default search action
Martin Holena
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j19]Akbar Davoodi, Martin Holena, Martin Brunovsky, Aditi Kathpalia, Jaroslav Hlinka, Martin Bares, Milan Palus:
Response prediction of antidepressants: Using graph theory tools for brain network connectivity analysis. Biomed. Signal Process. Control. 103: 107362 (2025) - 2024
- [c93]Martin Holena, Jan Koza:
Suitability of Modern Neural Networks for Active and Transfer Learning in Surrogate-Assisted Black-Box Optimization. IAL@PKDD/ECML 2024: 47-67 - [c92]Marek Dedic, Lukás Bajer, Pavel Procházka, Martin Holena:
Balancing performance and complexity with adaptive graph coarsening. Tiny Papers @ ICLR 2024 - [c91]Uladzislau Yorsh, Martin Holena, Ondrej Bojar, David Herel:
On Difficulties of Attention Factorization through Shared Memory. Tiny Papers @ ICLR 2024 - [c90]Maros Bratko, Thomas Seidelmann, Martin Holena:
Graph Neural Networks and Deep Reinforcement Learning in Job Scheduling. ITAT 2024: 15-23 - [c89]Theodor Ladin, Lukás Korel, Martin Holena:
Textual Embeddings with Word-Type-Weighted Word2Vec. ITAT 2024: 37-42 - [e6]Lucie Ciencialová, Martin Holena, Róbert Jajcay, Tatiana Jajcayová, Martin Macaj, Frantisek Mráz, Richard Ostertág, Dana Pardubská, Martin Plátek, Martin Stanek:
Proceedings of the 24th Conference Information Technologies - Applications and Theory (ITAT 2024), Drienica, Slovakia, September 20-24, 2024. CEUR Workshop Proceedings 3792, CEUR-WS.org 2024 [contents] - [i9]Uladzislau Yorsh, Martin Holeña, Ondrej Bojar, David Herel:
On Difficulties of Attention Factorization through Shared Memory. CoRR abs/2404.00798 (2024) - 2023
- [j18]Lukás Korel, Uladzislau Yorsh, Alexander S. Behr, Norbert Kockmann, Martin Holena:
Text-to-Ontology Mapping via Natural Language Processing with Application to Search for Relevant Ontologies in Catalysis. Comput. 12(1): 14 (2023) - [j17]Ayyub Sheikhi, Radko Mesiar, Martin Holena:
A dimension reduction in neural network using copula matrix. Int. J. Gen. Syst. 52(2): 131-146 (2023) - [c88]Lukás Korel, Alexander S. Behr, Norbert Kockmann, Martin Holena:
Using Paraphrasers to Detect Duplicities in Ontologies. KEOD 2023: 40-49 - [c87]Jirí Tumpach, Jan Koza, Martin Holena:
Improving Optimization with Gaussian Processes in the Covariance Matrix Adaptation Evolution Strategy. ITAT 2023: 82-88 - [e5]Brona Brejová, Lucie Ciencialová, Martin Holena, Róbert Jajcay, Tatiana Jajcayová, Matej Lexa, Frantisek Mráz, Dana Pardubská, Martin Plátek:
Proceedings of the 23rd Conference Information Technologies - Applications and Theory (ITAT 2023), Tatranské Matliare, Slovakia, September 22-26, 2023. CEUR Workshop Proceedings 3498, CEUR-WS.org 2023 [contents] - [i8]Lukás Korel, Alexander S. Behr, Norbert Kockmann, Martin Holena:
Using Artificial Neural Networks to Determine Ontologies Most Relevant to Scientific Texts. CoRR abs/2309.09203 (2023) - [i7]Lukás Korel, Petr Pulc, Jirí Tumpach, Martin Holena:
Video Scene Location Recognition with Neural Networks. CoRR abs/2309.11928 (2023) - 2022
- [c86]Jirí Tumpach, Jan Koza, Martin Holena:
Neural-network-based estimation of normal distributions in black-box optimization. ESANN 2022 - [c85]Jan Kalina, Jirí Tumpach, Martin Holena:
On Combining Robustness and Regularization in Training Multilayer Perceptrons over Small Data. IJCNN 2022: 1-8 - [c84]Uladzislau Yorsh, Alexander S. Behr, Norbert Kockmann, Martin Holena:
Text-to-Ontology Mapping via Natural Language Processing Models. ITAT 2022: 28-34 - [c83]Lukás Korel, Alexander S. Behr, Norbert Kockmann, Martin Holena:
Using Artificial Neural Networks to Determine Ontologies Most Relevant to Scientific Texts. ITAT 2022: 44-54 - [e4]Lucie Ciencialová, Martin Holena, Robert Jajcay, Tatiana Jajcayová, Frantisek Mráz, Dana Pardubská, Martin Plátek:
Proceedings of the 22nd Conference Information Technologies - Applications and Theory (ITAT 2022), Zuberec, Slovakia, September 23-27, 2022. CEUR Workshop Proceedings 3226, CEUR-WS.org 2022 [contents] - [i6]Zbynek Pitra, Jan Koza, Jirí Tumpach, Martin Holena:
Landscape Analysis for Surrogate Models in the Evolutionary Black-Box Context. CoRR abs/2203.11315 (2022) - 2021
- [c82]Zbynek Pitra, Marek Hanus, Jan Koza, Jirí Tumpach, Martin Holena:
Interaction between model and its evolution control in surrogate-assisted CMA evolution strategy. GECCO 2021: 528-536 - [c81]Petr Pulc, Martin Holena:
Unsupervised Construction of Task-Specific Datasets for Object Re-identification. ICCTA 2021: 66-72 - [c80]Jan Koza, Jirí Tumpach, Zbynek Pitra, Martin Holena:
Combining Gaussian Processes and Neural Networks in Surrogate Modelling for Covariance Matrix Adaptation Evolution Strategy. ITAT 2021: 29-38 - [c79]Lukás Korel, Petr Pulc, Jirí Tumpach, Martin Holena:
Video Scene Location Recognition with Neural Networks. ITAT 2021: 85-93 - [c78]Jirí Tumpach, Jan Kalina, Martin Holena:
A Comparison of Regularization Techniques for Shallow Neural NetworksTrained on Small Datasets. ITAT 2021: 94-103 - [c77]Sergej Borisov, Marek Dedic, Martin Holena:
Experimental Investigation of Neural and Weisfeiler-Lehman-Kernel Graph Representations for Downstream Classification. ITAT 2021: 130-139 - [c76]Jan Koza, Jirí Tumpach, Zbynek Pitra, Martin Holena:
Using Past Experience for Configuration of Gaussian Processes in Black-Box Optimization. LION 2021: 167-182 - [c75]Jirí Ruzicka, Jan Koza, Jirí Tumpach, Zbynek Pitra, Martin Holena:
Combining Gaussian Processes with Neural Networks for Active Learning in Optimization. IAL@PKDD/ECML 2021: 105-120 - [e3]Brona Brejová, Lucie Ciencialová, Martin Holena, Frantisek Mráz, Dana Pardubská, Martin Plátek, Tomás Vinar:
Proceedings of the 21st Conference Information Technologies - Applications and Theory (ITAT 2021), Hotel Heľpa, Nízke Tatry and Muránska planina, Slovakia, September 24-28, 2021. CEUR Workshop Proceedings 2962, CEUR-WS.org 2021 [contents] - 2020
- [j16]Martin Kopp, Tomás Pevný, Martin Holena:
Anomaly explanation with random forests. Expert Syst. Appl. 149: 113187 (2020) - [c74]Mikulás Dvorák, Zbynek Pitra, Martin Holena:
Assessment of Surrogate Model Settings Using Landscape Analysis. ITAT 2020: 81-89 - [c73]Radek Busa, Yann Dauxais, Stefan Ecklebe, Natasha Dropka, Martin Holena:
Extraction of Classification Rules from Sequences of Crystal Growth Data. ITAT 2020: 101-107 - [c72]Jirí Tumpach, Martin Holena:
Online Malware Detection with Variational Autoencoders. ITAT 2020: 122-129 - [c71]Marek Dedic, Tomás Pevný, Lukás Bajer, Martin Holena:
Loss Functions for Clustering in Multi-instance Learning. ITAT 2020: 137-146 - [c70]Jan Koza, Marek Krcál, Martin Holena:
Two Semi-supervised Approaches to Malware Detection with Neural Networks. ITAT 2020: 176-185 - [c69]Tomás Sabata, Martin Holena:
Active Learning for LSTM-autoencoder-based Anomaly Detection in Electrocardiogram Readings. IAL@PKDD/ECML 2020: 72-77 - [c68]Zbynek Pitra, Martin Holena:
Towards Landscape Analysis in Adaptive Learning of Surrogate Models. IAL@PKDD/ECML 2020: 78-83 - [e2]Martin Holena, Tomás Horváth, Alica Kelemenová, Frantisek Mráz, Dana Pardubská, Martin Plátek, Petr Sosík:
Proceedings of the 20th Conference Information Technologies - Applications and Theory (ITAT 2020), Hotel Tyrapol, Oravská Lesná, Slovakia, September 18-22, 2020. CEUR Workshop Proceedings 2718, CEUR-WS.org 2020 [contents]
2010 – 2019
- 2019
- [j15]Lukás Bajer, Zbynek Pitra, Jakub Repický, Martin Holena:
Gaussian Process Surrogate Models for the CMA Evolution Strategy. Evol. Comput. 27(4): 665-697 (2019) - [c67]Lukás Bajer, Zbynek Pitra, Jakub Repický, Martin Holena:
Gaussian process surrogate models for the CMA-ES. GECCO (Companion) 2019: 17-18 - [c66]Zbynek Pitra, Jakub Repický, Martin Holena:
Landscape analysis of gaussian process surrogates for the covariance matrix adaptation evolution strategy. GECCO 2019: 691-699 - [c65]Matej Fanta, Petr Pulc, Martin Holena:
Rules Extraction from Neural Networks Trained on Multimedia Data. ITAT 2019: 26-35 - [c64]Jirí Tumpach, Marek Krcál, Martin Holena:
Deep Networks in Online Malware Detection. ITAT 2019: 90-98 - [e1]Petra Barancíková, Martin Holena, Tomás Horváth, Matús Pleva, Rudolf Rosa:
Proceedings of the 19th Conference Information Technologies - Applications and Theory (ITAT 2019), Hotel Zornička, Donovaly, Slovakia, September 20-24, 2019. CEUR Workshop Proceedings 2473, CEUR-WS.org 2019 [contents] - 2018
- [c63]Martin Kopp, Marek Jílek, Martin Holena:
Comparing rule mining approaches for classification with reasoning. ITAT 2018: 52-58 - [c62]Jakub Repický, Martin Holena, Zbynek Pitra:
Automated Selection of Covariance Function for Gaussian process Surrogate Models. ITAT 2018: 64-71 - [c61]Zbynek Pitra, Jakub Repický, Martin Holena:
Boosted Regression Forest for the Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy. ITAT 2018: 72-79 - [c60]Jiri Kozusznik, Petr Pulc, Martin Holena:
Sentiment Analysis from Utterances. ITAT 2018: 92-99 - [c59]Oliver Kerul-Kmec, Petr Pulc, Martin Holena:
Semisupervised Segmentation of UHD Video. ITAT 2018: 100-107 - [c58]Tomás Sabata, Petr Pulc, Martin Holena:
Semi-supervised and Active Learning in Video Scene Classification from Statistical Features. IAL@PKDD/ECML 2018: 24-35 - [c57]Jakub Repický, Zbynek Pitra, Martin Holena:
Adaptive Selection of Gaussian Process Model for Active Learning in Expensive Optimization. IAL@PKDD/ECML 2018: 80-84 - [c56]Zbynek Pitra, Jakub Repický, Martin Holena:
Transfer of Knowledge for Surrogate Model Selection in Cost-Aware Optimization. IAL@PKDD/ECML 2018: 89-94 - [c55]Petr Pulc, Martin Holena:
Hierarchical Motion Tracking Using Matching of Sparse Features. SITIS 2018: 449-456 - 2017
- [c54]Petr Pulc, Martin Holeña:
Towards Real-time Motion Estimation in High-Definition Video Based on Points of Interest. FedCSIS 2017: 67-70 - [c53]Zbynek Pitra, Lukás Bajer, Jakub Repický, Martin Holena:
Ordinal versus metric gaussian process regression in surrogate modelling for CMA evolution strategy. GECCO (Companion) 2017: 177-178 - [c52]Zbynek Pitra, Lukás Bajer, Jakub Repický, Martin Holena:
Overview of surrogate-model versions of covariance matrix adaptation evolution strategy. GECCO (Companion) 2017: 1622-1629 - [c51]Zbynek Pitra, Lukás Bajer, Jakub Repický, Martin Holena:
Comparison of ordinal and metric gaussian process regression as surrogate models for CMA evolution strategy. GECCO (Companion) 2017: 1764-1771 - [c50]Martin Kopp, Matej Nikl, Martin Holena:
Breaking CAPTCHAs with Convolutional Neural Networks. ITAT 2017: 93-99 - [c49]Zbynek Pitra, Lukás Bajer, Jakub Repický, Martin Holena:
Adaptive Doubly Trained Evolution Control for the Covariance Matrix Adaptation Evolution Strategy. ITAT 2017: 120-128 - [c48]Jakub Puchýr, Martin Holena:
Random-Forest-Based Analysis of URL Paths. ITAT 2017: 129-135 - [c47]Jakub Repický, Lukás Bajer, Zbynek Pitra, Martin Holena:
Adaptive Generation-Based Evolution Control for Gaussian Process Surrogate Models. ITAT 2017: 136-143 - [c46]Tomás Sabata, Tomás Borovicka, Martin Holena:
K-best Viterbi Semi-supervized Active Learning in Sequence Labelling. ITAT 2017: 144-152 - [i5]Jakub Repický, Lukás Bajer, Zbynek Pitra, Martin Holena:
Adaptive Generation-Based Evolution Control for Gaussian Process Surrogate Models. CoRR abs/1709.10443 (2017) - 2016
- [j14]Jan Górecki, Marius Hofert, Martin Holena:
An approach to structure determination and estimation of hierarchical Archimedean Copulas and its application to Bayesian classification. J. Intell. Inf. Syst. 46(1): 21-59 (2016) - [c45]Gorka Sorrosal, Cruz E. Borges, Martin Holeña, Ana María Macarulla, Cristina Martin Andonegui, Ainhoa Alonso-Vicario:
Evolutionary Dynamic Optimization of Control Trajectories for the Catalytic Transformation of the Bioethanol-To-Olefins Process using Neural Networks. GECCO (Companion) 2016: 133-134 - [c44]Martin Kopp, Matous Pistora, Martin Holena:
How to Mimic Humans, Guide for Computers. ITAT 2016: 110-117 - [c43]Nikita Orekhov, Lukás Bajer, Martin Holena:
Testing Gaussian Process Surrogates on CEC'2013 Multi-Modal Benchmark. ITAT 2016: 138-146 - [c42]Petr Pulc, Erec Rosenzveig, Martin Holena:
Image Processing in Collaborative Open Narrative Systems. ITAT 2016: 155-162 - [c41]Jakub Repický, Lukás Bajer, Martin Holena:
Traditional Gaussian Process Surrogates in the BBOB Framework. ITAT 2016: 163-171 - [c40]Tomás Sabata, Tomás Borovicka, Martin Holena:
Modeling and Clustering the Behavior of Animals Using Hidden Markov Models. ITAT 2016: 172-178 - [c39]Zbynek Pitra, Lukás Bajer, Martin Holena:
Doubly Trained Evolution Control for the Surrogate CMA-ES. PPSN 2016: 59-68 - 2015
- [j13]David Stefka, Martin Holena:
Dynamic classifier aggregation using interaction-sensitive fuzzy measures. Fuzzy Sets Syst. 270: 25-52 (2015) - [j12]Martin Holena, Lukás Bajer, Martin Scavnicky:
Using Copulas in Data Mining Based on the Observational Calculus. IEEE Trans. Knowl. Data Eng. 27(10): 2851-2864 (2015) - [c38]Lukás Bajer, Zbynek Pitra, Martin Holena:
Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed. GECCO (Companion) 2015: 1143-1150 - [c37]Lukás Bajer, Zbynek Pitra, Martin Holena:
Investigation of Gaussian Processes and Random Forests as Surrogate Models for Evolutionary Black-Box Optimization. GECCO (Companion) 2015: 1351-1352 - [c36]Lukás Bajer, Martin Holena:
Model Guided Sampling Optimization for Low-dimensional Problems. ICAART (2) 2015: 451-456 - [c35]Vojtech Kopal, Martin Holena:
Comparing Non-Linear Regression Methods on Black-Box Optimization Benchmarks. ITAT 2015: 135-142 - [c34]Martin Kopp, Martin Holena:
Evaluation of Association Rules Extracted during Anomaly Explanation. ITAT 2015: 143-149 - [c33]Michal Kopp, Petr Pulc, Martin Holena:
Search for Structure in Audiovisual Recordings of Lectures and Conferences. ITAT 2015: 150-158 - [c32]Andrej Kudinov, Lukás Bajer, Zbynek Pitra, Martin Holena:
Investigation of Gaussian Processes in the Context of Black-Box Evolutionary Optimization. ITAT 2015: 159-166 - [c31]Zbynek Pitra, Lukás Bajer, Martin Holena:
Comparing SVM, Gaussian Process and Random Forest Surrogate Models for the CMA-ES. ITAT 2015: 186-193 - [i4]Lukás Bajer, Martin Holena:
Model Guided Sampling Optimization for Low-dimensional Problems. CoRR abs/1508.07741 (2015) - 2014
- [c30]Alexandre Adrien Chotard, Martin Holena:
A Generalized Markov-Chain Modelling Approach to (1, λ)-ES Linear Optimization. PPSN 2014: 902-911 - [i3]Alexandre Adrien Chotard, Martin Holena:
A Generalized Markov-Chain Modelling Approach to (1,λ)-ES Linear Optimization: Technical Report. CoRR abs/1406.4619 (2014) - [i2]Lukás Bajer, Martin Holena:
Two Gaussian Approaches to Black-Box Optomization. CoRR abs/1411.7806 (2014) - 2013
- [c29]Lukás Bajer, Viktor Charypar, Martin Holena:
Model guided sampling optimization with gaussian processes for expensive black-box optimization. GECCO (Companion) 2013: 1715-1716 - [c28]Jan Górecki, Martin Holena:
Structure Determination and Estimation of Hierarchical Archimedean Copulas Based on Kendall Correlation Matrix. NFMCP 2013: 132-147 - [c27]Lukás Bajer, Martin Holena:
Surrogate Model for Mixed-Variables Evolutionary Optimization Based on GLM and RBF Networks. SOFSEM 2013: 481-490 - [i1]Martin Holena, Alexandre Adrien Chotard:
A Generalized Markov-Chain Modelling Approach to $(1, λ)$-ES Linear Optimization. CoRR abs/1311.5244 (2013) - 2012
- [j11]Martin Holena, Norbert Steinfeldt, Manfred Baerns, David Stefka:
Computing the correlation between catalyst composition and its performance in the catalysed process. Comput. Chem. Eng. 43: 55-67 (2012) - [c26]Martin Holena, David Linke, Lukás Bajer:
Surrogate modeling in the evolutionary optimization of catalytic materials. GECCO 2012: 1095-1102 - [c25]Lukás Bajer, Martin Holena:
RBF-based surrogate model for evolutionary optimization. ITAT 2012: 3-8 - [c24]Radim Demut, Martin Holena:
Conformal sets in neural network regression. ITAT 2012: 17-24 - [c23]Martin Holena, David Stefka:
Fuzzy classification rules based on similarity. ITAT 2012: 25-33 - [c22]Viktor Charypar, Martin Holena:
Evolutionary optimization with active learning of surrogate models and fixed evaluation batch. ITAT 2012: 34-40 - 2011
- [c21]Martin Holena, David Linke, Lukás Bajer:
Case study: constraint handling in evolutionary optimization of catalytic materials. GECCO (Companion) 2011: 333-340 - [c20]Martin Holena, Radim Demut:
Assessing the suitability of surrogate models in evolutionary optimization. ITAT 2011: 31-38 - [c19]David Stefka, Martin Holena:
Dynamic Classifier Aggregation Using Fuzzy t-conorm Integral. SITIS 2011: 126-133 - 2010
- [j10]Petr Hájek, Martin Holena, Jan Rauch:
The GUHA method and its meaning for data mining. J. Comput. Syst. Sci. 76(1): 34-48 (2010) - [c18]Martin Holena, David Linke, Uwe Rodemerck, Lukás Bajer:
Neural Networks as Surrogate Models for Measurements in Optimization Algorithms. ASMTA 2010: 351-366 - [c17]Lukás Bajer, Martin Holena:
Surrogate Model for Continuous and Discrete Genetic Optimization Based on RBF Networks. IDEAL 2010: 251-258 - [c16]David Stefka, Martin Holena:
Dynamic classifier aggregation using fuzzy integral with interaction-sensitive fuzzy measure. ISDA 2010: 225-230 - [c15]Martin Holena:
Two ways of using artificial neural networks in knowledge discovery from chemical materials data. ITAT 2010: 17-24 - [c14]Martin Holena, David Linke, Uwe Rodemerck:
Evolutionary Optimization of Catalysts Assisted by Neural-Network Learning. SEAL 2010: 220-229
2000 – 2009
- 2009
- [j9]Martin Holena:
Measures of ruleset quality for general rules extraction methods. Int. J. Approx. Reason. 50(6): 867-879 (2009) - [c13]David Stefka, Martin Holena:
Classifier Aggregation using Local Classification Confidence. ICAART 2009: 173-178 - [c12]David Stefka, Martin Holena:
Dynamic Classifier Systems and Their Applications to Random Forest Ensembles. ICANNGA 2009: 458-468 - [c11]Martin Holena, David Linke, Norbert Steinfeldt:
Boosted Neural Networks in Evolutionary Computation. ICONIP (2) 2009: 131-140 - [c10]Martin Holena:
Boosted Surrogate Models in Evolutionary Optimization. ITAT 2009: 15-22 - 2008
- [j8]Martin Holena, Tatjana Cukic, Uwe Rodemerck, David Linke:
Optimization of Catalysts Using Specific, Description-Based Genetic Algorithms. J. Chem. Inf. Model. 48(2): 274-282 (2008) - [c9]Martin Holena:
Measures of quality of rulesets extracted from data. ITAT 2008 - 2007
- [c8]Martin Holena:
Measures of Ruleset Quality Capable to Represent Uncertain Validity. ECSQARU 2007: 430-442 - [c7]David Stefka, Martin Holena:
The Use of Fuzzy t-Conorm Integral for Combining Classifiers. ECSQARU 2007: 755-766 - 2006
- [j7]Martin Holena:
Piecewise-Linear Neural Networks and Their Relationship to Rule Extraction from Data. Neural Comput. 18(11): 2813-2853 (2006) - 2005
- [j6]Martin Holena:
Extraction of fuzzy logic rules from data by means of artificial neural networks. Kybernetika 41(3): 297-314 (2005) - 2004
- [j5]Martin Holena:
Fuzzy hypotheses testing in the framework of fuzzy logic. Fuzzy Sets Syst. 145(2): 229-252 (2004) - [j4]James N. Cawse, Manfred Baerns, Martin Holena:
Efficient Discovery of Nonlinear Dependencies in a Combinatorial Catalyst Data Set. J. Chem. Inf. Model. 44(1): 143-146 (2004) - 2003
- [j3]Petr Hájek, Martin Holena:
Formal logics of discovery and hypothesis formation by machine. Theor. Comput. Sci. 292(2): 345-357 (2003) - [p1]Petr Hájek, Martin Holena, Jan Rauch:
The GUHA Method and Foundations of (Relational) Data Mining. Theory and Applications of Relational Structures as Knowledge Instruments 2003: 17-37 - 2002
- [c6]Martin Holena:
Extraction of Logical Rules from Data by Means of Piecewise-Linear Neural Networks. Discovery Science 2002: 192-205 - 2000
- [c5]Martin Holena:
Observational Logic Integrates Data Mining Based on Statistics and Neural Networks. PKDD 2000: 440-445
1990 – 1999
- 1999
- [c4]Martin Holena, Anna Sochorova, Jana Zvárová:
Increasing the Diversity of Medical Data Mining through Distributed Object Technology. MIE 1999: 442-448 - 1998
- [j2]Martin Holena:
Fuzzy hypotheses for GUHA implications. Fuzzy Sets Syst. 98(1): 101-125 (1998) - [j1]Bernd Blobel, Martin Holena:
CORBA security services for health information systems. Int. J. Medical Informatics 52(1-3): 29-37 (1998) - [c3]Petr Hájek, Martin Holena:
Formal Logics of Discovery and Hypothesis Formation by Machine. Discovery Science 1998: 291-302 - 1994
- [c2]Petra Drescher, Martin Holena, Rainer Kruschinski, Gernod Laufkötter:
Integrating Frames, Rules and Uncertainty in a Database-Coupled Knowledge-Representation System. DEXA 1994: 703-712 - [c1]Martin Holena:
Wahl der Architektur eines neuronalen Netzes mittels der Theorie der Verbände. Fuzzy Days 1994: 365-373
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-10 18:32 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint