi Emonet, Marc Sebban:
Sampled Gromov Wasserstein. Mach. Learn. 110(8): 2151-2186 (2021) - [j29]Jorge Azorín López
, Marc Sebban, Andrés Fuster Guilló
, Marcelo Saval-Calvo, Amaury Habrard:
Iterative multilinear optimization for planar model fitting under geometric constraints. PeerJ Comput. Sci. 7: e691 (2021) - [c68]Amélie Barbe, Paulo Gonçalves, Marc Sebban, Pierre Borgnat, Rémi Gribonval, Titouan Vayer:
Optimization of the Diffusion Time in Graph Diffused-Wasserstein Distances: Application to Domain Adaptation. ICTAI 2021: 786-790 - [i12]Sibylle Marcotte, Amélie Barbe, Rémi Gribonval, Titouan Vayer, Marc Sebban, Pierre Borgnat, Paulo Gonçalves:
Fast Multiscale Diffusion on Graphs. CoRR abs/2104.14652 (2021) - 2020
- [j28]Léo Gautheron, Amaury Habrard, Emilie Morvant
, Marc Sebban:
Metric Learning from Imbalanced Data with Generalization Guarantees. Pattern Recognit. Lett. 133: 298-304 (2020) - [c67]Sofien Dhouib, Ievgen Redko, Tanguy Kerdoncuff, Rémi Emonet, Marc Sebban:
A Swiss Army Knife for Minimax Optimal Transport. ICML 2020: 2504-2513 - [c66]Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Marc Sebban:
Learning from Few Positives: a Provably Accurate Metric Learning Algorithm to Deal with Imbalanced Data. IJCAI 2020: 2155-2161 - [c65]Tanguy Kerdoncuff, Rémi Emonet, Marc Sebban:
Metric Learning in Optimal Transport for Domain Adaptation. IJCAI 2020: 2162-2168 - [c64]Léo Gautheron, Pascal Germain
, Amaury Habrard, Guillaume Metzler, Emilie Morvant, Marc Sebban, Valentina Zantedeschi:
Landmark-Based Ensemble Learning with Random Fourier Features and Gradient Boosting. ECML/PKDD (3) 2020: 141-157 - [c63]Amélie Barbe, Marc Sebban, Paulo Gonçalves, Pierre Borgnat, Rémi Gribonval:
Graph Diffusion Wasserstein Distances. ECML/PKDD (2) 2020: 577-592 - [i11]Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, Younès Bennani:
A survey on domain adaptation theory. CoRR abs/2004.11829 (2020)
2010 – 2019
- 2019
- [j27]Ievgen Redko
, Amaury Habrard, Marc Sebban:
On the analysis of adaptability in multi-source domain adaptation. Mach. Learn. 108(8-9): 1635-1652 (2019) - [j26]Tien-Nam Le
, Amaury Habrard, Marc Sebban:
Deep multi-Wasserstein unsupervised domain adaptation. Pattern Recognit. Lett. 125: 249-255 (2019) - [c62]Kevin Bascol, Rémi Emonet, Élisa Fromont, Amaury Habrard, Guillaume Metzler, Marc Sebban:
From Cost-Sensitive to Tight F-measure Bounds. AISTATS 2019: 1245-1253 - [c61]Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou, Marc Sebban:
An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data. ICTAI 2019: 243-250 - [c60]Léo Gautheron, Amaury Habrard, Emilie Morvant, Marc Sebban:
Metric Learning from Imbalanced Data. ICTAI 2019: 923-930 - [c59]Nam Lê Tien, Amaury Habrard, Marc Sebban:
Differentially Private Optimal Transport: Application to Domain Adaptation. IJCAI 2019: 2852-2858 - [i10]Léo Gautheron, Pascal Germain, Amaury Habrard, Emilie Morvant, Marc Sebban, Valentina Zantedeschi:
Learning Landmark-Based Ensembles with Random Fourier Features and Gradient Boosting. CoRR abs/1906.06203 (2019) - [i9]Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou, Marc Sebban:
An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data. CoRR abs/1909.00693 (2019) - [i8]Léo Gautheron, Emilie Morvant, Amaury Habrard, Marc Sebban:
Metric Learning from Imbalanced Data. CoRR abs/1909.01651 (2019) - 2018
- [j25]Guillaume Metzler, Xavier Badiche, Brahim Belkasmi, Élisa Fromont
, Amaury Habrard, Marc Sebban:
Learning maximum excluding ellipsoids from imbalanced data with theoretical guarantees. Pattern Recognit. Lett. 112: 310-316 (2018) - [c58]Jordan Fréry, Amaury Habrard, Marc Sebban, Olivier Caelen, Liyun He-Guelton:
Online Non-linear Gradient Boosting in Multi-latent Spaces. IDA 2018: 99-110 - [c57]Guillaume Metzler, Xavier Badiche, Brahim Belkasmi, Élisa Fromont
, Amaury Habrard, Marc Sebban:
Tree-Based Cost Sensitive Methods for Fraud Detection in Imbalanced Data. IDA 2018: 213-224 - [c56]Jordan Fréry, Amaury Habrard, Marc Sebban, Liyun He-Guelton:
Non-Linear Gradient Boosting for Class-Imbalance Learning. LIDTA@ECML/PKDD 2018: 38-51 - [c55]Valentina Zantedeschi, Rémi Emonet, Marc Sebban:
Fast and Provably Effective Multi-view Classification with Landmark-Based SVM. ECML/PKDD (2) 2018: 193-208 - 2017
- [c54]Jordan Fréry, Amaury Habrard, Marc Sebban, Olivier Caelen, Liyun He-Guelton:
Efficient Top Rank Optimization with Gradient Boosting for Supervised Anomaly Detection. ECML/PKDD (1) 2017: 20-35 - [c53]Ievgen Redko, Amaury Habrard, Marc Sebban:
Theoretical Analysis of Domain Adaptation with Optimal Transport. ECML/PKDD (2) 2017: 737-753 - [p1]Basura Fernando, Rahaf Aljundi, Rémi Emonet, Amaury Habrard, Marc Sebban, Tinne Tuytelaars
:
Unsupervised Domain Adaptation Based on Subspace Alignment. Domain Adaptation in Computer Vision Applications 2017: 81-94 - [i7]Valentina Zantedeschi, Rémi Emonet, Marc Sebban:
L3-SVMs: Landmarks-based Linear Local Support Vectors Machines. CoRR abs/1703.00284 (2017) - 2016
- [j24]José Carlos Rangel
, Miguel Cazorla
, Ismael García-Varea
, Jesus Martínez-Gómez
, Élisa Fromont
, Marc Sebban:
Scene classification based on semantic labeling. Adv. Robotics 30(11-12): 758-769 (2016) - [j23]Aurélien Bellet, José Francisco Bernabeu, Amaury Habrard, Marc Sebban:
Learning discriminative tree edit similarities for linear classification - Application to melody recognition. Neurocomputing 214: 155-161 (2016) - [j22]Amaury Habrard, Jean-Philippe Peyrache, Marc Sebban:
A new boosting algorithm for provably accurate unsupervised domain adaptation. Knowl. Inf. Syst. 47(1): 45-73 (2016) - [c52]Valentina Zantedeschi, Rémi Emonet, Marc Sebban:
Metric Learning as Convex Combinations of Local Models with Generalization Guarantees. CVPR 2016: 1478-1486 - [c51]Valentina Zantedeschi, Rémi Emonet, Marc Sebban:
beta-risk: a New Surrogate Risk for Learning from Weakly Labeled Data. NIPS 2016: 4358-4366 - [i6]Valentina Zantedeschi, Rémi Emonet, Marc Sebban:
Lipschitz Continuity of Mahalanobis Distances and Bilinear Forms. CoRR abs/1604.01376 (2016) - [i5]Ievgen Redko, Amaury Habrard, Marc Sebban:
Theoretical Analysis of Domain Adaptation with Optimal Transport. CoRR abs/1610.04420 (2016) - [i4]Maria-Irina Nicolae, Éric Gaussier, Amaury Habrard, Marc Sebban:
Similarity Learning for Time Series Classification. CoRR abs/1610.04783 (2016) - 2015
- [b1]Aurélien Bellet, Amaury Habrard, Marc Sebban:
Metric Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers 2015, ISBN 978-3-031-00444-5 - [c50]Imtiaz Masud Ziko, Élisa Fromont, Damien Muselet, Marc Sebban:
Supervised spectral subspace clustering for visual dictionary creation in the context of image classification. ACPR 2015: 356-360 - [c49]Rahaf Aljundi, Rémi Emonet, Damien Muselet, Marc Sebban:
Landmarks-based kernelized subspace alignment for unsupervised domain adaptation. CVPR 2015: 56-63 - [c48]Maria-Irina Nicolae, Marc Sebban, Amaury Habrard, Éric Gaussier, Massih-Reza Amini:
Algorithmic Robustness for Semi-Supervised (ε, γ, τ) -Good Metric Learning. ICONIP (1) 2015: 253-263 - [c47]Maria-Irina Nicolae, Éric Gaussier, Amaury Habrard, Marc Sebban:
Joint Semi-supervised Similarity Learning for Linear Classification. ECML/PKDD (1) 2015: 594-609 - [c46]José Carlos Rangel
, Miguel Cazorla
, Ismael García-Varea
, Jesus Martínez-Gómez
, Élisa Fromont, Marc Sebban:
Computing Image Descriptors from Annotations Acquired from External Tools. ROBOT (2) 2015: 673-683 - [c45]Maria-Irina Nicolae, Marc Sebban, Amaury Habrard, Éric Gaussier, Massih-Reza Amini:
Algorithmic Robustness for Semi-Supervised (ε, γ, τ)-Good Metric Learning. ICLR (Workshop) 2015 - 2014
- [j21]Aurélien Bellet, Amaury Habrard, Emilie Morvant, Marc Sebban:
Learning a priori constrained weighted majority votes. Mach. Learn. 97(1-2): 129-154 (2014) - [c44]Michaël Perrot, Amaury Habrard, Damien Muselet, Marc Sebban:
Modeling Perceptual Color Differences by Local Metric Learning. ECCV (5) 2014: 96-111 - [i3]Basura Fernando, Amaury Habrard, Marc Sebban, Tinne Tuytelaars:
Subspace Alignment For Domain Adaptation. CoRR abs/1409.5241 (2014) - 2013
- [j20]Amaury Habrard, Jean-Philippe Peyrache, Marc Sebban:
Iterative Self-Labeling Domain Adaptation for Linear Structured Image Classification. Int. J. Artif. Intell. Tools 22(5) (2013) - [c43]Basura Fernando, Amaury Habrard, Marc Sebban, Tinne Tuytelaars
:
Unsupervised Visual Domain Adaptation Using Subspace Alignment. ICCV 2013: 2960-2967 - [c42]Amaury Habrard, Jean-Philippe Peyrache, Marc Sebban:
Boosting for Unsupervised Domain Adaptation. ECML/PKDD (2) 2013: 433-448 - [i2]Marc Sebban, Richard Nock:
Combining Feature and Prototype Pruning by Uncertainty Minimization. CoRR abs/1301.3891 (2013) - [i1]Aurélien Bellet, Amaury Habrard, Marc Sebban:
A Survey on Metric Learning for Feature Vectors and Structured Data. CoRR abs/1306.6709 (2013) - 2012
- [j19]Aurélien Bellet, Amaury Habrard, Marc Sebban:
Good edit similarity learning by loss minimization. Mach. Learn. 89(1-2): 5-35 (2012) - [j18]Basura Fernando, Élisa Fromont
, Damien Muselet, Marc Sebban:
Supervised learning of Gaussian mixture models for visual vocabulary generation. Pattern Recognit. 45(2): 897-907 (2012) - [c41]Basura Fernando, Élisa Fromont, Damien Muselet, Marc Sebban:
Discriminative feature fusion for image classification. CVPR 2012: 3434-3441 - [c40]Aurélien Bellet, Amaury Habrard, Marc Sebban:
Similarity Learning for Provably Accurate Sparse Linear Classification. ICML 2012 - [c39]Leonor Becerra-Bonache, Élisa Fromont, Amaury Habrard, Michaël Perrot, Marc Sebban:
Speeding Up Syntactic Learning Using Contextual Information. ICGI 2012: 49-53 - 2011
- [c38]Aurélien Bellet, Marc Sebban, Amaury Habrard:
An Experimental Study on Learning with Good Edit Similarity Functions. ICTAI 2011: 126-133 - [c37]Amaury Habrard, Jean-Philippe Peyrache, Marc Sebban:
Domain Adaptation with Good Edit Similarities: A Sparse Way to Deal with Scaling and Rotation Problems in Image Classification. ICTAI 2011: 181-188 - [c36]Marc Bernard, Baptiste Jeudy, Jean-Philippe Peyrache, Marc Sebban, Franck Thollard:
Using the H-Divergence to Prune Probabilistic Automata. ICTAI 2011: 725-731 - [c35]Aurélien Bellet, Amaury Habrard, Marc Sebban:
Learning Good Edit Similarities with Generalization Guarantees. ECML/PKDD (1) 2011: 188-203 - 2010
- [j17]Aurélien Bellet, Marc Bernard, Thierry Murgue, Marc Sebban:
Learning state machine-based string edit kernels. Pattern Recognit. 43(6): 2330-2339 (2010) - [c34]Cécile Barat, Christophe Ducottet, Élisa Fromont, Anne-Claire Legrand, Marc Sebban:
Weighted Symbols-Based Edit Distance for String-Structured Image Classification. ECML/PKDD (1) 2010: 72-86
2000 – 2009
- 2009
- [j16]Jean-Christophe Janodet, Marc Sebban, Henri-Maxime Suchier:
Boosting Classifiers Built from Different Subsets of Features. Fundam. Informaticae 96(1-2): 89-109 (2009) - [j15]Stéphanie Jacquemont, François Jacquenet, Marc Sebban:
Mining probabilistic automata: a statistical view of sequential pattern mining. Mach. Learn. 75(1): 91-127 (2009) - [j14]Stéphanie Jacquemont, François Jacquenet, Marc Sebban:
A lower bound on the sample size needed to perform a significant frequent pattern mining task. Pattern Recognit. Lett. 30(11): 960-967 (2009) - [c33]Laurent Boyer, Olivier Gandrillon, Amaury Habrard, Mathilde Pellerin, Marc Sebban:
Learning Constrained Edit State Machines. ICTAI 2009: 734-741 - [c32]Stéphanie Jacquemont, François Jacquenet, Marc Sebban:
Discovering Patterns in Flows: A Privacy Preserving Approach with the ACSM Prototype. ECML/PKDD (2) 2009: 734-737 - 2008
- [j13]Marc Bernard, Laurent Boyer, Amaury Habrard, Marc Sebban:
Learning probabilistic models of tree edit distance. Pattern Recognit. 41(8): 2611-2629 (2008) - [c31]Laurent Boyer, Yann Esposito, Amaury Habrard, José Oncina
, Marc Sebban:
SEDiL: Software for Edit Distance Learning. ECML/PKDD (2) 2008: 672-677 - [c30]Amaury Habrard, José Manuel Iñesta Quereda
, David Rizo
, Marc Sebban:
Melody Recognition with Learned Edit Distances. SSPR/SPR 2008: 86-96 - 2007
- [c29]Laurent Boyer, Amaury Habrard, Marc Sebban:
Learning Metrics Between Tree Structured Data: Application to Image Recognition. ECML 2007: 54-66 - [c28]Stéphanie Jacquemont, François Jacquenet, Marc Sebban:
Correct your text with Google. Web Intelligence 2007: 170-176 - 2006
- [j12]José Oncina
, Marc Sebban:
Learning stochastic edit distance: Application in handwritten character recognition. Pattern Recognit. 39(9): 1575-1587 (2006) - [c27]Marc Bernard, Amaury Habrard, Marc Sebban:
Learning Stochastic Tree Edit Distance. ECML 2006: 42-53 - [c26]Marc Bernard, Jean-Christophe Janodet, Marc Sebban:
A Discriminative Model of Stochastic Edit Distance in the Form of a Conditional Transducer. ICGI 2006: 240-252 - [c25]Stéphanie Jacquemont, François Jacquenet, Marc Sebban:
Sequence Mining Without Sequences: A New Way for Privacy Preserving. ICTAI 2006: 347-354 - [c24]José Oncina
, Marc Sebban:
Using Learned Conditional Distributions as Edit Distance. SSPR/SPR 2006: 403-411 - 2005
- [j11]Amaury Habrard, Marc Bernard, Marc Sebban:
Detecting Irrelevant Subtrees to Improve Probabilistic Learning from Tree-structured Data. Fundam. Informaticae 66(1-2): 103-130 (2005) - [j10]Jean-Christophe Janodet, Richard Nock, Marc Sebban, Henri-Maxime Suchier:
Adaptation du boosting à l'inférence grammaticale via l'utilisation d'un oracle de confiance. Rev. d'Intelligence Artif. 19(4-5): 713-740 (2005) - [c23]Stéphanie Jacquemont, François Jacquenet, Marc Sebban:
Constrained Sequence Mining based on Probabilistic Finite State Automata. CAP 2005: 15-30 - [c22]Amaury Habrard, Marc Bernard, Marc Sebban:
Correction of Uniformly Noisy Distributions to Improve Probabilistic Grammatical Inference Algorithms. FLAIRS 2005: 493-498 - 2004
- [c21]Jean-Christophe Janodet, Richard Nock, Marc Sebban, Henri-Maxime Suchier:
Boosting grammatical inference with confidence oracles. ICML 2004 - [c20]François Jacquenet, Marc Sebban, Georges Valétudie:
Mining Decision Rules from Deterministic Finite Automata. ICTAI 2004: 362-367 - 2003
- [j9]Richard Nock, Marc Sebban, Didier Bernard:
A Simple Locally Adaptive Nearest Neighbor Rule With Application To Pollution Forecasting. Int. J. Pattern Recognit. Artif. Intell. 17(8): 1369-1382 (2003) - [c19]Amaury Habrard, Marc Bernard, Marc Sebban:
Improvement of the State Merging Rule on Noisy Data in Probabilistic Grammatical Inference. ECML 2003: 169-180 - [c18]Marc Sebban, Henri-Maxime Suchier:
On Boosting Improvement: Error Reduction and Convergence Speed-Up. ECML 2003: 349-360 - [c17]Marc Sebban, Jean-Christophe Janodet:
On State Merging in Grammatical Inference: A Statistical Approach for Dealing with Noisy Data. ICML 2003: 688-695 - 2002
- [j8]Marc Sebban, Igor Mokrousov
, Nalin Rastogi, Christophe Sola
:
A data-mining approach to spacer oligonucleotide typing of Mycobacterium tuberculosis. Bioinform. 18(2): 235-243 (2002) - [j7]Marc Sebban, Richard Nock, Stéphane Lallich:
Stopping Criterion for Boosting-Based Data Reduction Techniques: from Binary to Multiclass Problem. J. Mach. Learn. Res. 3: 863-885 (2002) - [j6]Marc Sebban, Richard Nock:
A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recognit. 35(4): 835-846 (2002) - [c16]Franck Thollard, Marc Sebban, Philippe Ézéquel:
Boosting Density Function Estimators. ECML 2002: 431-443 - 2001
- [j5]Richard Nock, Marc Sebban:
Advances in Adaptive Prototype Weighting and Selection. Int. J. Artif. Intell. Tools 10(1-2): 137-155 (2001) - [j4]Richard Nock, Marc Sebban:
An improved bound on the finite-sample risk of the nearest neighbor rule. Pattern Recognit. Lett. 22(3/4): 407-412 (2001) - [j3]Richard Nock, Marc Sebban:
A Bayesian boosting theorem. Pattern Recognit. Lett. 22(3/4): 413-419 (2001) - [c15]Marc Sebban, Richard Nock:
Improvement of Nearest-Neighbor Classifiers via Support Vector Machines. FLAIRS 2001: 113-117 - [c14]Marc Sebban, Richard Nock, Stéphane Lallich:
Boosting Neighborhood-Based Classifiers. ICML 2001: 505-512 - 2000
- [j2]Marc Sebban, Richard Nock, Jean-Hugues Chauchat, Ricco Rakotomalala:
Impact of learning set quality and size on decision tree performances. Int. J. Comput. Syst. Signals 1(1): 85-105 (2000) - [c13]Marc Sebban, Richard Nock:
Identifying and Eliminating Irrelevant Instances Using Information Theory. AI 2000: 90-101 - [c12]Richard Nock, Marc Sebban:
Sharper Bounds for the Hardness of Prototype and Feature Selection. ALT 2000: 224-237 - [c11]Richard Nock, Marc Sebban, Pascal Jabby:
A Symmetric Nearest Neighbor Learning Rule. EWCBR 2000: 222-233 - [c10]Richard Nock, Marc Sebban:
A Boosting-Based Prototype Weighting and Selection Scheme. FLAIRS 2000: 71-75 - [c9]Marc Sebban, Richard Nock:
Instance Pruning as an Information Preserving Problem. ICML 2000: 855-862 - [c8]Marc Sebban, Richard Nock:
Contribution of Dataset Reduction Techniques to Tree-Simplification and Knowledge Discovery. PKDD 2000: 44-53 - [c7]Marc Sebban, Richard Nock:
Combining Feature and Example Pruning by Uncertainty Minimization. UAI 2000: 533-540
1990 – 1999
- 1999
- [c6]Marc Sebban, Gilles Richard:
From Theoretical Learnability to Statistical Measures of the Learnable. IDA 1999: 3-14 - [c5]Marc Sebban, Djamel A. Zighed, S. Di Palma:
Selection and Statistical Validation of Features and Prototypes. PKDD 1999: 184-192 - [c4]Marc Sebban, Richard Nock:
Contribution of Boosting in Wrapper Models. PKDD 1999: 214-222 - [c3]Richard Nock, Marc Sebban, Pascal Jappy:
Experiments on a Representation-Independent "Top-Down and Prune" Induction Scheme. PKDD 1999: 223-231 - 1998
- [c2]Marc Sebban, Anne M. Landraud:
Strings Clustering and Statistical Validation of Clusters. Canadian AI 1998: 298-309 - [c1]Marc Sebban:
Prototype Selection from Homogeneous Subsets by a Monte Carlo Sampling. FLAIRS 1998: 250-253 - 1996
- [j1]Sabine Rabaséda, Ricco Rakotomalala, Marc Sebban:
A Comparison of Some Contextual Discretization Methods. Inf. Sci. 92(1-4): 137-157 (1996)
Coauthor Index
![](https://dblp.org/img/cog.dark.24x24.png)
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 23:00 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint