default search action
Haipeng Luo
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c79]Mengxiao Zhang, Haipeng Luo:
Online Learning in Contextual Second-Price Pay-Per-Click Auctions. AISTATS 2024: 2395-2403 - [c78]Yang Cai, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng:
Near-Optimal Policy Optimization for Correlated Equilibrium in General-Sum Markov Games. AISTATS 2024: 3889-3897 - [c77]Akhil Agnihotri, Rahul Jain, Haipeng Luo:
ACPO: A Policy Optimization Algorithm for Average MDPs with Constraints. ICML 2024 - [c76]Asaf Cassel, Haipeng Luo, Aviv Rosenberg, Dmitry Sotnikov:
Near-Optimal Regret in Linear MDPs with Aggregate Bandit Feedback. ICML 2024 - [c75]Mengxiao Zhang, Yuheng Zhang, Haipeng Luo, Paul Mineiro:
Efficient Contextual Bandits with Uninformed Feedback Graphs. ICML 2024 - [i83]Yang Cai, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng:
Near-Optimal Policy Optimization for Correlated Equilibrium in General-Sum Markov Games. CoRR abs/2401.15240 (2024) - [i82]Mengxiao Zhang, Haipeng Luo:
Contextual Multinomial Logit Bandits with General Value Functions. CoRR abs/2402.08126 (2024) - [i81]Mengxiao Zhang, Yuheng Zhang, Haipeng Luo, Paul Mineiro:
Efficient Contextual Bandits with Uninformed Feedback Graphs. CoRR abs/2402.08127 (2024) - [i80]Yang Cai, Constantinos Daskalakis, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng:
Tractable Local Equilibria in Non-Concave Games. CoRR abs/2403.08171 (2024) - [i79]Asaf B. Cassel, Haipeng Luo, Aviv Rosenberg, Dmitry Sotnikov:
Near-Optimal Regret in Linear MDPs with Aggregate Bandit Feedback. CoRR abs/2405.07637 (2024) - [i78]Haipeng Luo, Spandan Senapati, Vatsal Sharan:
Optimal Multiclass U-Calibration Error and Beyond. CoRR abs/2405.19374 (2024) - [i77]Mengxiao Zhang, Yuheng Zhang, Haipeng Luo, Paul Mineiro:
Provably Efficient Interactive-Grounded Learning with Personalized Reward. CoRR abs/2405.20677 (2024) - [i76]Mengxiao Zhang, Ramiro Deo-Campo Vuong, Haipeng Luo:
No-Regret Learning for Fair Multi-Agent Social Welfare Optimization. CoRR abs/2405.20678 (2024) - [i75]Yang Cai, Gabriele Farina, Julien Grand-Clément, Christian Kroer, Chung-Wei Lee, Haipeng Luo, Weiqiang Zheng:
Fast Last-Iterate Convergence of Learning in Games Requires Forgetful Algorithms. CoRR abs/2406.10631 (2024) - [i74]Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Qingwei Lin, Jianguang Lou, Shifeng Chen, Yansong Tang, Weizhu Chen:
Arena Learning: Build Data Flywheel for LLMs Post-training via Simulated Chatbot Arena. CoRR abs/2407.10627 (2024) - 2023
- [c74]Mengxiao Zhang, Shi Chen, Haipeng Luo, Yingfei Wang:
No-Regret Learning in Two-Echelon Supply Chain with Unknown Demand Distribution. AISTATS 2023: 3270-3298 - [c73]Haipeng Luo, Hanghang Tong, Mengxiao Zhang, Yuheng Zhang:
Improved High-Probability Regret for Adversarial Bandits with Time-Varying Feedback Graphs. ALT 2023: 1074-1100 - [c72]Wenhao Wu, Xiaohan Wang, Haipeng Luo, Jingdong Wang, Yi Yang, Wanli Ouyang:
Bidirectional Cross-Modal Knowledge Exploration for Video Recognition with Pre-trained Vision-Language Models. CVPR 2023: 6620-6630 - [c71]Wenhao Wu, Haipeng Luo, Bo Fang, Jingdong Wang, Wanli Ouyang:
Cap4Video: What Can Auxiliary Captions Do for Text-Video Retrieval? CVPR 2023: 10704-10713 - [c70]Yan Dai, Haipeng Luo, Chen-Yu Wei, Julian Zimmert:
Refined Regret for Adversarial MDPs with Linear Function Approximation. ICML 2023: 6726-6759 - [c69]Chu Wang, Yingfei Wang, Haipeng Luo, Daniel R. Jiang, Jinghai He, Zeyu Zheng:
2nd Workshop on Multi-Armed Bandits and Reinforcement Learning: Advancing Decision Making in E-Commerce and Beyond. KDD 2023: 5890 - [c68]Yang Cai, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng:
Uncoupled and Convergent Learning in Two-Player Zero-Sum Markov Games with Bandit Feedback. NeurIPS 2023 - [c67]Gabriele Farina, Julien Grand-Clément, Christian Kroer, Chung-Wei Lee, Haipeng Luo:
Regret Matching+: (In)Stability and Fast Convergence in Games. NeurIPS 2023 - [c66]Tiancheng Jin, Junyan Liu, Haipeng Luo:
Improved Best-of-Both-Worlds Guarantees for Multi-Armed Bandits: FTRL with General Regularizers and Multiple Optimal Arms. NeurIPS 2023 - [c65]Tiancheng Jin, Junyan Liu, Chloé Rouyer, William Chang, Chen-Yu Wei, Haipeng Luo:
No-Regret Online Reinforcement Learning with Adversarial Losses and Transitions. NeurIPS 2023 - [c64]Mengxiao Zhang, Yuheng Zhang, Olga Vrousgou, Haipeng Luo, Paul Mineiro:
Practical Contextual Bandits with Feedback Graphs. NeurIPS 2023 - [c63]Mehdi Jafarnia-Jahromi, Liyu Chen, Rahul Jain, Haipeng Luo:
Posterior sampling-based online learning for the stochastic shortest path model. UAI 2023: 922-931 - [i73]Wenhao Wu, Xiaohan Wang, Haipeng Luo, Jingdong Wang, Yi Yang, Wanli Ouyang:
Bidirectional Cross-Modal Knowledge Exploration for Video Recognition with Pre-trained Vision-Language Models. CoRR abs/2301.00182 (2023) - [i72]Wenhao Wu, Haipeng Luo, Bo Fang, Jingdong Wang, Wanli Ouyang:
Cap4Video: What Can Auxiliary Captions Do for Text-Video Retrieval? CoRR abs/2301.00184 (2023) - [i71]Yan Dai, Haipeng Luo, Chen-Yu Wei, Julian Zimmert:
Refined Regret for Adversarial MDPs with Linear Function Approximation. CoRR abs/2301.12942 (2023) - [i70]Akhil Agnihotri, Rahul Jain, Haipeng Luo:
Average-Constrained Policy Optimization. CoRR abs/2302.00808 (2023) - [i69]Tiancheng Jin, Junyan Liu, Haipeng Luo:
Improved Best-of-Both-Worlds Guarantees for Multi-Armed Bandits: FTRL with General Regularizers and Multiple Optimal Arms. CoRR abs/2302.13534 (2023) - [i68]Yang Cai, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng:
Uncoupled and Convergent Learning in Two-Player Zero-Sum Markov Games. CoRR abs/2303.02738 (2023) - [i67]Gabriele Farina, Julien Grand-Clément, Christian Kroer, Chung-Wei Lee, Haipeng Luo:
Regret Matching+: (In)Stability and Fast Convergence in Games. CoRR abs/2305.14709 (2023) - [i66]Tiancheng Jin, Junyan Liu, Chloé Rouyer, William Chang, Chen-Yu Wei, Haipeng Luo:
No-Regret Online Reinforcement Learning with Adversarial Losses and Transitions. CoRR abs/2305.17380 (2023) - [i65]Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qingwei Lin, Shifeng Chen, Dongmei Zhang:
WizardMath: Empowering Mathematical Reasoning for Large Language Models via Reinforced Evol-Instruct. CoRR abs/2308.09583 (2023) - [i64]Mengxiao Zhang, Haipeng Luo:
Online Learning in Contextual Second-Price Pay-Per-Click Auctions. CoRR abs/2310.05047 (2023) - [i63]Yang Cai, Gabriele Farina, Julien Grand-Clément, Christian Kroer, Chung-Wei Lee, Haipeng Luo, Weiqiang Zheng:
Last-Iterate Convergence Properties of Regret-Matching Algorithms in Games. CoRR abs/2311.00676 (2023) - 2022
- [c62]Liyu Chen, Haipeng Luo, Aviv Rosenberg:
Policy Optimization for Stochastic Shortest Path. COLT 2022: 982-1046 - [c61]Haipeng Luo, Mengxiao Zhang, Peng Zhao:
Adaptive Bandit Convex Optimization with Heterogeneous Curvature. COLT 2022: 1576-1612 - [c60]Haipeng Luo, Mengxiao Zhang, Peng Zhao, Zhi-Hua Zhou:
Corralling a Larger Band of Bandits: A Case Study on Switching Regret for Linear Bandits. COLT 2022: 3635-3684 - [c59]Liyu Chen, Rahul Jain, Haipeng Luo:
Improved No-Regret Algorithms for Stochastic Shortest Path with Linear MDP. ICML 2022: 3204-3245 - [c58]Liyu Chen, Rahul Jain, Haipeng Luo:
Learning Infinite-horizon Average-reward Markov Decision Process with Constraints. ICML 2022: 3246-3270 - [c57]Gabriele Farina, Chung-Wei Lee, Haipeng Luo, Christian Kroer:
Kernelized Multiplicative Weights for 0/1-Polyhedral Games: Bridging the Gap Between Learning in Extensive-Form and Normal-Form Games. ICML 2022: 6337-6357 - [c56]Mengxiao Zhang, Peng Zhao, Haipeng Luo, Zhi-Hua Zhou:
No-Regret Learning in Time-Varying Zero-Sum Games. ICML 2022: 26772-26808 - [c55]Yan Dai, Haipeng Luo, Liyu Chen:
Follow-the-Perturbed-Leader for Adversarial Markov Decision Processes with Bandit Feedback. NeurIPS 2022 - [c54]Ioannis Anagnostides, Gabriele Farina, Christian Kroer, Chung-Wei Lee, Haipeng Luo, Tuomas Sandholm:
Uncoupled Learning Dynamics with O(log T) Swap Regret in Multiplayer Games. NeurIPS 2022 - [c53]Liyu Chen, Haipeng Luo:
Near-Optimal Goal-Oriented Reinforcement Learning in Non-Stationary Environments. NeurIPS 2022 - [c52]Gabriele Farina, Ioannis Anagnostides, Haipeng Luo, Chung-Wei Lee, Christian Kroer, Tuomas Sandholm:
Near-Optimal No-Regret Learning Dynamics for General Convex Games. NeurIPS 2022 - [c51]Tiancheng Jin, Tal Lancewicki, Haipeng Luo, Yishay Mansour, Aviv Rosenberg:
Near-Optimal Regret for Adversarial MDP with Delayed Bandit Feedback. NeurIPS 2022 - [i62]Mengxiao Zhang, Peng Zhao, Haipeng Luo, Zhi-Hua Zhou:
No-Regret Learning in Time-Varying Zero-Sum Games. CoRR abs/2201.12736 (2022) - [i61]Tiancheng Jin, Tal Lancewicki, Haipeng Luo, Yishay Mansour, Aviv Rosenberg:
Near-Optimal Regret for Adversarial MDP with Delayed Bandit Feedback. CoRR abs/2201.13172 (2022) - [i60]Liyu Chen, Rahul Jain, Haipeng Luo:
Learning Infinite-Horizon Average-Reward Markov Decision Processes with Constraints. CoRR abs/2202.00150 (2022) - [i59]Gabriele Farina, Chung-Wei Lee, Haipeng Luo, Christian Kroer:
Kernelized Multiplicative Weights for 0/1-Polyhedral Games: Bridging the Gap Between Learning in Extensive-Form and Normal-Form Games. CoRR abs/2202.00237 (2022) - [i58]Liyu Chen, Haipeng Luo, Aviv Rosenberg:
Policy Optimization for Stochastic Shortest Path. CoRR abs/2202.03334 (2022) - [i57]Haipeng Luo, Mengxiao Zhang, Peng Zhao:
Adaptive Bandit Convex Optimization with Heterogeneous Curvature. CoRR abs/2202.06150 (2022) - [i56]Haipeng Luo, Mengxiao Zhang, Peng Zhao, Zhi-Hua Zhou:
Corralling a Larger Band of Bandits: A Case Study on Switching Regret for Linear Bandits. CoRR abs/2202.06151 (2022) - [i55]Ioannis Anagnostides, Gabriele Farina, Christian Kroer, Chung-Wei Lee, Haipeng Luo, Tuomas Sandholm:
Uncoupled Learning Dynamics with O(log T) Swap Regret in Multiplayer Games. CoRR abs/2204.11417 (2022) - [i54]Liyu Chen, Haipeng Luo:
Near-Optimal Goal-Oriented Reinforcement Learning in Non-Stationary Environments. CoRR abs/2205.13044 (2022) - [i53]Yan Dai, Haipeng Luo, Liyu Chen:
Follow-the-Perturbed-Leader for Adversarial Markov Decision Processes with Bandit Feedback. CoRR abs/2205.13451 (2022) - [i52]Gabriele Farina, Ioannis Anagnostides, Haipeng Luo, Chung-Wei Lee, Christian Kroer, Tuomas Sandholm:
Near-Optimal No-Regret Learning for General Convex Games. CoRR abs/2206.08742 (2022) - [i51]Gabriele Farina, Christian Kroer, Chung-Wei Lee, Haipeng Luo:
Clairvoyant Regret Minimization: Equivalence with Nemirovski's Conceptual Prox Method and Extension to General Convex Games. CoRR abs/2208.14891 (2022) - [i50]Haipeng Luo, Hanghang Tong, Mengxiao Zhang, Yuheng Zhang:
Improved High-Probability Regret for Adversarial Bandits with Time-Varying Feedback Graphs. CoRR abs/2210.01376 (2022) - [i49]Mengxiao Zhang, Shi Chen, Haipeng Luo, Yingfei Wang:
No-Regret Learning in Two-Echelon Supply Chain with Unknown Demand Distribution. CoRR abs/2210.12663 (2022) - 2021
- [c50]Yining Chen, Haipeng Luo, Tengyu Ma, Chicheng Zhang:
Active Online Learning with Hidden Shifting Domains. AISTATS 2021: 2053-2061 - [c49]Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Rahul Jain:
Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation. AISTATS 2021: 3007-3015 - [c48]Ehsan Emamjomeh-Zadeh, Chen-Yu Wei, Haipeng Luo, David Kempe:
Adversarial Online Learning with Changing Action Sets: Efficient Algorithms with Approximate Regret Bounds. ALT 2021: 599-618 - [c47]Liyu Chen, Haipeng Luo, Chen-Yu Wei:
Minimax Regret for Stochastic Shortest Path with Adversarial Costs and Known Transition. COLT 2021: 1180-1215 - [c46]Liyu Chen, Haipeng Luo, Chen-Yu Wei:
Impossible Tuning Made Possible: A New Expert Algorithm and Its Applications. COLT 2021: 1216-1259 - [c45]Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, Haipeng Luo:
Last-iterate Convergence of Decentralized Optimistic Gradient Descent/Ascent in Infinite-horizon Competitive Markov Games. COLT 2021: 4259-4299 - [c44]Chen-Yu Wei, Haipeng Luo:
Non-stationary Reinforcement Learning without Prior Knowledge: an Optimal Black-box Approach. COLT 2021: 4300-4354 - [c43]Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, Haipeng Luo:
Linear Last-iterate Convergence in Constrained Saddle-point Optimization. ICLR 2021 - [c42]Liyu Chen, Haipeng Luo:
Finding the Stochastic Shortest Path with Low Regret: the Adversarial Cost and Unknown Transition Case. ICML 2021: 1651-1660 - [c41]Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, Mengxiao Zhang, Xiaojin Zhang:
Achieving Near Instance-Optimality and Minimax-Optimality in Stochastic and Adversarial Linear Bandits Simultaneously. ICML 2021: 6142-6151 - [c40]Daniel R. Jiang, Haipeng Luo, Chu Wang, Yingfei Wang:
Multi-Armed Bandits and Reinforcement Learning: Advancing Decision Making in E-Commerce and Beyond. KDD 2021: 4133-4134 - [c39]Liyu Chen, Mehdi Jafarnia-Jahromi, Rahul Jain, Haipeng Luo:
Implicit Finite-Horizon Approximation and Efficient Optimal Algorithms for Stochastic Shortest Path. NeurIPS 2021: 10849-10861 - [c38]Chung-Wei Lee, Christian Kroer, Haipeng Luo:
Last-iterate Convergence in Extensive-Form Games. NeurIPS 2021: 14293-14305 - [c37]Tiancheng Jin, Longbo Huang, Haipeng Luo:
The best of both worlds: stochastic and adversarial episodic MDPs with unknown transition. NeurIPS 2021: 20491-20502 - [c36]Haipeng Luo, Chen-Yu Wei, Chung-Wei Lee:
Policy Optimization in Adversarial MDPs: Improved Exploration via Dilated Bonuses. NeurIPS 2021: 22931-22942 - [i48]Liyu Chen, Haipeng Luo, Chen-Yu Wei:
Impossible Tuning Made Possible: A New Expert Algorithm and Its Applications. CoRR abs/2102.01046 (2021) - [i47]Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, Haipeng Luo:
Last-iterate Convergence of Decentralized Optimistic Gradient Descent/Ascent in Infinite-horizon Competitive Markov Games. CoRR abs/2102.04540 (2021) - [i46]Liyu Chen, Haipeng Luo:
Finding the Stochastic Shortest Path with Low Regret: The Adversarial Cost and Unknown Transition Case. CoRR abs/2102.05284 (2021) - [i45]Chen-Yu Wei, Haipeng Luo:
Non-stationary Reinforcement Learning without Prior Knowledge: An Optimal Black-box Approach. CoRR abs/2102.05406 (2021) - [i44]Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, Mengxiao Zhang, Xiaojin Zhang:
Achieving Near Instance-Optimality and Minimax-Optimality in Stochastic and Adversarial Linear Bandits Simultaneously. CoRR abs/2102.05858 (2021) - [i43]Tiancheng Jin, Longbo Huang, Haipeng Luo:
The best of both worlds: stochastic and adversarial episodic MDPs with unknown transition. CoRR abs/2106.04117 (2021) - [i42]Mehdi Jafarnia-Jahromi, Liyu Chen, Rahul Jain, Haipeng Luo:
Online Learning for Stochastic Shortest Path Model via Posterior Sampling. CoRR abs/2106.05335 (2021) - [i41]Liyu Chen, Mehdi Jafarnia-Jahromi, Rahul Jain, Haipeng Luo:
Implicit Finite-Horizon Approximation and Efficient Optimal Algorithms for Stochastic Shortest Path. CoRR abs/2106.08377 (2021) - [i40]Chung-Wei Lee, Christian Kroer, Haipeng Luo:
Last-iterate Convergence in Extensive-Form Games. CoRR abs/2106.14326 (2021) - [i39]Haipeng Luo, Chen-Yu Wei, Chung-Wei Lee:
Policy Optimization in Adversarial MDPs: Improved Exploration via Dilated Bonuses. CoRR abs/2107.08346 (2021) - [i38]Liyu Chen, Rahul Jain, Haipeng Luo:
Improved No-Regret Algorithms for Stochastic Shortest Path with Linear MDP. CoRR abs/2112.09859 (2021) - 2020
- [j13]Miroslav Dudík, Nika Haghtalab, Haipeng Luo, Robert E. Schapire, Vasilis Syrgkanis, Jennifer Wortman Vaughan:
Oracle-efficient Online Learning and Auction Design. J. ACM 67(5): 26:1-26:57 (2020) - [c35]Yifang Chen, Alex Cuellar, Haipeng Luo, Jignesh Modi, Heramb Nemlekar, Stefanos Nikolaidis:
The Fair Contextual Multi-Armed Bandit. AAMAS 2020: 1810-1812 - [c34]Chung-Wei Lee, Haipeng Luo, Mengxiao Zhang:
A Closer Look at Small-loss Bounds for Bandits with Graph Feedback. COLT 2020: 2516-2564 - [c33]Chen-Yu Wei, Haipeng Luo, Alekh Agarwal:
Taking a hint: How to leverage loss predictors in contextual bandits? COLT 2020: 3583-3634 - [c32]Dylan J. Foster, Akshay Krishnamurthy, Haipeng Luo:
Open Problem: Model Selection for Contextual Bandits. COLT 2020: 3842-3846 - [c31]Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, Tiancheng Yu:
Learning Adversarial Markov Decision Processes with Bandit Feedback and Unknown Transition. ICML 2020: 4860-4869 - [c30]Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Hiteshi Sharma, Rahul Jain:
Model-free Reinforcement Learning in Infinite-horizon Average-reward Markov Decision Processes. ICML 2020: 10170-10180 - [c29]Dirk van der Hoeven, Ashok Cutkosky, Haipeng Luo:
Comparator-Adaptive Convex Bandits. NeurIPS 2020 - [c28]Tiancheng Jin, Haipeng Luo:
Simultaneously Learning Stochastic and Adversarial Episodic MDPs with Known Transition. NeurIPS 2020 - [c27]Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, Mengxiao Zhang:
Bias no more: high-probability data-dependent regret bounds for adversarial bandits and MDPs. NeurIPS 2020 - [c26]Yifang Chen, Alex Cuellar, Haipeng Luo, Jignesh Modi, Heramb Nemlekar, Stefanos Nikolaidis:
Fair Contextual Multi-Armed Bandits: Theory and Experiments. UAI 2020: 181-190 - [i37]Chung-Wei Lee, Haipeng Luo, Mengxiao Zhang:
A Closer Look at Small-loss Bounds for Bandits with Graph Feedback. CoRR abs/2002.00315 (2020) - [i36]Chen-Yu Wei, Haipeng Luo, Alekh Agarwal:
Taking a hint: How to leverage loss predictors in contextual bandits? CoRR abs/2003.01922 (2020) - [i35]Ehsan Emamjomeh-Zadeh, Chen-Yu Wei, Haipeng Luo, David Kempe:
Adversarial Online Learning with Changing Action Sets: Efficient Algorithms with Approximate Regret Bounds. CoRR abs/2003.03490 (2020) - [i34]Tiancheng Jin, Haipeng Luo:
Simultaneously Learning Stochastic and Adversarial Episodic MDPs with Known Transition. CoRR abs/2006.05606 (2020) - [i33]Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, Mengxiao Zhang:
Bias no more: high-probability data-dependent regret bounds for adversarial bandits and MDPs. CoRR abs/2006.08040 (2020) - [i32]Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, Mengxiao Zhang:
Linear Last-iterate Convergence for Matrix Games and Stochastic Games. CoRR abs/2006.09517 (2020) - [i31]Dylan J. Foster, Akshay Krishnamurthy, Haipeng Luo:
Open Problem: Model Selection for Contextual Bandits. CoRR abs/2006.10940 (2020) - [i30]Yining Chen, Haipeng Luo, Tengyu Ma, Chicheng Zhang:
Active Online Domain Adaptation. CoRR abs/2006.14481 (2020) - [i29]Dirk van der Hoeven, Ashok Cutkosky, Haipeng Luo:
Comparator-adaptive Convex Bandits. CoRR abs/2007.08448 (2020) - [i28]Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Rahul Jain:
Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation. CoRR abs/2007.11849 (2020) - [i27]Liyu Chen, Haipeng Luo, Chen-Yu Wei:
Minimax Regret for Stochastic Shortest Path with Adversarial Costs and Known Transition. CoRR abs/2012.04053 (2020)
2010 – 2019
- 2019
- [c25]Peter Auer, Yifang Chen, Pratik Gajane, Chung-Wei Lee, Haipeng Luo, Ronald Ortner, Chen-Yu Wei:
Achieving Optimal Dynamic Regret for Non-stationary Bandits without Prior Information. COLT 2019: 159-163 - [c24]Sébastien Bubeck, Yuanzhi Li, Haipeng Luo, Chen-Yu Wei:
Improved Path-length Regret Bounds for Bandits. COLT 2019: 508-528 - [c23]Yifang Chen, Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei:
A New Algorithm for Non-stationary Contextual Bandits: Efficient, Optimal and Parameter-free. COLT 2019: 696-726 - [c22]Julian Zimmert, Haipeng Luo, Chen-Yu Wei:
Beating Stochastic and Adversarial Semi-bandits Optimally and Simultaneously. ICML 2019: 7683-7692 - [c21]Kai Zheng, Haipeng Luo, Ilias Diakonikolas, Liwei Wang:
Equipping Experts/Bandits with Long-term Memory. NeurIPS 2019: 5927-5937 - [c20]Dylan J. Foster, Spencer Greenberg, Satyen Kale, Haipeng Luo, Mehryar Mohri, Karthik Sridharan:
Hypothesis Set Stability and Generalization. NeurIPS 2019: 6726-6736 - [c19]Dylan J. Foster, Akshay Krishnamurthy, Haipeng Luo:
Model Selection for Contextual Bandits. NeurIPS 2019: 14714-14725 - [i26]Julian Zimmert, Haipeng Luo, Chen-Yu Wei:
Beating Stochastic and Adversarial Semi-bandits Optimally and Simultaneously. CoRR abs/1901.08779 (2019) - [i25]Sébastien Bubeck, Yuanzhi Li, Haipeng Luo, Chen-Yu Wei:
Improved Path-length Regret Bounds for Bandits. CoRR abs/1901.10604 (2019) - [i24]Yifang Chen, Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei:
A New Algorithm for Non-stationary Contextual Bandits: Efficient, Optimal, and Parameter-free. CoRR abs/1902.00980 (2019) - [i23]Dylan J. Foster, Spencer Greenberg, Satyen Kale, Haipeng Luo, Mehryar Mohri, Karthik Sridharan:
Hypothesis Set Stability and Generalization. CoRR abs/1904.04755 (2019) - [i22]Kai Zheng, Haipeng Luo, Ilias Diakonikolas, Liwei Wang:
Equipping Experts/Bandits with Long-term Memory. CoRR abs/1905.12950 (2019) - [i21]Dylan J. Foster, Akshay Krishnamurthy, Haipeng Luo:
Model selection for contextual bandits. CoRR abs/1906.00531 (2019) - [i20]Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Hiteshi Sharma, Rahul Jain:
Model-free Reinforcement Learning in Infinite-horizon Average-reward Markov Decision Processes. CoRR abs/1910.07072 (2019) - [i19]Tiancheng Jin, Haipeng Luo:
Learning Adversarial MDPs with Bandit Feedback and Unknown Transition. CoRR abs/1912.01192 (2019) - [i18]Yifang Chen, Alex Cuellar, Haipeng Luo, Jignesh Modi, Heramb Nemlekar, Stefanos Nikolaidis:
Fair Contextual Multi-Armed Bandits: Theory and Experiments. CoRR abs/1912.08055 (2019) - 2018
- [c18]Dylan J. Foster, Satyen Kale, Haipeng Luo, Mehryar Mohri, Karthik Sridharan:
Logistic Regression: The Importance of Being Improper. COLT 2018: 167-208 - [c17]Chen-Yu Wei, Haipeng Luo:
More Adaptive Algorithms for Adversarial Bandits. COLT 2018: 1263-1291 - [c16]Haipeng Luo, Chen-Yu Wei, Alekh Agarwal, John Langford:
Efficient Contextual Bandits in Non-stationary Worlds. COLT 2018: 1739-1776 - [c15]Dylan J. Foster, Alekh Agarwal, Miroslav Dudík, Haipeng Luo, Robert E. Schapire:
Practical Contextual Bandits with Regression Oracles. ICML 2018: 1534-1543 - [c14]Haipeng Luo, Chen-Yu Wei, Kai Zheng:
Efficient Online Portfolio with Logarithmic Regret. NeurIPS 2018: 8245-8255 - [i17]Chen-Yu Wei, Haipeng Luo:
More Adaptive Algorithms for Adversarial Bandits. CoRR abs/1801.03265 (2018) - [i16]Dylan J. Foster, Alekh Agarwal, Miroslav Dudík, Haipeng Luo, Robert E. Schapire:
Practical Contextual Bandits with Regression Oracles. CoRR abs/1803.01088 (2018) - [i15]Dylan J. Foster, Satyen Kale, Haipeng Luo, Mehryar Mohri, Karthik Sridharan:
Logistic Regression: The Importance of Being Improper. CoRR abs/1803.09349 (2018) - [i14]Haipeng Luo, Chen-Yu Wei, Kai Zheng:
Efficient Online Portfolio with Logarithmic Regret. CoRR abs/1805.07430 (2018) - 2017
- [c13]Alekh Agarwal, Akshay Krishnamurthy, John Langford, Haipeng Luo, Robert E. Schapire:
Open Problem: First-Order Regret Bounds for Contextual Bandits. COLT 2017: 4-7 - [c12]Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, Robert E. Schapire:
Corralling a Band of Bandit Algorithms. COLT 2017: 12-38 - [c11]Miroslav Dudík, Nika Haghtalab, Haipeng Luo, Robert E. Schapire, Vasilis Syrgkanis, Jennifer Wortman Vaughan:
Oracle-Efficient Online Learning and Auction Design. FOCS 2017: 528-539 - [i13]Haipeng Luo, Alekh Agarwal, John Langford:
Efficient Contextual Bandits in Non-stationary Worlds. CoRR abs/1708.01799 (2017) - 2016
- [b1]Haipeng Luo:
Optimal and Adaptive Online Learning. Princeton University, USA, 2016 - [j12]Haipeng Luo, Ting Chen:
Three-Dimensional Surface Displacement Field Associated with the 25 April 2015 Gorkha, Nepal, Earthquake: Solution from Integrated InSAR and GPS Measurements with an Extended SISTEM Approach. Remote. Sens. 8(7): 559 (2016) - [c10]Elad Hazan, Haipeng Luo:
Variance-Reduced and Projection-Free Stochastic Optimization. ICML 2016: 1263-1271 - [c9]Alina Beygelzimer, Satyen Kale, Haipeng Luo:
Optimal and Adaptive Algorithms for Online Boosting. IJCAI 2016: 4120-4124 - [c8]Haipeng Luo, Alekh Agarwal, Nicolò Cesa-Bianchi, John Langford:
Efficient Second Order Online Learning by Sketching. NIPS 2016: 902-910 - [c7]Vasilis Syrgkanis, Haipeng Luo, Akshay Krishnamurthy, Robert E. Schapire:
Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits. NIPS 2016: 3135-3143 - [i12]Elad Hazan, Haipeng Luo:
Variance-Reduced and Projection-Free Stochastic Optimization. CoRR abs/1602.02101 (2016) - [i11]Haipeng Luo, Alekh Agarwal, Nicolò Cesa-Bianchi, John Langford:
Efficient Second Order Online Learning via Sketching. CoRR abs/1602.02202 (2016) - [i10]Vasilis Syrgkanis, Haipeng Luo, Akshay Krishnamurthy, Robert E. Schapire:
Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits. CoRR abs/1606.00313 (2016) - [i9]Miroslav Dudík, Nika Haghtalab, Haipeng Luo, Robert E. Schapire, Vasilis Syrgkanis, Jennifer Wortman Vaughan:
Oracle-Efficient Learning and Auction Design. CoRR abs/1611.01688 (2016) - [i8]Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, Robert E. Schapire:
Corralling a Band of Bandit Algorithms. CoRR abs/1612.06246 (2016) - 2015
- [c6]Haipeng Luo, Robert E. Schapire:
Achieving All with No Parameters: AdaNormalHedge. COLT 2015: 1286-1304 - [c5]Alina Beygelzimer, Satyen Kale, Haipeng Luo:
Optimal and Adaptive Algorithms for Online Boosting. ICML 2015: 2323-2331 - [c4]Alina Beygelzimer, Elad Hazan, Satyen Kale, Haipeng Luo:
Online Gradient Boosting. NIPS 2015: 2458-2466 - [c3]Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, Robert E. Schapire:
Fast Convergence of Regularized Learning in Games. NIPS 2015: 2989-2997 - [i7]Alina Beygelzimer, Satyen Kale, Haipeng Luo:
Optimal and Adaptive Algorithms for Online Boosting. CoRR abs/1502.02651 (2015) - [i6]Haipeng Luo, Robert E. Schapire:
Achieving All with No Parameters: Adaptive NormalHedge. CoRR abs/1502.05934 (2015) - [i5]Alina Beygelzimer, Elad Hazan, Satyen Kale, Haipeng Luo:
Online Gradient Boosting. CoRR abs/1506.04820 (2015) - [i4]Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, Robert E. Schapire:
Fast Convergence of Regularized Learning in Games. CoRR abs/1507.00407 (2015) - 2014
- [j11]Zhen Xiao, Qi Chen, Haipeng Luo:
Automatic Scaling of Internet Applications for Cloud Computing Services. IEEE Trans. Computers 63(5): 1111-1123 (2014) - [j10]Weijia Song, Zhen Xiao, Qi Chen, Haipeng Luo:
Adaptive Resource Provisioning for the Cloud Using Online Bin Packing. IEEE Trans. Computers 63(11): 2647-2660 (2014) - [c2]Haipeng Luo, Robert E. Schapire:
Towards Minimax Online Learning with Unknown Time Horizon. ICML 2014: 226-234 - [c1]Haipeng Luo, Robert E. Schapire:
A Drifting-Games Analysis for Online Learning and Applications to Boosting. NIPS 2014: 1368-1376 - [i3]Haipeng Luo, Robert E. Schapire:
A Drifting-Games Analysis for Online Learning and Applications to Boosting. CoRR abs/1406.1856 (2014) - [i2]Haipeng Luo, Patrick Haffner, Jean-François Paiement:
Accelerated Parallel Optimization Methods for Large Scale Machine Learning. CoRR abs/1411.6725 (2014) - 2013
- [i1]Haipeng Luo, Robert E. Schapire:
Online Learning with Unknown Time Horizon. CoRR abs/1307.8187 (2013) - 2010
- [j9]Dianhua Wu, Minquan Cheng, Zhilin Chen, Haipeng Luo:
The existence of balanced (υ, {3, 6}, 1) difference families. Sci. China Inf. Sci. 53(8): 1584-1590 (2010) - [j8]Kang Wu, Wenlong Su, Haipeng Luo, Xiaodong Xu:
A Generalization of Generalized Paley Graphs and New Lower Bounds for R(3,q). Electron. J. Comb. 17(1) (2010) - [j7]Xiaodong Xu, Haipeng Luo, Zehui Shao:
Upper and lower bounds for Fv(4,4;5). Electron. J. Comb. 17(1) (2010)
2000 – 2009
- 2009
- [j6]Kang Wu, Wenlong Su, Haipeng Luo, Xiaodong Xu:
New lower bounds for seven classical Ramsey numbers R(3, q). Appl. Math. Lett. 22(3): 365-368 (2009) - 2003
- [j5]Guiqing Li, Wenlong Su, Haipeng Luo:
Edge colorings of the complete graph K149 and the lower bounds of three Ramsey numbers. Discret. Appl. Math. 126(2-3): 167-179 (2003) - 2002
- [j4]Haipeng Luo, Wenlong Su, Zhenchong Li:
The properties of self-complementary graphs and new lower bounds for diagonal Ramsey numbers. Australas. J Comb. 25: 103-116 (2002) - [j3]Wenlong Su, Qiao Li, Haipeng Luo, Guiqing Li:
Lower bounds of Ramsey numbers based on cubic residues. Discret. Math. 250(1-3): 197-209 (2002) - 2001
- [j2]Haipeng Luo, Wenlong Su, Yun-Qiu Shen:
New lower bounds of ten classical Ramsey numbers. Australas. J Comb. 24: 81-90 (2001)
1990 – 1999
- 1999
- [j1]Wenlong Su, Haipeng Luo, Zhengyou Zhang, Guiqing Li:
New lower bounds of fifteen classical Ramsey numbers. Australas. J Comb. 19: 91-100 (1999)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-16 20:23 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint