default search action
Eric Moulines
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j76]Nikita Puchkin, Sergey Samsonov, Denis Belomestny, Eric Moulines, Alexey Naumov:
Rates of convergence for density estimation with generative adversarial networks. J. Mach. Learn. Res. 25: 29:1-29:47 (2024) - [c135]Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines:
Queuing dynamics of asynchronous Federated Learning. AISTATS 2024: 1711-1719 - [c134]Vincent Plassier, Nikita Kotelevskii, Aleksandr Rubashevskii, Fedor Noskov, Maksim Velikanov, Alexander Fishkov, Samuel Horváth, Martin Takác, Eric Moulines, Maxim Panov:
Efficient Conformal Prediction under Data Heterogeneity. AISTATS 2024: 4879-4887 - [c133]Sergey Samsonov, Daniil Tiapkin, Alexey Naumov, Eric Moulines:
Improved High-Probability Bounds for the Temporal Difference Learning Algorithm via Exponential Stability. COLT 2024: 4511-4547 - [c132]Louis Leconte, Van Minh Nguyen, Eric Moulines:
FAVANO: Federated Averaging with Asynchronous Nodes. ICASSP 2024: 5665-5669 - [c131]Fouzi Boukhalfa, Réda Alami, Mastane Achab, Eric Moulines, Mehdi Bennis, Thierry Lestable:
Deep Reinforcement Learning Algorithms for Hybrid V2X Communication: A Benchmarking Study. ICC Workshops 2024: 1956-1961 - [c130]Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, Eric Moulines:
Monte Carlo guided Denoising Diffusion models for Bayesian linear inverse problems. ICLR 2024 - [c129]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Alexey Naumov, Pierre Perrault, Michal Valko, Pierre Ménard:
Demonstration-Regularized RL. ICLR 2024 - [c128]Tom Huix, Anna Korba, Alain Oliviero Durmus, Eric Moulines:
Theoretical Guarantees for Variational Inference with Fixed-Variance Mixture of Gaussians. ICML 2024 - [c127]Antoine Scheid, Daniil Tiapkin, Etienne Boursier, Aymeric Capitaine, Eric Moulines, Michael I. Jordan, El-Mahdi El-Mhamdi, Alain Oliviero Durmus:
Incentivized Learning in Principal-Agent Bandit Games. ICML 2024 - [c126]Jade Eva Guisiano, Domenico Barretta, Éric Moulines, Thomas Lauvaux, Jérémie Sublime:
Object Detection Models Sensitivity & Robustness to Satellite-based Adversarial Attacks. IGARSS 2024: 7844-7848 - [i77]Gabriel Victorino Cardoso, Lisa Bedin, Josselin Duchateau, Rémi Dubois, Eric Moulines:
Bayesian ECG reconstruction using denoising diffusion generative models. CoRR abs/2401.05388 (2024) - [i76]Paul Mangold, Sergey Samsonov, Safwan Labbi, Ilya Levin, Réda Alami, Alexey Naumov, Eric Moulines:
SCAFFLSA: Quantifying and Eliminating Heterogeneity Bias in Federated Linear Stochastic Approximation and Temporal Difference Learning. CoRR abs/2402.04114 (2024) - [i75]Antoine Scheid, Daniil Tiapkin, Etienne Boursier, Aymeric Capitaine, El Mahdi El Mhamdi, Eric Moulines, Michael I. Jordan, Alain Durmus:
Incentivized Learning in Principal-Agent Bandit Games. CoRR abs/2403.03811 (2024) - [i74]Yazid Janati El Idrissi, Alain Durmus, Eric Moulines, Jimmy Olsson:
Divide-and-Conquer Posterior Sampling for Denoising Diffusion Priors. CoRR abs/2403.11407 (2024) - [i73]Louis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines:
Queuing dynamics of asynchronous Federated Learning. CoRR abs/2405.00017 (2024) - [i72]Louis Leconte, Lisa Bedin, Van Minh Nguyen, Eric Moulines:
ReALLM: A general framework for LLM compression and fine-tuning. CoRR abs/2405.13155 (2024) - [i71]Sergey Samsonov, Eric Moulines, Qi-Man Shao, Zhuo-Song Zhang, Alexey Naumov:
Gaussian Approximation and Multiplier Bootstrap for Polyak-Ruppert Averaged Linear Stochastic Approximation with Applications to TD Learning. CoRR abs/2405.16644 (2024) - [i70]Tom Huix, Anna Korba, Alain Durmus, Eric Moulines:
Theoretical Guarantees for Variational Inference with Fixed-Variance Mixture of Gaussians. CoRR abs/2406.04012 (2024) - [i69]Arnaud Descours, Tom Huix, Arnaud Guillin, Manon Michel, Éric Moulines, Boris Nectoux:
Central Limit Theorem for Bayesian Neural Network trained with Variational Inference. CoRR abs/2406.09048 (2024) - [i68]Antoine Scheid, Aymeric Capitaine, Etienne Boursier, Eric Moulines, Michael I. Jordan, Alain Durmus:
Mitigating Externalities while Learning: an Online Version of the Coase Theorem. CoRR abs/2406.19824 (2024) - [i67]Vincent Plassier, Alexander Fishkov, Maxim Panov, Eric Moulines:
Conditionally valid Probabilistic Conformal Prediction. CoRR abs/2407.01794 (2024) - [i66]Aymeric Capitaine, Etienne Boursier, Antoine Scheid, Eric Moulines, Michael I. Jordan, El-Mahdi El-Mhamdi, Alain Durmus:
Unravelling in Collaborative Learning. CoRR abs/2407.14332 (2024) - [i65]Andrea Bertazzi, Alain Oliviero Durmus, Dario Shariatian, Umut Simsekli, Eric Moulines:
Piecewise deterministic generative models. CoRR abs/2407.19448 (2024) - [i64]Pierre Perrault, Denis Belomestny, Pierre Ménard, Éric Moulines, Alexey Naumov, Daniil Tiapkin, Michal Valko:
A New Bound on the Cumulant Generating Function of Dirichlet Processes. CoRR abs/2409.18621 (2024) - [i63]Marina Sheshukova, Denis Belomestny, Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov:
Nonasymptotic Analysis of Stochastic Gradient Descent with the Richardson-Romberg Extrapolation. CoRR abs/2410.05106 (2024) - [i62]Badr Moufad, Yazid Janati, Lisa Bedin, Alain Durmus, Randal Douc, Eric Moulines, Jimmy Olsson:
Variational Diffusion Posterior Sampling with Midpoint Guidance. CoRR abs/2410.09945 (2024) - [i61]Antoine Scheid, Etienne Boursier, Alain Durmus, Michael I. Jordan, Pierre Ménard, Eric Moulines, Michal Valko:
Optimal Design for Reward Modeling in RLHF. CoRR abs/2410.17055 (2024) - [i60]Lorenzo Mancini, Safwan Labbi, Karim Abed-Meraim, Fouzi Boukhalfa, Alain Durmus, Paul Mangold, Eric Moulines:
Joint Channel Selection using FedDRL in V2X. CoRR abs/2410.20687 (2024) - [i59]Safwan Labbi, Daniil Tiapkin, Lorenzo Mancini, Paul Mangold, Eric Moulines:
Federated UCBVI: Communication-Efficient Federated Regret Minimization with Heterogeneous Agents. CoRR abs/2410.22908 (2024) - 2023
- [j75]Anatoli B. Juditsky, Joon Kwon, Éric Moulines:
Unifying mirror descent and dual averaging. Math. Program. 199(1): 793-830 (2023) - [j74]Gersende Fort, Eric Moulines:
Stochastic variable metric proximal gradient with variance reduction for non-convex composite optimization. Stat. Comput. 33(3): 65 (2023) - [j73]Mastane Achab, Réda Alami, Yasser Abdelaziz Dahou Djilali, Kirill Fedyanin, Eric Moulines:
One-Step Distributional Reinforcement Learning. Trans. Mach. Learn. Res. 2023 (2023) - [j72]Aymeric Dieuleveut, Gersende Fort, Eric Moulines, Hoi-To Wai:
Stochastic Approximation Beyond Gradient for Signal Processing and Machine Learning. IEEE Trans. Signal Process. 71: 3117-3148 (2023) - [c125]Louis Leconte, Sholom Schechtman, Eric Moulines:
ASkewSGD : An Annealed interval-constrained Optimisation method to train Quantized Neural Networks. AISTATS 2023: 3644-3663 - [c124]Vincent Plassier, Eric Moulines, Alain Durmus:
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms. AISTATS 2023: 5299-5356 - [c123]Réda Alami, Mohammed Mahfoud, Eric Moulines:
Restarted Bayesian Online Change-point Detection for Non-Stationary Markov Decision Processes. CoLLAs 2023: 715-744 - [c122]Sholom Schechtman, Daniil Tiapkin, Michael Muehlebach, Éric Moulines:
Orthogonal Directions Constrained Gradient Method: from non-linear equality constraints to Stiefel manifold. COLT 2023: 1228-1258 - [c121]Arnaud Descours, Tom Huix, Arnaud Guillin, Manon Michel, Éric Moulines, Boris Nectoux:
Law of Large Numbers for Bayesian two-layer Neural Network trained with Variational Inference. COLT 2023: 4657-4695 - [c120]Louis Leconte, Van Minh Nguyen, Eric Moulines:
Federated Boolean Neural Networks Learning. FMEC 2023: 247-253 - [c119]Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, Eric Moulines, Jimmy Olsson:
State and parameter learning with PARIS particle Gibbs. ICML 2023: 3625-3675 - [c118]Louis Grenioux, Alain Oliviero Durmus, Eric Moulines, Marylou Gabrié:
On Sampling with Approximate Transport Maps. ICML 2023: 11698-11733 - [c117]Thomas Mesnard, Wenqi Chen, Alaa Saade, Yunhao Tang, Mark Rowland, Theophane Weber, Clare Lyle, Audrunas Gruslys, Michal Valko, Will Dabney, Georg Ostrovski, Eric Moulines, Rémi Munos:
Quantile Credit Assignment. ICML 2023: 24517-24531 - [c116]Vincent Plassier, Mehdi Makni, Aleksandr Rubashevskii, Eric Moulines, Maxim Panov:
Conformal Prediction for Federated Uncertainty Quantification Under Label Shift. ICML 2023: 27907-27947 - [c115]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Rémi Munos, Alexey Naumov, Pierre Perrault, Yunhao Tang, Michal Valko, Pierre Ménard:
Fast Rates for Maximum Entropy Exploration. ICML 2023: 34161-34221 - [c114]Jade Eva Guisiano, Éric Moulines, Thomas Lauvaux, Jérémie Sublime:
Oil and Gas Automatic Infrastructure Mapping: Leveraging High-Resolution Satellite Imagery Through Fine-Tuning of Object Detection Models. ICONIP (12) 2023: 442-458 - [c113]Aleksandr Beznosikov, Sergey Samsonov, Marina Sheshukova, Alexander V. Gasnikov, Alexey Naumov, Eric Moulines:
First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities. NeurIPS 2023 - [c112]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Rémi Munos, Alexey Naumov, Pierre Perrault, Michal Valko, Pierre Ménard:
Model-free Posterior Sampling via Learning Rate Randomization. NeurIPS 2023 - [i58]Gersende Fort, Eric Moulines:
Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization. CoRR abs/2301.00631 (2023) - [i57]Louis Grenioux, Alain Durmus, Éric Moulines, Marylou Gabrié:
On Sampling with Approximate Transport Maps. CoRR abs/2302.04763 (2023) - [i56]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Rémi Munos, Alexey Naumov, Pierre Perrault, Yunhao Tang, Michal Valko, Pierre Ménard:
Fast Rates for Maximum Entropy Exploration. CoRR abs/2303.08059 (2023) - [i55]Réda Alami, Mohammed Mahfoud, Eric Moulines:
Restarted Bayesian Online Change-point Detection for Non-Stationary Markov Decision Processes. CoRR abs/2304.00232 (2023) - [i54]Mastane Achab, Réda Alami, Yasser Abdelaziz Dahou Djilali, Kirill Fedyanin, Eric Moulines:
One-Step Distributional Reinforcement Learning. CoRR abs/2304.14421 (2023) - [i53]Aleksandr Beznosikov, Sergey Samsonov, Marina Sheshukova, Alexander V. Gasnikov, Alexey Naumov, Eric Moulines:
First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities. CoRR abs/2305.15938 (2023) - [i52]Louis Leconte, Van Minh Nguyen, Eric Moulines:
FAVAS: Federated AVeraging with ASynchronous clients. CoRR abs/2305.16099 (2023) - [i51]Louis Grenioux, Éric Moulines, Marylou Gabrié:
Balanced Training of Energy-Based Models with Adaptive Flow Sampling. CoRR abs/2306.00684 (2023) - [i50]Vincent Plassier, Mehdi Makni, Aleksandr Rubashevskii, Eric Moulines, Maxim Panov:
Conformal Prediction for Federated Uncertainty Quantification Under Label Shift. CoRR abs/2306.05131 (2023) - [i49]Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, Eric Moulines:
Monte Carlo guided Diffusion for Bayesian linear inverse problems. CoRR abs/2308.07983 (2023) - [i48]Fouzi Boukhalfa, Réda Alami, Mastane Achab, Eric Moulines, Mehdi Bennis:
Deep Reinforcement Learning Algorithms for Hybrid V2X Communication: A Benchmarking Study. CoRR abs/2310.03767 (2023) - [i47]Sergey Samsonov, Daniil Tiapkin, Alexey Naumov, Eric Moulines:
Finite-Sample Analysis of the Temporal Difference Learning. CoRR abs/2310.14286 (2023) - [i46]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Alexey Naumov, Pierre Perrault, Michal Valko, Pierre Ménard:
Demonstration-Regularized RL. CoRR abs/2310.17303 (2023) - [i45]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Rémi Munos, Alexey Naumov, Pierre Perrault, Michal Valko, Pierre Ménard:
Model-free Posterior Sampling via Learning Rate Randomization. CoRR abs/2310.18186 (2023) - [i44]Vincent Plassier, Nikita Kotelevskii, Aleksandr Rubashevskii, Fedor Noskov, Maksim Velikanov, Alexander Fishkov, Samuel Horváth, Martin Takác, Eric Moulines, Maxim Panov:
Efficient Conformal Prediction under Data Heterogeneity. CoRR abs/2312.15799 (2023) - 2022
- [j71]Denis Belomestny, Eric Moulines, Sergey Samsonov:
Variance reduction for additive functionals of Markov chains via martingale representations. Stat. Comput. 32(1): 16 (2022) - [j70]Alain Durmus, Éric Moulines, Marcelo Pereyra:
A Proximal Markov Chain Monte Carlo Method for Bayesian Inference in Imaging Inverse Problems: When Langevin Meets Moreau. SIAM Rev. 64(4): 991-1028 (2022) - [c111]Maxime Vono, Vincent Plassier, Alain Durmus, Aymeric Dieuleveut, Eric Moulines:
QLSD: Quantised Langevin Stochastic Dynamics for Bayesian Federated Learning. AISTATS 2022: 6459-6500 - [c110]Belhal Karimi, Hoi-To Wai, Eric Moulines, Ping Li:
Minimization by Incremental Stochastic Surrogate Optimization for Large Scale Nonconvex Problems. ALT 2022: 606-637 - [c109]Gabriel Cardoso, Geneviève Robin, Andony Arrieula, Mark Potse, Michel Haïssaguerre, Eric Moulines, Rémi Dubois:
A Patient-Specific Single Equivalent Dipole Model. CinC 2022: 1-4 - [c108]Max Cohen, Guillaume Quispe, Sylvain Le Corff, Charles Ollion, Eric Moulines:
Diffusion bridges vector quantized variational autoencoders. ICML 2022: 4141-4156 - [c107]Daniil Tiapkin, Denis Belomestny, Eric Moulines, Alexey Naumov, Sergey Samsonov, Yunhao Tang, Michal Valko, Pierre Ménard:
From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses. ICML 2022: 21380-21431 - [c106]Gabriel Cardoso, Sergey Samsonov, Achille Thin, Eric Moulines, Jimmy Olsson:
BR-SNIS: Bias Reduced Self-Normalized Importance Sampling. NeurIPS 2022 - [c105]Nikita Kotelevskii, Maxime Vono, Alain Durmus, Eric Moulines:
FedPop: A Bayesian Approach for Personalised Federated Learning. NeurIPS 2022 - [c104]Sergey Samsonov, Evgeny Lagutin, Marylou Gabrié, Alain Durmus, Alexey Naumov, Eric Moulines:
Local-Global MCMC kernels: the best of both worlds. NeurIPS 2022 - [c103]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Rémi Munos, Alexey Naumov, Mark Rowland, Michal Valko, Pierre Ménard:
Optimistic Posterior Sampling for Reinforcement Learning with Few Samples and Tight Guarantees. NeurIPS 2022 - [i43]Alain Durmus, Éric Moulines:
On the geometric convergence for MALA under verifiable conditions. CoRR abs/2201.01951 (2022) - [i42]Daniil Tiapkin, Denis Belomestny, Eric Moulines, Alexey Naumov, Sergey Samsonov, Yunhao Tang, Michal Valko, Pierre Ménard:
From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses. CoRR abs/2205.07704 (2022) - [i41]Nikita Kotelevskii, Maxime Vono, Eric Moulines, Alain Durmus:
FedPop: A Bayesian Approach for Personalised Federated Learning. CoRR abs/2206.03611 (2022) - [i40]Tom Huix, Szymon Majewski, Alain Durmus, Eric Moulines, Anna Korba:
Variational Inference of overparameterized Bayesian Neural Networks: a theoretical and empirical study. CoRR abs/2207.03859 (2022) - [i39]Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov:
Finite-time High-probability Bounds for Polyak-Ruppert Averaged Iterates of Linear Stochastic Approximation. CoRR abs/2207.04475 (2022) - [i38]Gabriel Cardoso, Sergey Samsonov, Achille Thin, Eric Moulines, Jimmy Olsson:
BR-SNIS: Bias Reduced Self-Normalized Importance Sampling. CoRR abs/2207.06364 (2022) - [i37]Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Rémi Munos, Alexey Naumov, Mark Rowland, Michal Valko, Pierre Ménard:
Optimistic Posterior Sampling for Reinforcement Learning with Few Samples and Tight Guarantees. CoRR abs/2209.14414 (2022) - [i36]Vincent Plassier, Alain Durmus, Eric Moulines:
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms. CoRR abs/2211.00100 (2022) - [i35]Louis Leconte, Sholom Schechtman, Eric Moulines:
AskewSGD : An Annealed interval-constrained Optimisation method to train Quantized Neural Networks. CoRR abs/2211.03741 (2022) - 2021
- [j69]Denis Belomestny, Leonid Iosipoi, Eric Moulines, Alexey Naumov, Sergey Samsonov:
Variance Reduction for Dependent Sequences with Applications to Stochastic Gradient MCMC. SIAM/ASA J. Uncertain. Quantification 9(2): 507-535 (2021) - [j68]Gersende Fort, P. Gach, Eric Moulines:
Fast incremental expectation maximization for finite-sum optimization: nonasymptotic convergence. Stat. Comput. 31(4): 48 (2021) - [j67]Ngoc Huy Chau, Éric Moulines, Miklós Rásonyi, Sotirios Sabanis, Ying Zhang:
On Stochastic Gradient Langevin Dynamics with Dependent Data Streams: The Fully Nonconvex Case. SIAM J. Math. Data Sci. 3(3): 959-986 (2021) - [c102]Alain Durmus, Pablo Jiménez, Eric Moulines, Salem Said:
On Riemannian Stochastic Approximation Schemes with Fixed Step-Size. AISTATS 2021: 1018-1026 - [c101]Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, Hoi-To Wai:
On the Stability of Random Matrix Product with Markovian Noise: Application to Linear Stochastic Approximation and TD Learning. COLT 2021: 1711-1752 - [c100]Gersende Fort, Eric Moulines, Hoi-To Wai:
Geom-Spider-EM: Faster Variance Reduced Stochastic Expectation Maximization for Nonconvex Finite-Sum Optimization. ICASSP 2021: 3135-3139 - [c99]Thomas Mesnard, Theophane Weber, Fabio Viola, Shantanu Thakoor, Alaa Saade, Anna Harutyunyan, Will Dabney, Thomas S. Stepleton, Nicolas Heess, Arthur Guez, Eric Moulines, Marcus Hutter, Lars Buesing, Rémi Munos:
Counterfactual Credit Assignment in Model-Free Reinforcement Learning. ICML 2021: 7654-7664 - [c98]Vincent Plassier, Maxime Vono, Alain Durmus, Eric Moulines:
DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs. ICML 2021: 8577-8587 - [c97]Achille Thin, Nikita Kotelevskii, Arnaud Doucet, Alain Durmus, Eric Moulines, Maxim Panov:
Monte Carlo Variational Auto-Encoders. ICML 2021: 10247-10257 - [c96]Achille Thin, Yazid Janati El Idrissi, Sylvain Le Corff, Charles Ollion, Eric Moulines, Arnaud Doucet, Alain Durmus, Christian X. Robert:
NEO: Non Equilibrium Sampling on the Orbits of a Deterministic Transform. NeurIPS 2021: 17060-17071 - [c95]Aymeric Dieuleveut, Gersende Fort, Eric Moulines, Geneviève Robin:
Federated-EM with heterogeneity mitigation and variance reduction. NeurIPS 2021: 29553-29566 - [c94]Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, Kevin Scaman, Hoi-To Wai:
Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize. NeurIPS 2021: 30063-30074 - [c93]Gersende Fort, Eric Moulines:
The Perturbed Prox-Preconditioned Spider Algorithm: Non-Asymptotic Convergence Bounds. SSP 2021: 96-100 - [c92]Gersende Fort, Eric Moulines:
The Perturbed Prox-Preconditioned Spider Algorithm for EM-Based Large Scale Learning. SSP 2021: 316-320 - [i34]Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, Hoi-To Wai:
On the Stability of Random Matrix Product with Markovian Noise: Application to Linear Stochastic Approximation and TD Learning. CoRR abs/2102.00185 (2021) - [i33]Alain Durmus, Pablo Jiménez, Éric Moulines, Salem Said:
On Riemannian Stochastic Approximation Schemes with Fixed Step-Size. CoRR abs/2102.07586 (2021) - [i32]Denis Belomestny, Ilya Levin, Eric Moulines, Alexey Naumov, Sergey Samsonov, Veronika Zorina:
Model-free policy evaluation in Reinforcement Learning via upper solutions. CoRR abs/2105.02135 (2021) - [i31]Gersende Fort, Eric Moulines:
The Perturbed Prox-Preconditioned SPIDER algorithm for EM-based large scale learning. CoRR abs/2105.11732 (2021) - [i30]Maxime Vono, Vincent Plassier, Alain Durmus, Aymeric Dieuleveut, Eric Moulines:
QLSD: Quantised Langevin stochastic dynamics for Bayesian federated learning. CoRR abs/2106.00797 (2021) - [i29]Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov, Kevin Scaman, Hoi-To Wai:
Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize. CoRR abs/2106.01257 (2021) - [i28]Vincent Plassier, Maxime Vono, Alain Durmus, Eric Moulines:
DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm. CoRR abs/2106.06300 (2021) - [i27]Achille Thin, Nikita Kotelevskii, Arnaud Doucet, Alain Durmus, Eric Moulines, Maxim Panov:
Monte Carlo Variational Auto-Encoders. CoRR abs/2106.15921 (2021) - [i26]Alain Durmus, Aurélien Enfroy, Éric Moulines, Gabriel Stoltz:
Uniform minorization condition and convergence bounds for discretizations of kinetic Langevin dynamics. CoRR abs/2107.14542 (2021) - [i25]Aymeric Dieuleveut, Gersende Fort, Eric Moulines, Geneviève Robin:
Federated Expectation Maximization with heterogeneity mitigation and variance reduction. CoRR abs/2111.02083 (2021) - [i24]Evgeny Lagutin, Daniil Selikhanovych, Achille Thin, Sergey Samsonov, Alexey Naumov, Denis Belomestny, Maxim Panov, Eric Moulines:
Ex2MCMC: Sampling through Exploration Exploitation. CoRR abs/2111.02702 (2021) - 2020
- [j66]Belhal Karimi, Marc Lavielle, Eric Moulines:
f-SAEM: A fast stochastic approximation of the EM algorithm for nonlinear mixed effects models. Comput. Stat. Data Anal. 141: 123-138 (2020) - [j65]Denis Belomestny, Leonid Iosipoi, Eric Moulines, Alexey Naumov, Sergey Samsonov:
Variance reduction for Markov chains with application to MCMC. Stat. Comput. 30(4): 973-997 (2020) - [j64]Toni Karvonen, Silvère Bonnabel, Eric Moulines, Simo Särkkä:
On Stability of a Class of Filters for Nonlinear Stochastic Systems. SIAM J. Control. Optim. 58(4): 2023-2049 (2020) - [c91]Maxim Kaledin, Eric Moulines, Alexey Naumov, Vladislav Tadic, Hoi-To Wai:
Finite Time Analysis of Linear Two-timescale Stochastic Approximation with Markovian Noise. COLT 2020: 2144-2203 - [c90]Robert Mattila, Cristian R. Rojas, Eric Moulines, Vikram Krishnamurthy, Bo Wahlberg:
Fast and Consistent Learning of Hidden Markov Models by Incorporating Non-Consecutive Correlations. ICML 2020: 6785-6796 - [c89]Gersende Fort, Eric Moulines, Hoi-To Wai:
A Stochastic Path Integral Differential EstimatoR Expectation Maximization Algorithm. NeurIPS 2020 - [i23]Nicolas Brosse, Carlos Riquelme, Alice Martin, Sylvain Gelly, Eric Moulines:
On Last-Layer Algorithms for Classification: Decoupling Representation from Uncertainty Estimation. CoRR abs/2001.08049 (2020) - [i22]Maxim Kaledin, Eric Moulines, Alexey Naumov, Vladislav Tadic, Hoi-To Wai:
Finite Time Analysis of Linear Two-timescale Stochastic Approximation with Markovian Noise. CoRR abs/2002.01268 (2020) - [i21]Achille Thin, Nikita Kotelevskii, Jean-Stanislas Denain, Léo Grinsztajn, Alain Durmus, Maxim Panov, Eric Moulines:
MetFlow: A New Efficient Method for Bridging the Gap between Markov Chain Monte Carlo and Variational Inference. CoRR abs/2002.12253 (2020) - [i20]Alain Durmus, Pablo Jiménez, Éric Moulines, Salem Said, Hoi-To Wai:
Convergence Analysis of Riemannian Stochastic Approximation Schemes. CoRR abs/2005.13284 (2020) - [i19]Gersende Fort, Eric Moulines, Hoi-To Wai:
Geom-SPIDER-EM: Faster Variance Reduced Stochastic Expectation Maximization for Nonconvex Finite-Sum Optimization. CoRR abs/2011.12392 (2020) - [i18]Gersende Fort, Eric Moulines, Hoi-To Wai:
A Stochastic Path-Integrated Differential EstimatoR Expectation Maximization Algorithm. CoRR abs/2012.01929 (2020) - [i17]Gersende Fort, P. Gach, Eric Moulines:
Fast Incremental Expectation Maximization for finite-sum optimization: nonasymptotic convergence. CoRR abs/2012.14670 (2020)
2010 – 2019
- 2019
- [j63]Geneviève Robin, Julie Josse, Eric Moulines, Sylvain Sardy:
Low-rank model with covariates for count data with missing values. J. Multivar. Anal. 173: 416-434 (2019) - [c88]Belhal Karimi, Blazej Miasojedow, Eric Moulines, Hoi-To Wai:
Non-asymptotic Analysis of Biased Stochastic Approximation Scheme. COLT 2019: 1944-1974 - [c87]Belhal Karimi, Hoi-To Wai, Eric Moulines, Marc Lavielle:
On the Global Convergence of (Fast) Incremental Expectation Maximization Methods. NeurIPS 2019: 2833-2843 - [i16]Belhal Karimi, Blazej Miasojedow, Eric Moulines, Hoi-To Wai:
Non-asymptotic Analysis of Biased Stochastic Approximation Scheme. CoRR abs/1902.00629 (2019) - [i15]Denis Belomestny, Leonid Iosipoi, Eric Moulines, Alexey Naumov, Sergey Samsonov:
Variance reduction for Markov chains with application to MCMC. CoRR abs/1910.03643 (2019) - [i14]Belhal Karimi, Hoi-To Wai, Eric Moulines, Marc Lavielle:
On the Global Convergence of (Fast) Incremental Expectation Maximization Methods. CoRR abs/1910.12521 (2019) - [i13]Anatoli B. Juditsky, Joon Kwon, Eric Moulines:
Unifying mirror descent and dual averaging. CoRR abs/1910.13742 (2019) - 2018
- [j62]Alain Durmus, Eric Moulines, Marcelo Pereyra:
Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau. SIAM J. Imaging Sci. 11(1): 473-506 (2018) - [c86]Toni Karvonen, Silvère Bonnabel, Eric Moulines, Simo Särkkä:
Bounds on the Covariance Matrix of a Class of Kalman-Bucy Filters for Systems with Non-Linear Dynamics. CDC 2018: 7176-7181 - [c85]Sylvain Le Corff, Alain Champagne, Maurice Charbit, Gilles Nozière, Eric Moulines:
Optimizing Thermal Comfort and Energy Consumption in a Large Building without Renovation Work. DSW 2018: 41-45 - [c84]Geneviève Robin, Hoi-To Wai, Julie Josse, Olga Klopp, Eric Moulines:
Low-rank Interaction with Sparse Additive Effects Model for Large Data Frames. NeurIPS 2018: 5501-5511 - [c83]Nicolas Brosse, Alain Durmus, Eric Moulines:
The promises and pitfalls of Stochastic Gradient Langevin Dynamics. NeurIPS 2018: 8278-8288 - [c82]Gersende Fort, Laurent Risser, Yves F. Atchadé, Eric Moulines:
Stochastic Fista Algorithms: So Fast ? SSP 2018: 796-800 - [i12]Matthieu Lerasle, Zoltán Szabó, Guillaume Lecué, Gaspar Massiot, Eric Moulines:
MONK - Outlier-Robust Mean Embedding Estimation by Median-of-Means. CoRR abs/1802.04784 (2018) - [i11]Nicolas Brosse, Alain Durmus, Eric Moulines:
The promises and pitfalls of Stochastic Gradient Langevin Dynamics. CoRR abs/1811.10072 (2018) - [i10]Geneviève Robin, Hoi-To Wai, Julie Josse, Olga Klopp, Eric Moulines:
Low-rank Interaction with Sparse Additive Effects Model for Large Data Frames. CoRR abs/1812.08398 (2018) - 2017
- [j61]Florian Maire, Eric Moulines, Sidonie Lefebvre:
Online EM for functional data. Comput. Stat. Data Anal. 111: 27-47 (2017) - [j60]Ngoc Minh Nguyen, Sylvain Le Corff, Eric Moulines:
Particle rejuvenation of Rao-Blackwellized sequential Monte Carlo smoothers for conditionally linear and Gaussian models. EURASIP J. Adv. Signal Process. 2017: 54 (2017) - [j59]Alain Durmus, Sylvain Le Corff, Eric Moulines, Gareth O. Roberts:
Optimal scaling of the random walk Metropolis algorithm under L p mean differentiability. J. Appl. Probab. 54(4): 1233-1260 (2017) - [j58]Yves F. Atchadé, Gersende Fort, Eric Moulines:
On Perturbed Proximal Gradient Algorithms. J. Mach. Learn. Res. 18: 10:1-10:33 (2017) - [j57]Gersende Fort, Emmanuel Gobet, Eric Moulines:
MCMC design-based non-parametric regression for rare event. Application to nested risk computations. Monte Carlo Methods Appl. 23(1): 21-42 (2017) - [j56]Hoi-To Wai, Jean Lafond, Anna Scaglione, Eric Moulines:
Decentralized Frank-Wolfe Algorithm for Convex and Nonconvex Problems. IEEE Trans. Autom. Control. 62(11): 5522-5537 (2017) - [j55]Hajer Braham, Sana Ben Jemaa, Gersende Fort, Eric Moulines, Berna Sayraç:
Fixed Rank Kriging for Cellular Coverage Analysis. IEEE Trans. Veh. Technol. 66(5): 4212-4222 (2017) - [c81]Nicolas Brosse, Alain Durmus, Eric Moulines, Marcelo Pereyra:
Sampling from a log-concave distribution with compact support with proximal Langevin Monte Carlo. COLT 2017: 319-342 - [c80]Umut Simsekli, Alain Durmus, Roland Badeau, Gaël Richard, Eric Moulines, A. Taylan Cemgil:
Parallelized Stochastic Gradient Markov Chain Monte Carlo algorithms for non-negative matrix factorization. ICASSP 2017: 2242-2246 - [c79]Hoi-To Wai, Anna Scaglione, Jean Lafond, Eric Moulines:
Fast and privacy preserving distributed low-rank regression. ICASSP 2017: 4451-4455 - 2016
- [j54]Amandine Schreck, Gersende Fort, Sylvain Le Corff, Eric Moulines:
A Shrinkage-Thresholding Metropolis Adjusted Langevin Algorithm for Bayesian Variable Selection. IEEE J. Sel. Top. Signal Process. 10(2): 366-375 (2016) - [j53]Gersende Fort, Eric Moulines, Amandine Schreck, Matti Vihola:
Convergence of Markovian Stochastic Approximation with Discontinuous Dynamics. SIAM J. Control. Optim. 54(2): 866-893 (2016) - [j52]Marjorie Jala, Céline Lévy-Leduc, Eric Moulines, Emmanuelle Conil, Joe Wiart:
Sequential Design of Computer Experiments for the Assessment of Fetus Exposure to Electromagnetic Fields. Technometrics 58(1): 30-42 (2016) - [j51]Hajer Braham, Sana Ben Jemaa, Gersende Fort, Eric Moulines, Berna Sayraç:
Spatial Prediction Under Location Uncertainty in Cellular Networks. IEEE Trans. Wirel. Commun. 15(11): 7633-7643 (2016) - [c78]Tahar Nabil, Eric Moulines, François Roueff, Jean-Marc Jicquel, Alexandre Girard:
Maximum likelihood estimation of a low-order building model. EUSIPCO 2016: 702-707 - [c77]Hoi-To Wai, Anna Scaglione, Jean Lafond, Eric Moulines:
A projection-free decentralized algorithm for non-convex optimization. GlobalSIP 2016: 475-479 - [c76]Simo Särkkä, Eric Moulines:
On the LP-convergence of a Girsanov theorem based particle filter. ICASSP 2016: 3989-3993 - [c75]Jean Lafond, Hoi-To Wai, Eric Moulines:
D-FW: Communication efficient distributed algorithms for high-dimensional sparse optimization. ICASSP 2016: 4144-4148 - [c74]Alain Durmus, Umut Simsekli, Eric Moulines, Roland Badeau, Gaël Richard:
Stochastic Gradient Richardson-Romberg Markov Chain Monte Carlo. NIPS 2016: 2047-2055 - [c73]Paul Ilhe, François Roueff, Eric Moulines, Antoine Souloumiac:
Nonparametric estimation of a shot-noise process. SSP 2016: 1-4 - [c72]François Weber, Sidonie Lefebvre, Eric Moulines, Marc Bousquet, Nicolas Roux:
Considering spatial information to improve anomaly detection in heterogeneous hyperspectral images. WHISPERS 2016: 1-7 - [i9]Hoi-To Wai, Jean Lafond, Anna Scaglione, Eric Moulines:
Decentralized Projection-free Optimization for Convex and Non-convex Problems. CoRR abs/1612.01216 (2016) - 2015
- [j50]Alain Durmus, Eric Moulines:
Quantitative bounds of convergence for geometrically ergodic Markov chain in the Wasserstein distance with application to the Metropolis Adjusted Langevin Algorithm. Stat. Comput. 25(1): 5-19 (2015) - [j49]Christelle Vergé, Cyrille Dubarry, Pierre Del Moral, Eric Moulines:
On parallel implementation of sequential Monte Carlo methods: the island particle model. Stat. Comput. 25(2): 243-260 (2015) - [c71]Eric Moulines:
The sexy job in the next ten years will be statisticians. DSAA 2015: XXIX-XXXVI - [p1]Yasir Khan, Berna Sayraç, Eric Moulines:
Centralized self-optimization of interference management in LTE-A HetNets. Design and Deployment of Small Cell Networks 2015: 363-392 - [i8]Hajer Braham, Sana Ben Jemaa, Gersende Fort, Eric Moulines, Berna Sayraç:
Fixed Rank Kriging for Cellular Coverage Analysis. CoRR abs/1505.07062 (2015) - [i7]Jean Lafond, Hoi-To Wai, Eric Moulines:
Convergence Analysis of a Stochastic Projection-free Algorithm. CoRR abs/1510.01171 (2015) - [i6]Hajer Braham, Sana Ben Jemaa, Gersende Fort, Eric Moulines, Berna Sayraç:
Spatial Prediction Under Location Uncertainty In Cellular Networks. CoRR abs/1510.03638 (2015) - 2014
- [j48]Julien Cornebise, Eric Moulines, Jimmy Olsson:
Adaptive sequential Monte Carlo by means of mixture of experts. Stat. Comput. 24(3): 317-337 (2014) - [c70]Jean Lafond, Olga Klopp, Eric Moulines, Joseph Salmon:
Probabilistic low-rank matrix completion on finite alphabets. NIPS 2014: 1727-1735 - [c69]Hajer Braham, Sana Ben Jemaa, Berna Sayraç, Gersende Fort, Eric Moulines:
Coverage mapping using spatial interpolation with field measurements. PIMRC 2014: 1743-1747 - [c68]Yasir Khan, Berna Sayraç, Eric Moulines:
Active antenna systems for centralized self-optimization of capacity in LTE-A. WCNC Workshops 2014: 166-171 - [c67]Hajer Braham, Sana Ben Jemaa, Berna Sayraç, Gersende Fort, Eric Moulines:
Low complexity spatial interpolation for cellular coverage analysis. WiOpt 2014: 188-195 - 2013
- [j47]Sidonie Lefebvre, Stéphanie Allassonnière, Jérémie Jakubowicz, Thomas Lasne, Eric Moulines:
Aircraft classification with a low resolution infrared sensor. Mach. Vis. Appl. 24(1): 175-186 (2013) - [j46]Zaïd Harchaoui, Francis R. Bach, Olivier Cappé, Eric Moulines:
Kernel-Based Methods for Hypothesis Testing: A Unified View. IEEE Signal Process. Mag. 30(4): 87-97 (2013) - [j45]Amandine Schreck, Gersende Fort, Eric Moulines:
Adaptive Equi-Energy Sampler: Convergence and Illustration. ACM Trans. Model. Comput. Simul. 23(1): 5:1-5:27 (2013) - [c66]Francis R. Bach, Eric Moulines:
Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n). NIPS 2013: 773-781 - [c65]Yasir Khan, Berna Sayraç, Eric Moulines:
Centralized self-optimization of pilot powers for load balancing in LTE. PIMRC 2013: 3039-3043 - [c64]Yasir Khan, Berna Sayraç, Eric Moulines:
Surrogate Based Centralized SON: Application to Interference Mitigation in LTE-A HetNets. VTC Spring 2013: 1-5 - [c63]Yasir Khan, Berna Sayraç, Eric Moulines:
Surrogate Based Centralized Automated Optimization Applied to LTE Mobility Load Balancing. VTC Fall 2013: 1-5 - [c62]Yasir Khan, Berna Sayraç, Eric Moulines:
Centralized self-optimization in LTE-A using Active Antenna Systems. Wireless Days 2013: 1-3 - [i5]Francis R. Bach, Eric Moulines:
Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n). CoRR abs/1306.2119 (2013) - 2012
- [j44]Jérémie Jakubowicz, Sidonie Lefebvre, Florian Maire, Eric Moulines:
Detecting Aircraft With a Low-Resolution Infrared Sensor. IEEE Trans. Image Process. 21(6): 3034-3041 (2012) - [c61]Marjorie Jala, Céline Lévy-Leduc, Eric Moulines, Emmanuelle Conil, Joe Wiart:
Sequential design of computer experiments for parameter estimation with application to numerical dosimetry. EUSIPCO 2012: 909-913 - [c60]Sylvain Le Corff, Gersende Fort, Eric Moulines:
New Online EM Algorithms for General Hidden Markov Models. Application to the SLAM Problem. LVA/ICA 2012: 131-138 - [c59]Florian Maire, Sidonie Lefebvre, Randal Douc, Eric Moulines:
An online learning algorithm for mixture models of deformable templates. MLSP 2012: 1-6 - [c58]Berna Sayraç, Janne Riihijärvi, Petri Mähönen, Sana Ben Jemaa, Eric Moulines, Sebastien Grimoud:
Improving coverage estimation for cellular networks with spatial bayesian prediction based on measurements. CellNet@SIGCOMM 2012: 43-48 - 2011
- [j43]Pierre Etoré, Gersende Fort, Benjamin Jourdain, Eric Moulines:
On adaptive stratification. Ann. Oper. Res. 189(1): 127-154 (2011) - [j42]Walid Hachem, Eric Moulines, François Roueff:
Error Exponents for Neyman-Pearson Detection of a Continuous-Time Gaussian Markov Process From Regular or Irregular Samples. IEEE Trans. Inf. Theory 57(6): 3899-3914 (2011) - [j41]Olaf Kouamo, Maurice Charbit, Eric Moulines, François Roueff:
Inference of a Generalized Long Memory Process in the Wavelet Domain. IEEE Trans. Signal Process. 59(12): 5759-5773 (2011) - [c57]Aurélien Garivier, Eric Moulines:
On Upper-Confidence Bound Policies for Switching Bandit Problems. ALT 2011: 174-188 - [c56]Sebastien Grimoud, Berna Sayraç, Sana Ben Jemaa, Eric Moulines:
An algorithm for fast REM construction. CrownCom 2011: 251-255 - [c55]Jianfeng Yao, Romain Couillet, Jamal Najim, Eric Moulines, Mérouane Debbah:
CLT for eigen-inference methods in cognitive radios. ICASSP 2011: 2980-2983 - [c54]Francis R. Bach, Eric Moulines:
Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning. NIPS 2011: 451-459 - [c53]Sebastien Grimoud, Berna Sayraç, Sana Ben Jemaa, Eric Moulines:
Best Sensor Selection for an Iterative REM Construction. VTC Fall 2011: 1-5 - 2010
- [j40]Steffen Barembruch, Anna Scaglione, Eric Moulines:
The expectation and sparse maximization algorithm. J. Commun. Networks 12(4): 317-329 (2010) - [c52]Steffen Barembruch, Anna Scaglione, Eric Moulines:
Maximum likelihood blind deconvolution for sparse systems. CIP 2010: 69-74 - [c51]Jérémie Jakubowicz, Sidonie Lefebvre, Eric Moulines:
Detecting aircraft with a low resolution infrared sensor. IGARSS 2010: 2475-2477 - [i4]Joffrey Villard, Pascal Bianchi, Eric Moulines, Pablo Piantanida:
High-Rate Quantization for the Neyman-Pearson Detection of Hidden Markov Processes. CoRR abs/1003.2914 (2010)
2000 – 2009
- 2009
- [j39]Steffen Barembruch, Aurélien Garivier, Eric Moulines:
On approximate maximum-likelihood methods for blind identification: how to cope with the curse of dimensionality. IEEE Trans. Signal Process. 57(11): 4247-4259 (2009) - [c50]Walid Hachem, Eric Moulines, Jamal Najim, François Roueff:
On the error exponents for detecting randomly sampled noisy diffusion processes. ICASSP 2009: 2169-2172 - [i3]Walid Hachem, Eric Moulines, François Roueff:
Error exponents for Neyman-Pearson detection of a continuous-time Gaussian Markov process from noisy irregular samples. CoRR abs/0909.4484 (2009) - 2008
- [j38]Julien Cornebise, Eric Moulines, Jimmy Olsson:
Adaptive methods for sequential importance sampling with application to state space models. Stat. Comput. 18(4): 461-480 (2008) - [c49]Julien Cornebise, Eric Moulines, Jimmy Olsson:
Adaptive methods for sequential importance sampling with application to state space models. EUSIPCO 2008: 1-5 - [c48]Sarah Filippi, Olivier Cappé, Fabrice Clérot, Eric Moulines:
A Near Optimal Policy for Channel Allocation in Cognitive Radio. EWRL 2008: 69-81 - [c47]Afef Ben Hadj Alaya-Feki, Berna Sayraç, Eric Moulines, Alain Le Cornec:
Opportunistic Spectrum Access: Online Search of Optimality. GLOBECOM 2008: 3096-3100 - [c46]Zaïd Harchaoui, Francis R. Bach, Eric Moulines:
Kernel Change-point Analysis. NIPS 2008: 609-616 - [c45]Afef Ben Hadj Alaya-Feki, Sana Ben Jemaa, Berna Sayraç, Paul Houzé, Eric Moulines:
Informed spectrum usage in cognitive radio networks: Interference cartography. PIMRC 2008: 1-5 - [c44]Afef Ben Hadj Alaya-Feki, Berna Sayraç, Alain Le Cornec, Eric Moulines:
Semi Dynamic Parameter Tuning for Optimized Opportunistic Spectrum Access. VTC Fall 2008: 1-5 - [c43]Afef Ben Hadj Alaya-Feki, Berna Sayraç, Paul Houzé, Eric Moulines:
Opportunistic Spectrum Access with IEEE 802.11 in IEEE P1900.4 Framework. WiMob 2008: 82-83 - 2007
- [j37]Afef Ben Hadj Alaya-Feki, Alain Le Cornec, Eric Moulines:
Optimization of Radio Measurements Exploitation in Wireless Mobile Networks. J. Commun. 2(7): 59-67 (2007) - [j36]Olivier Cappé, Simon J. Godsill, Eric Moulines:
An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo. Proc. IEEE 95(5): 899-924 (2007) - [j35]Thomas Trigano, Antoine Souloumiac, Thierry Montagu, François Roueff, Eric Moulines:
Statistical Pileup Correction Method for HPGe Detectors. IEEE Trans. Signal Process. 55(10): 4871-4881 (2007) - [c42]Nadir Castañeda, Maurice Charbit, Eric Moulines:
A New Approach for Mobile Localization in Multipath Scenarios. ICC 2007: 4680-4685 - [c41]Zaïd Harchaoui, Francis R. Bach, Eric Moulines:
Testing for Homogeneity with Kernel Fisher Discriminant Analysis. NIPS 2007: 609-616 - [i2]Olivier Cappé, Eric Moulines:
Online EM Algorithm for Latent Data Models. CoRR abs/0712.4273 (2007) - 2006
- [c40]Thomas Trigano, François Roueff, Eric Moulines, Antoine Souloumiac, Thierry Montagu:
Energy Spectrum Reconstruction for HPGe Detectors Using Analytical Pile-Up Correction. ICASSP (3) 2006: 592-595 - [c39]Olivier Cappé, Maurice Charbit, Eric Moulines:
Recursive Em Algorithm with Applications to Doa Estimation. ICASSP (3) 2006: 664-667 - [c38]Nadir Castañeda, Maurice Charbit, Eric Moulines:
Source Localization from Quantized Time of Arrival Measurements. ICASSP (4) 2006: 933-936 - [c37]Gersende Fort, Eric Moulines, Sean P. Meyn, Pierre Priouret:
ODE methods for Markov chain stability with applications to MCMC. VALUETOOLS 2006: 42 - 2005
- [b1]Olivier Cappé, Eric Moulines, Tobias Rydén:
Inference in hidden Markov models. Springer series in statistics, Springer 2005, ISBN 978-0-387-40264-2, pp. I-XVII, 1-651 - [j34]Marine Campedel, Eric Moulines:
Classification et sélection de caractéristiques de textures. Utilisation d'algorithmes automatiques supervisés de sélection d'attributs pour la classification d'images. Rev. d'Intelligence Artif. 19(4-5): 633-659 (2005) - [j33]Christophe Andrieu, Eric Moulines, Pierre Priouret:
Stability of Stochastic Approximation under Verifiable Conditions. SIAM J. Control. Optim. 44(1): 283-312 (2005) - [c36]Christophe Andrieu, Eric Moulines, Pierre Priouret:
Stability of Stochastic Approximation under Verifiable Conditions. CDC/ECC 2005: 6656-6661 - [c35]Marine Campedel, Eric Moulines:
Méthodologie de sélection de caractéristiques pour la classification d'images satellitaires. CAP 2005: 107-108 - [c34]Olivier Cappé, Eric Moulines:
On the use of particle filtering for maximum likelihood parameter estimation. EUSIPCO 2005: 1-4 - [c33]Simon Haykin, Alfred O. Hero III, Eric Moulines:
Modeling, identification, and control of large-scale dynamical systems. ICASSP (5) 2005: 945-948 - [i1]Randal Douc, Olivier Cappé, Eric Moulines:
Comparison of Resampling Schemes for Particle Filtering. CoRR abs/cs/0507025 (2005) - 2004
- [j32]Pascal Cheung-Mon-Chan, Eric Moulines:
Global Sampling for Sequential Filtering over Discrete State Space. EURASIP J. Adv. Signal Process. 2004(15): 2242-2254 (2004) - 2003
- [j31]Samson Lasaulce, Philippe Loubaton, Eric Moulines:
A semi-blind channel estimation technique based on second-order blind method for CDMA systems. IEEE Trans. Signal Process. 51(7): 1894-1904 (2003) - 2002
- [j30]Moussa Abdi, Hassan El Nahas, Alexandre Jard, Eric Moulines:
Semidefinite positive relaxation of the maximum-likelihood criterion applied to multiuser detection in a CDMA context. IEEE Signal Process. Lett. 9(6): 165-167 (2002) - [j29]Olivier Cappé, Eric Moulines, Jean-Christophe Pesquet, Athina P. Petropulu, Xueshi Yang:
Long-range dependence and heavy-tail modeling for teletraffic data. IEEE Signal Process. Mag. 19(3): 14-27 (2002) - 2001
- [j28]Marine Campedel-Oudot, Olivier Cappé, Eric Moulines:
Estimation of the spectral envelope of voiced sounds using a penalized likelihood approach. IEEE Trans. Speech Audio Process. 9(5): 469-481 (2001) - [j27]Lisa Perros-Meilhac, Eric Moulines, Karim Abed-Meraim, Pascal Chevalier, Pierre Duhamel:
Blind identification of multipath channels: a parametric subspace approach. IEEE Trans. Signal Process. 49(7): 1468-1480 (2001) - [c32]Clifford Hurvich, Eric Moulines, Philippe Soulier:
An adaptive broadband estimator of the fractional differencing coefficient. ICASSP 2001: 3417-3420 - [c31]Samson Lasaulce, Philippe Loubaton, Eric Moulines, Soodesh Buljore:
Training-based channel estimation and de-noising for the UMTS TDD mode. VTC Fall 2001: 1908-1911 - 2000
- [j26]Rafik Aguech, Eric Moulines, Pierre Priouret:
On a Perturbation Approach for the Analysis of Stochastic Tracking Algorithms. SIAM J. Control. Optim. 39(3): 872-899 (2000) - [j25]Vincent Buchoux, Olivier Cappé, Eric Moulines, Alexei Gorokhov:
On the performance of semi-blind subspace-based channel estimation. IEEE Trans. Signal Process. 48(6): 1750-1759 (2000) - [j24]Philippe Loubaton, Eric Moulines:
On blind multiuser forward link channel estimation by the subspace method: identifiability results. IEEE Trans. Signal Process. 48(8): 2366-2376 (2000) - [j23]Jean-François Cardoso, Eric Moulines:
In-variance of subspace based estimators. IEEE Trans. Signal Process. 48(9): 2495-2505 (2000) - [c30]Samson Lasaulce, Philippe Loubaton, Eric Moulines:
Performance of a subspace based semi-blind technique in the UMTS TDD mode context. ICASSP 2000: 2481-2484
1990 – 1999
- 1999
- [j22]Lisa Perros-Meilhac, Eric Moulines, Pascal Chevalier, Pierre Duhamel:
A parametric blind subspace identification: robustness issue. IEEE Commun. Lett. 3(11): 320-322 (1999) - [j21]Olivier Cappé, Arnaud Doucet, Marc Lavielle, Eric Moulines:
Simulation-based methods for blind maximum-likelihood filter identification. Signal Process. 73(1-2): 3-25 (1999) - [c29]Philippe Loubaton, Eric Moulines:
Application of blind second order statistics MIMO identification methods to the blind CDMA forward link channel estimation. ICASSP 1999: 2543-2546 - [c28]Lisa Perros-Meilhac, Pierre Duhamel, Pascal Chevalier, Eric Moulines:
Blind knowledge based algorithms based on second order statistics. ICASSP 1999: 2901-2904 - 1998
- [j20]Vincent Buchoux, Lisa Perros-Meilhac, Olivier Cappé, Eric Moulines:
Blind and semi-blind equalization: methods and algorithms. Ann. des Télécommunications 53(11-12): 449-465 (1998) - [j19]Olivier Cappé, Chafic Mokbel, Denis Jouvet, Eric Moulines:
An algorithm for maximum likelihood estimation of hidden Markov models with unknown state-tying. IEEE Trans. Speech Audio Process. 6(1): 61-70 (1998) - [j18]Yannis Stylianou, Olivier Cappé, Eric Moulines:
Continuous probabilistic transform for voice conversion. IEEE Trans. Speech Audio Process. 6(2): 131-142 (1998) - [c27]Sandrine Vaton, Eric Moulines:
A locally stationary semi-Markovian representation for ethernet LAN traffic data. Broadband Communications 1998: 525-537 - [c26]Olivier Cappé, Randal Douc, Eric Moulines, Christian P. Robert:
Bayesian Analysis of Overdispersed Count Data with Application to Teletraffic Monitoring. COMPSTAT 1998: 215-220 - [c25]Gersende Fort, Eric Moulines, Philippe Soulier:
On the Convergence of Iterated Random Maps with Applications to the MCEM Algorithm. COMPSTAT 1998: 317-322 - [c24]Gilles Faÿ, Eric Moulines, Olivier Cappé, Frédéric Bimbot:
Polynomial quasi-harmonic models for speech analysis and synthesis. ICASSP 1998: 865-868 - [c23]Eric Moulines, Pierre Priouret, Rafik Aguech:
On a perturbation approach for the analysis of stochastic tracking algorithms. ICASSP 1998: 1681-1684 - [c22]Olivier Cappé, Vincent Buchoux, Eric Moulines:
Quasi-Newton method for maximum likelihood estimation of hidden Markov models. ICASSP 1998: 2265-2268 - 1997
- [j17]Marc Lavielle, Eric Moulines:
A simulated annealing version of the EM algorithm for non-Gaussian deconvolution. Stat. Comput. 7(4): 229-236 (1997) - [j16]Karim Abed-Meraim, Yingbo Hua, Philippe Loubaton, Éric Moulines:
Subspace method for blind identification of multichannel FIR systems in noise field with unknown spatial covariance. IEEE Signal Process. Lett. 4(5): 135-137 (1997) - [j15]Karim Abed-Meraim, Philippe Loubaton, Eric Moulines:
A subspace algorithm for certain blind identification problems. IEEE Trans. Inf. Theory 43(2): 499-511 (1997) - [j14]Karim Abed-Meraim, Jean-François Cardoso, Alexei Y. Gorokhov, Philippe Loubaton, Eric Moulines:
On subspace methods for blind identification of single-input multiple-output FIR systems. IEEE Trans. Signal Process. 45(1): 42-55 (1997) - [j13]Adel Belouchrani, Karim Abed-Meraim, Jean-François Cardoso, Eric Moulines:
A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 45(2): 434-444 (1997) - [j12]Karim Abed-Meraim, Eric Moulines, Philippe Loubaton:
Prediction error method for second-order blind identification. IEEE Trans. Signal Process. 45(3): 694-705 (1997) - [c21]Eric Moulines, Jean-François Cardoso, Elisabeth Gassiat:
Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. ICASSP 1997: 3617-3620 - [c20]Roxana Ojeda, Jean-François Cardoso, Eric Moulines:
Asymptotically invariant Gaussianity test for causal invertible time series. ICASSP 1997: 3713-3716 - 1996
- [j11]Olivier Cappé, Eric Moulines:
Regularization techniques for discrete cepstrum estimation. IEEE Signal Process. Lett. 3(4): 100-102 (1996) - [j10]Eric Moulines, Karim Choukri:
Time-domain procedures for testing that a stationary time-series is Gaussian. IEEE Trans. Signal Process. 44(8): 2010-2025 (1996) - [c19]Alexei Gorokhov, Philippe Loubaton, Eric Moulines:
Second order blind equalization in multiple input multiple output FIR systems: a weighted least squares approach. ICASSP 1996: 2415-2418 - [c18]Eric Moulines, Jean-François Cardoso, Alexei Gorokhov, Philippe Loubaton:
Subspace methods for blind identification of SIMO-FIR systems. ICASSP 1996: 2447-2450 - 1995
- [j9]Eric Moulines, Yoshinori Sagisaka:
Editorial. Speech Commun. 16(2): 125-126 (1995) - [j8]Eric Moulines, Jean Laroche:
Non-parametric techniques for pitch-scale and time-scale modification of speech. Speech Commun. 16(2): 175-205 (1995) - [j7]Eric Moulines, Omar Ait Amrane, Yves Grenier:
The generalized multidelay adaptive filter: structure and convergence analysis. IEEE Trans. Signal Process. 43(1): 14-28 (1995) - [j6]Jean-François Cardoso, Eric Moulines:
Asymptotic performance analysis of direction-finding algorithms based on fourth-order cumulants. IEEE Trans. Signal Process. 43(1): 214-224 (1995) - [j5]Eric Moulines, Pierre Duhamel, Jean-François Cardoso, Sylvie Mayrargue:
Subspace methods for the blind identification of multichannel FIR filters. IEEE Trans. Signal Process. 43(2): 516-525 (1995) - [c17]Karim Abed-Meraim, Pierre Duhamel, David Gesbert, Philippe Loubaton, Sylvie Mayrargue, Eric Moulines, Dirk T. M. Slock:
Prediction error methods for time-domain blind identification of multichannel FIR filters. ICASSP 1995: 1968-1971 - [c16]Yannis Stylianou, Olivier Cappé, Eric Moulines:
Statistical methods for voice quality transformation. EUROSPEECH 1995: 447-450 - [c15]Yannis Stylianou, Jean Laroche, Eric Moulines:
High-quality speech modification based on a harmonic + noise model. EUROSPEECH 1995: 451-454 - 1994
- [j4]Jean-François Cardoso, Eric Moulines:
A robustness property of DOA estimators based on covariance. IEEE Trans. Signal Process. 42(11): 3285-3287 (1994) - [c14]Karim Abed-Meraim, Adel Belouchrani, Jean-François Cardoso, Eric Moulines:
Asymptotic performance of second order blind separation. ICASSP (4) 1994: 277-280 - [c13]Eric Moulines, Pierre Duhamel, Jean-François Cardoso, Sylvie Mayrargue:
Subspace methods for the blind identification of multichannel FIR filters. ICASSP (4) 1994: 573-576 - 1993
- [c12]Jean-François Cardoso, Eric Moulines:
Minimum constrast estimation with applications to array processing. ICASSP (4) 1993: 384-387 - [c11]Jean Laroche, Yannis Stylianou, Eric Moulines:
HNS: Speech modification based on a harmonic+noise model. ICASSP (2) 1993: 550-553 - 1992
- [j3]Hélène Valbret, Eric Moulines, Jean-Pierre Tubach:
Voice transformation using PSOLA technique. Speech Commun. 11(2-3): 175-187 (1992) - [c10]Omar Ait Amrane, Eric Moulines, Maurice Charbit, Yves Grenier:
Low-delay frequency domain LMS algorithm. ICASSP 1992: 9-12 - [c9]Hélène Valbret, Éric Moulines, Jean-Pierre Tubach:
Voice transformation using PSOLA technique. ICASSP 1992: 145-148 - [c8]Eric Moulines, Jean-François Cardoso:
Direction finding algorithms using fourth order statistics: asymptotic performance analysis. ICASSP 1992: 437-440 - 1991
- [c7]Hélène Valbret, Eric Moulines, Jean-Pierre Tubach:
Voice tranformation using PSOLA technique. EUROSPEECH 1991: 345-348 - 1990
- [j2]Eric Moulines, Renaud J. Di Francesco:
Detection of the glottal closure by jumps in the statistical properties of the speech signal. Speech Commun. 9(5-6): 401-418 (1990) - [j1]Eric Moulines, Francis Charpentier:
Pitch-synchronous waveform processing techniques for text-to-speech synthesis using diphones. Speech Commun. 9(5-6): 453-467 (1990) - [c6]Eric Moulines, Françoise Emerard, Danielle Larreur, J. L. Le Saint-Milon, L. Le Faucheur, F. Marty, Francis Charpentier, Christel Sorin:
A real-time French text-to-speech system generating high-quality synthetic speech. ICASSP 1990: 309-312
1980 – 1989
- 1989
- [c5]Christian Hamon, Eric Moulines, Francis Charpentier:
A diphone synthesis system based on time-domain prosodic modifications of speech. ICASSP 1989: 238-241 - [c4]Francis Charpentier, Eric Moulines:
Pitch-synchronous waveform processing techniques for text-to-speech synthesis using diphones. EUROSPEECH 1989: 2013-2019 - [c3]Renaud J. Di Francesco, Eric Moulines:
Detection of the glottal closure by jumps in the statistical properties of the signal. EUROSPEECH 1989: 2039-2042 - 1988
- [c2]Francis Charpentier, Eric Moulines:
Text-to-speech algorithms based on FFT synthesis. ICASSP 1988: 667-670 - 1987
- [c1]Christel Sorin, Raymond Descout, Christian Benoît, Françoise Emerard, C. Fluhr, Danielle Larreur, J. L. Le Saint-Milon, Eric Moulines, R. Peron:
Text-to-speech synthesis in the French electronic mail environment. ECST 1987: 2260-2263
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 00:09 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint