default search action
Bartosz Krawczyk
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j69]William C. Sleeman, Martha I. Roseberry, Preetam Ghosh, Alberto Cano, Bartosz Krawczyk:
Improved KD-tree based imbalanced big data classification and oversampling for MapReduce platforms. Appl. Intell. 54(23): 12558-12575 (2024) - [j68]Mohammed Ayyat, Tamer Nadeem, Bartosz Krawczyk:
ClassyNet: Class-Aware Early-Exit Neural Networks for Edge Devices. IEEE Internet Things J. 11(9): 15113-15127 (2024) - [j67]Lukasz Korycki, Bartosz Krawczyk:
Correction: Adversarial concept drift detection under poisoning attacks for robust data stream mining. Mach. Learn. 113(5): 3303-3304 (2024) - [j66]Damien Dablain, Colin Bellinger, Bartosz Krawczyk, David W. Aha, Nitesh V. Chawla:
Understanding imbalanced data: XAI & interpretable ML framework. Mach. Learn. 113(6): 3751-3769 (2024) - [j65]Gabriel Aguiar, Bartosz Krawczyk, Alberto Cano:
A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework. Mach. Learn. 113(7): 4165-4243 (2024) - [j64]Kushankur Ghosh, Colin Bellinger, Roberto Corizzo, Paula Branco, Bartosz Krawczyk, Nathalie Japkowicz:
The class imbalance problem in deep learning. Mach. Learn. 113(7): 4845-4901 (2024) - [c104]Lukasz Korycki, Bartosz Krawczyk:
Class-Incremental Mixture of Gaussians for Deep Continual Learning. CVPR Workshops 2024: 4097-4106 - [c103]Jedrzej Kozal, Jan Wasilewski, Bartosz Krawczyk, Michal Wozniak:
Continual Learning with Weight Interpolation. CVPR Workshops 2024: 4187-4195 - [i19]Jedrzej Kozal, Jan Wasilewski, Bartosz Krawczyk, Michal Wozniak:
Continual Learning with Weight Interpolation. CoRR abs/2404.04002 (2024) - 2023
- [j63]Lukasz Korycki, Bartosz Krawczyk:
Adversarial concept drift detection under poisoning attacks for robust data stream mining. Mach. Learn. 112(10): 4013-4048 (2023) - [j62]Damien Dablain, Bartosz Krawczyk, Nitesh V. Chawla:
DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data. IEEE Trans. Neural Networks Learn. Syst. 34(9): 6390-6404 (2023) - [c102]Damien A. Dablain, Colin Bellinger, Bartosz Krawczyk, Nitesh V. Chawla:
Efficient Augmentation for Imbalanced Deep Learning. ICDE 2023: 1433-1446 - [c101]Mohammed Ayyat, Tamer Nadeem, Bartosz Krawczyk:
Class-Aware Neural Networks for Efficient Intrusion Detection on Edge Devices. SECON 2023: 204-212 - [i18]Lukasz Korycki, Bartosz Krawczyk:
Class-Incremental Mixture of Gaussians for Deep Continual Learning. CoRR abs/2307.04094 (2023) - 2022
- [j61]Alberto Cano, Bartosz Krawczyk:
ROSE: robust online self-adjusting ensemble for continual learning on imbalanced drifting data streams. Mach. Learn. 111(7): 2561-2599 (2022) - [j60]Lukasz Korycki, Bartosz Krawczyk:
Instance exploitation for learning temporary concepts from sparsely labeled drifting data streams. Pattern Recognit. 129: 108749 (2022) - [i17]Gabriel Jonas Aguiar, Bartosz Krawczyk, Alberto Cano:
A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework. CoRR abs/2204.03719 (2022) - [i16]Damien Dablain, Colin Bellinger, Bartosz Krawczyk, Nitesh V. Chawla:
Efficient Augmentation for Imbalanced Deep Learning. CoRR abs/2207.06080 (2022) - [i15]Damien Dablain, Bartosz Krawczyk, Nitesh V. Chawla:
Towards A Holistic View of Bias in Machine Learning: Bridging Algorithmic Fairness and Imbalanced Learning. CoRR abs/2207.06084 (2022) - [i14]Damien A. Dablain, Colin Bellinger, Bartosz Krawczyk, David W. Aha, Nitesh V. Chawla:
Interpretable ML for Imbalanced Data. CoRR abs/2212.07743 (2022) - 2021
- [j59]Sina Ghadermarzi, Bartosz Krawczyk, Jiangning Song, Lukasz A. Kurgan:
XRRpred: accurate predictor of crystal structure quality from protein sequence. Bioinform. 37(23): 4366-4374 (2021) - [j58]Martha I. Roseberry, Bartosz Krawczyk, Youcef Djenouri, Alberto Cano:
Self-adjusting k nearest neighbors for continual learning from multi-label drifting data streams. Neurocomputing 442: 10-25 (2021) - [j57]William C. Sleeman IV, Bartosz Krawczyk:
Multi-class imbalanced big data classification on Spark. Knowl. Based Syst. 212: 106598 (2021) - [j56]Bartosz Krawczyk:
Tensor decision trees for continual learning from drifting data streams. Mach. Learn. 110(11): 3015-3035 (2021) - [c100]Kushankur Ghosh, Colin Bellinger, Roberto Corizzo, Bartosz Krawczyk, Nathalie Japkowicz:
On the combined effect of class imbalance and concept complexity in deep learning. IEEE BigData 2021: 4859-4868 - [c99]Lukasz Korycki, Bartosz Krawczyk:
Class-Incremental Experience Replay for Continual Learning Under Concept Drift. CVPR Workshops 2021: 3649-3658 - [c98]Bartosz Krawczyk:
Tensor Decision Trees for Continual Learning from Drifting Data Streams. DSAA 2021: 1-2 - [c97]Lukasz Korycki, Bartosz Krawczyk:
Concept Drift Detection from Multi-Class Imbalanced Data Streams. ICDE 2021: 1068-1079 - [c96]Bartosz Krawczyk, Colin Bellinger, Roberto Corizzo, Nathalie Japkowicz:
Undersampling with Support Vectors for Multi-Class Imbalanced Data Classification. IJCNN 2021: 1-7 - [c95]Filip Guzy, Michal Wozniak, Bartosz Krawczyk:
Evaluating and Explaining Generative Adversarial Networks for Continual Learning under Concept Drift. ICDM (Workshops) 2021: 295-303 - [c94]Bartosz Krawczyk, Alberto Cano:
Locally Linear Support Vector Machines for Imbalanced Data Classification. PAKDD (1) 2021: 616-628 - [c93]Lukasz Korycki, Bartosz Krawczyk:
Low-Dimensional Representation Learning from Imbalanced Data Streams. PAKDD (1) 2021: 629-641 - [c92]Lukasz Korycki, Bartosz Krawczyk:
Streaming Decision Trees for Lifelong Learning. ECML/PKDD (1) 2021: 502-518 - [i13]Lukasz Korycki, Bartosz Krawczyk:
Concept Drift Detection from Multi-Class Imbalanced Data Streams. CoRR abs/2104.10228 (2021) - [i12]Lukasz Korycki, Bartosz Krawczyk:
Class-Incremental Experience Replay for Continual Learning under Concept Drift. CoRR abs/2104.11861 (2021) - [i11]Damien Dablain, Bartosz Krawczyk, Nitesh V. Chawla:
DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data. CoRR abs/2105.02340 (2021) - [i10]William C. Sleeman IV, Bartosz Krawczyk:
Imbalanced Big Data Oversampling: Taxonomy, Algorithms, Software, Guidelines and Future Directions. CoRR abs/2107.11508 (2021) - [i9]Kushankur Ghosh, Colin Bellinger, Roberto Corizzo, Bartosz Krawczyk, Nathalie Japkowicz:
On the combined effect of class imbalance and concept complexity in deep learning. CoRR abs/2107.14194 (2021) - [i8]Lukasz Korycki, Bartosz Krawczyk:
Mining Drifting Data Streams on a Budget: Combining Active Learning with Self-Labeling. CoRR abs/2112.11019 (2021) - 2020
- [j55]William C. Sleeman IV, Joseph Nalluri, Khajamoinuddin Syed, Preetam Ghosh, Bartosz Krawczyk, Michael Hagan, Jatinder Palta, Rishabh Kapoor:
A Machine Learning method for relabeling arbitrary DICOM structure sets to TG-263 defined labels. J. Biomed. Informatics 109: 103527 (2020) - [j54]Michal Koziarski, Michal Wozniak, Bartosz Krawczyk:
Combined Cleaning and Resampling algorithm for multi-class imbalanced data with label noise. Knowl. Based Syst. 204: 106223 (2020) - [j53]Alberto Cano, Bartosz Krawczyk:
Kappa Updated Ensemble for drifting data stream mining. Mach. Learn. 109(1): 175-218 (2020) - [j52]Bartosz Krawczyk, Michal Koziarski, Michal Wozniak:
Radial-Based Oversampling for Multiclass Imbalanced Data Classification. IEEE Trans. Neural Networks Learn. Syst. 31(8): 2818-2831 (2020) - [c91]Lukasz Korycki, Bartosz Krawczyk:
Online Oversampling for Sparsely Labeled Imbalanced and Non-Stationary Data Streams. IJCNN 2020: 1-8 - [i7]Michal Koziarski, Michal Wozniak, Bartosz Krawczyk:
Combined Cleaning and Resampling Algorithm for Multi-Class Imbalanced Data with Label Noise. CoRR abs/2004.03406 (2020) - [i6]Lukasz Korycki, Bartosz Krawczyk:
Instance exploitation for learning temporary concepts from sparsely labeled drifting data streams. CoRR abs/2009.09382 (2020) - [i5]Lukasz Korycki, Bartosz Krawczyk:
Adversarial Concept Drift Detection under Poisoning Attacks for Robust Data Stream Mining. CoRR abs/2009.09497 (2020) - [i4]Lukasz Korycki, Bartosz Krawczyk:
Adaptive Deep Forest for Online Learning from Drifting Data Streams. CoRR abs/2010.07340 (2020)
2010 – 2019
- 2019
- [j51]José A. Sáez, Mikel Galar, Bartosz Krawczyk:
Addressing the Overlapping Data Problem in Classification Using the One-vs-One Decomposition Strategy. IEEE Access 7: 83396-83411 (2019) - [j50]Anabel Gómez-Ríos, Siham Tabik, Julián Luengo, A. S. M. Shihavuddin, Bartosz Krawczyk, Francisco Herrera:
Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation. Expert Syst. Appl. 118: 315-328 (2019) - [j49]José Ramón Cano, Pedro Antonio Gutiérrez, Bartosz Krawczyk, Michal Wozniak, Salvador García:
Monotonic classification: An overview on algorithms, performance measures and data sets. Neurocomputing 341: 168-182 (2019) - [j48]Michal Koziarski, Bartosz Krawczyk, Michal Wozniak:
Radial-Based oversampling for noisy imbalanced data classification. Neurocomputing 343: 19-33 (2019) - [j47]Przemyslaw Skryjomski, Bartosz Krawczyk, Alberto Cano:
Speeding up k-Nearest Neighbors classifier for large-scale multi-label learning on GPUs. Neurocomputing 354: 10-19 (2019) - [j46]Bartosz Krawczyk, Isaac Triguero, Salvador García, Michal Wozniak, Francisco Herrera:
Instance reduction for one-class classification. Knowl. Inf. Syst. 59(3): 601-628 (2019) - [j45]Alberto Cano, Bartosz Krawczyk:
Evolving rule-based classifiers with genetic programming on GPUs for drifting data streams. Pattern Recognit. 87: 248-268 (2019) - [j44]Martha I. Roseberry, Bartosz Krawczyk, Alberto Cano:
Multi-Label Punitive kNN with Self-Adjusting Memory for Drifting Data Streams. ACM Trans. Knowl. Discov. Data 13(6): 60:1-60:31 (2019) - [c90]Lukasz Korycki, Alberto Cano, Bartosz Krawczyk:
Active Learning with Abstaining Classifiers for Imbalanced Drifting Data Streams. IEEE BigData 2019: 2334-2343 - [c89]William C. Sleeman IV, Bartosz Krawczyk:
Bagging Using Instance-Level Difficulty for Multi-Class Imbalanced Big Data Classification on Spark. IEEE BigData 2019: 2484-2493 - [c88]Lukasz Korycki, Bartosz Krawczyk:
Unsupervised Drift Detector Ensembles for Data Stream Mining. DSAA 2019: 317-325 - [c87]Bartosz Krawczyk, Michal Wozniak:
On the Role of Cost-Sensitive Learning in Imbalanced Data Oversampling. ICCS (3) 2019: 180-191 - [c86]Bartosz Krawczyk, Alberto Cano:
Adaptive Ensemble Active Learning for Drifting Data Stream Mining. IJCAI 2019: 2763-2771 - [i3]Krzysztof J. Cios, Bartosz Krawczyk, Jacquelyne Cios, Kevin J. Staley:
Uniqueness of Medical Data Mining: How the new technologies and data they generate are transforming medicine. CoRR abs/1905.09203 (2019) - 2018
- [b1]Alberto Fernández, Salvador García, Mikel Galar, Ronaldo C. Prati, Bartosz Krawczyk, Francisco Herrera:
Learning from Imbalanced Data Sets. Springer 2018, ISBN 978-3-319-98073-7, pp. 1-377 - [j43]Bartosz Krawczyk, Alberto Cano:
Online ensemble learning with abstaining classifiers for drifting and noisy data streams. Appl. Soft Comput. 68: 677-692 (2018) - [j42]Pawel Ksieniewicz, Bartosz Krawczyk, Michal Wozniak:
Ensemble of Extreme Learning Machines with trained classifier combination and statistical features for hyperspectral data. Neurocomputing 271: 28-37 (2018) - [j41]Bartosz Krawczyk, Bridget T. McInnes:
Local ensemble learning from imbalanced and noisy data for word sense disambiguation. Pattern Recognit. 78: 103-119 (2018) - [j40]Bartosz Krawczyk, Mikel Galar, Michal Wozniak, Humberto Bustince, Francisco Herrera:
Dynamic ensemble selection for multi-class classification with one-class classifiers. Pattern Recognit. 83: 34-51 (2018) - [c85]Lukasz Korycki, Bartosz Krawczyk:
Clustering-Driven and Dynamically Diversified Ensemble for Drifting Data Streams. IEEE BigData 2018: 1037-1044 - [c84]Bartosz Krawczyk, Bernhard Pfahringer, Michal Wozniak:
Combining active learning with concept drift detection for data stream mining. IEEE BigData 2018: 2239-2244 - [c83]Alberto Cano, Bartosz Krawczyk:
Learning Classification Rules with Differential Evolution for High-Speed Data Stream Mining on GPU s. CEC 2018: 1-8 - [c82]Andrzej Lapinski, Bartosz Krawczyk, Pawel Ksieniewicz, Michal Wozniak:
An Empirical Insight Into Concept Drift Detectors Ensemble Strategies. CEC 2018: 1-8 - [c81]Andriy Mulyar, Bartosz Krawczyk:
Addressing Local Class Imbalance in Balanced Datasets with Dynamic Impurity Decision Trees. DS 2018: 3-17 - [c80]José A. Sáez, Héctor Quintián, Bartosz Krawczyk, Michal Wozniak, Emilio Corchado:
Multi-class Imbalanced Data Oversampling for Vertebral Column Pathologies Classification. HAIS 2018: 131-142 - [c79]Shiven Sharma, Colin Bellinger, Bartosz Krawczyk, Osmar R. Zaïane, Nathalie Japkowicz:
Synthetic Oversampling with the Majority Class: A New Perspective on Handling Extreme Imbalance. ICDM 2018: 447-456 - [c78]Bartosz Krawczyk, Alberto Cano, Michal Wozniak:
Selecting local ensembles for multi-class imbalanced data classification. IJCNN 2018: 1-8 - [c77]Luís Torgo, Stan Matwin, Nathalie Japkowicz, Bartosz Krawczyk, Nuno Moniz, Paula Branco:
2nd Workshop on Learning with Imbalanced Domains: Preface. LIDTA@ECML/PKDD 2018: 1-7 - [c76]Bartosz Krawczyk, Michal Wozniak:
Leveraging Ensemble Pruning for Imbalanced Data Classification. SMC 2018: 439-444 - [i2]Anabel Gómez-Ríos, Siham Tabik, Julián Luengo, A. S. M. Shihavuddin, Bartosz Krawczyk, Francisco Herrera:
Towards Highly Accurate Coral Texture Images Classification Using Deep Convolutional Neural Networks and Data Augmentation. CoRR abs/1804.00516 (2018) - [i1]José Ramón Cano, Pedro Antonio Gutiérrez, Bartosz Krawczyk, Michal Wozniak, Salvador García:
Monotonic classification: an overview on algorithms, performance measures and data sets. CoRR abs/1811.07155 (2018) - 2017
- [j39]Jerzy Kowalski, Bartosz Krawczyk, Michal Wozniak:
Fault diagnosis of marine 4-stroke diesel engines using a one-vs-one extreme learning ensemble. Eng. Appl. Artif. Intell. 57: 134-141 (2017) - [j38]Sergio Ramírez-Gallego, Bartosz Krawczyk, Salvador García, Michal Wozniak, Francisco Herrera:
A survey on data preprocessing for data stream mining: Current status and future directions. Neurocomputing 239: 39-57 (2017) - [j37]Bartosz Krawczyk, Leandro L. Minku, João Gama, Jerzy Stefanowski, Michal Wozniak:
Ensemble learning for data stream analysis: A survey. Inf. Fusion 37: 132-156 (2017) - [j36]Bartosz Krawczyk:
Active and adaptive ensemble learning for online activity recognition from data streams. Knowl. Based Syst. 138: 69-78 (2017) - [j35]Bartosz Krawczyk, Boguslaw Cyganek:
Selecting locally specialised classifiers for one-class classification ensembles. Pattern Anal. Appl. 20(2): 427-439 (2017) - [j34]Michal Koziarski, Bartosz Krawczyk, Michal Wozniak:
The deterministic subspace method for constructing classifier ensembles. Pattern Anal. Appl. 20(4): 981-990 (2017) - [j33]Sergio Ramírez-Gallego, Bartosz Krawczyk, Salvador García, Michal Wozniak, José Manuel Benítez, Francisco Herrera:
Nearest Neighbor Classification for High-Speed Big Data Streams Using Spark. IEEE Trans. Syst. Man Cybern. Syst. 47(10): 2727-2739 (2017) - [c75]Lukasz Korycki, Bartosz Krawczyk:
Combining Active Learning and Self-Labeling for Data Stream Mining. CORES 2017: 481-490 - [c74]Bartosz Krawczyk, Bridget T. McInnes, Alberto Cano:
Sentiment Classification from Multi-class Imbalanced Twitter Data Using Binarization. HAIS 2017: 26-37 - [c73]Michal Koziarski, Bartosz Krawczyk, Michal Wozniak:
Radial-Based Approach to Imbalanced Data Oversampling. HAIS 2017: 318-327 - [c72]Gerald Schaefer, Mateusz Budnik, Bartosz Krawczyk:
Immersive browsing in an image sphere. IMCOM 2017: 26 - [c71]Bartosz Krawczyk, Michal Wozniak:
Online query by committee for active learning from drifting data streams. IJCNN 2017: 2120-2127 - [c70]Luís Torgo, Bartosz Krawczyk, Paula Branco, Nuno Moniz:
Learning with Imbalanced Domains: Preface. LIDTA@PKDD/ECML 2017: 1-6 - [c69]Przemyslaw Skryjomski, Bartosz Krawczyk:
Influence of minority class instance types on SMOTE imbalanced data oversampling. LIDTA@PKDD/ECML 2017: 7-21 - [c68]Bartosz Krawczyk, Przemyslaw Skryjomski:
Cost-Sensitive Perceptron Decision Trees for Imbalanced Drifting Data Streams. ECML/PKDD (2) 2017: 512-527 - 2016
- [j32]Boguslaw Cyganek, Manuel Graña, Bartosz Krawczyk, Andrzej Kasprzak, Piotr Porwik, Krzysztof Walkowiak, Michal Wozniak:
A Survey of Big Data Issues in Electronic Health Record Analysis. Appl. Artif. Intell. 30(6): 497-520 (2016) - [j31]José A. Sáez, Bartosz Krawczyk, Michal Wozniak:
On the Influence of Class Noise in Medical Data Classification: Treatment Using Noise Filtering Methods. Appl. Artif. Intell. 30(6): 590-609 (2016) - [j30]Bartosz Krawczyk, Mikel Galar, Lukasz Jelen, Francisco Herrera:
Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy. Appl. Soft Comput. 38: 714-726 (2016) - [j29]Bartosz Krawczyk, Michal Wozniak:
Untrained weighted classifier combination with embedded ensemble pruning. Neurocomputing 196: 14-22 (2016) - [j28]Zhongliang Zhang, Bartosz Krawczyk, Salvador García, Alejandro Rosales-Pérez, Francisco Herrera:
Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data. Knowl. Based Syst. 106: 251-263 (2016) - [j27]Bartosz Krawczyk, Michal Wozniak:
Dynamic classifier selection for one-class classification. Knowl. Based Syst. 107: 43-53 (2016) - [j26]Bartosz Krawczyk:
Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4): 221-232 (2016) - [j25]José A. Sáez, Bartosz Krawczyk, Michal Wozniak:
Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recognit. 57: 164-178 (2016) - [c67]Bartosz Krawczyk:
Hybrid One-Class Ensemble for High-Dimensional Data Classification. ACIIDS (2) 2016: 136-144 - [c66]Pawel Ksieniewicz, Bartosz Krawczyk, Michal Wozniak:
Ensemble of One-Dimensional Classifiers for Hyperspectral Image Analysis. DMBD 2016: 513-520 - [c65]Michal Koziarski, Bartosz Krawczyk, Michal Wozniak:
Forming Classifier Ensembles with Deterministic Feature Subspaces. FedCSIS 2016: 89-95 - [c64]Bartosz Krawczyk, José A. Sáez, Michal Wozniak:
Tackling label noise with multi-class decomposition using fuzzy one-class support vector machines. FUZZ-IEEE 2016: 915-922 - [c63]Michal Wozniak, Bartosz Krawczyk:
Workshop on Nonstationary Models of Pattern Recognition and Classifier Combinations. ICCS 2016: 1670 - [c62]Bartosz Krawczyk:
GPU-Accelerated Extreme Learning Machines for Imbalanced Data Streams with Concept Drift. ICCS 2016: 1692-1701 - [c61]Bartosz Krawczyk:
Cost-sensitive one-vs-one ensemble for multi-class imbalanced data. IJCNN 2016: 2447-2452 - 2015
- [j24]Bartosz Krawczyk, Gerald Schaefer, Michal Wozniak:
A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification. Artif. Intell. Medicine 65(3): 219-227 (2015) - [j23]Boguslaw Cyganek, Bartosz Krawczyk, Michal Wozniak:
Multidimensional data classification with chordal distance based kernel and Support Vector Machines. Eng. Appl. Artif. Intell. 46: 10-22 (2015) - [j22]Bartosz Krawczyk, Jerzy Stefanowski, Michal Wozniak:
Data stream classification and big data analytics. Neurocomputing 150: 238-239 (2015) - [j21]Bartosz Krawczyk:
One-class classifier ensemble pruning and weighting with firefly algorithm. Neurocomputing 150: 490-500 (2015) - [j20]Bartosz Krawczyk, Michal Wozniak:
Incremental weighted one-class classifier for mining stationary data streams. J. Comput. Sci. 9: 19-25 (2015) - [j19]Bartosz Krawczyk, Bogdan Trawinski:
Hybrid Ensemble Machine Learning for Complex and Dynamic Data. New Gener. Comput. 33(4): 341-344 (2015) - [j18]Bartosz Krawczyk:
Forming Ensembles of Soft One-Class Classifiers with Weighted Bagging. New Gener. Comput. 33(4): 449-466 (2015) - [j17]Bartosz Krawczyk, Michal Wozniak, Francisco Herrera:
On the usefulness of one-class classifier ensembles for decomposition of multi-class problems. Pattern Recognit. 48(12): 3969-3982 (2015) - [j16]Bartosz Krawczyk, Michal Wozniak:
One-class classifiers with incremental learning and forgetting for data streams with concept drift. Soft Comput. 19(12): 3387-3400 (2015) - [c60]Bartosz Krawczyk, Michal Wozniak:
Pruning Ensembles of One-Class Classifiers with X-means Clustering. ACIIDS (1) 2015: 484-493 - [c59]Bartosz Krawczyk, Michal Wozniak:
Pruning Ensembles with Cost Constraints. ACIIDS (1) 2015: 503-512 - [c58]Boguslaw Cyganek, Bartosz Krawczyk:
Data Classification with Ensembles of One-Class Support Vector Machines and Sparse Nonnegative Matrix Factorization. ACIIDS (1) 2015: 526-535 - [c57]Bartosz Krawczyk:
Combining One-vs-One Decomposition and Ensemble Learning for Multi-class Imbalanced Data. CORES 2015: 27-36 - [c56]Bartosz Krawczyk, Michal Wozniak:
Reacting to different types of concept drift with adaptive and incremental one-class classifiers. CYBCONF 2015: 30-35 - [c55]Bartosz Krawczyk, Michal Wozniak:
Combining nearest neighbour classifiers based on small subsamples for big data analytics. CYBCONF 2015: 311-316 - [c54]Bartosz Krawczyk, Michal Wozniak:
Wagging for Combining Weighted One-class Support Vector Machines. ICCS 2015: 1565-1573 - [c53]Bartosz Krawczyk, Michal Wozniak:
Cost-Sensitive Neural Network with ROC-Based Moving Threshold for Imbalanced Classification. IDEAL 2015: 45-52 - [c52]Bartosz Krawczyk, Gerald Schaefer:
Effective Imbalanced Classification of Breast Thermogram Features. PReMI 2015: 535-544 - [c51]Bartosz Krawczyk, Michal Wozniak:
Weighted Naïve Bayes Classifier with Forgetting for Drifting Data Streams. SMC 2015: 2147-2152 - [c50]Bartosz Krawczyk, Michal Wozniak:
Incremental One-Class Bagging for Streaming and Evolving Big Data. TrustCom/BigDataSE/ISPA (2) 2015: 193-198 - 2014
- [j15]Bartosz Krawczyk, Urszula Markowska-Kaczmar, Halina Kwasnicka:
Recent Advances in Applied Computational Intelligence. Appl. Artif. Intell. 28(3): 217-219 (2014) - [j14]Bartosz Krawczyk, Michal Wozniak:
Influence of Distance Measures on the Effectiveness of One-Class Classification Ensembles. Appl. Artif. Intell. 28(3): 258-271 (2014) - [j13]Bartosz Krawczyk, Michal Wozniak, Gerald Schaefer:
Cost-sensitive decision tree ensembles for effective imbalanced classification. Appl. Soft Comput. 14: 554-562 (2014) - [j12]Bartosz Krawczyk, Gerald Schaefer:
A hybrid classifier committee for analysing asymmetry features in breast thermograms. Appl. Soft Comput. 20: 112-118 (2014) - [j11]Bartosz Krawczyk, Pawel Filipczuk:
Cytological image analysis with firefly nuclei detection and hybrid one-class classification decomposition. Eng. Appl. Artif. Intell. 31: 126-135 (2014) - [j10]Konrad Jackowski, Bartosz Krawczyk, Michal Wozniak:
Improved Adaptive Splitting and Selection: the Hybrid Training Method of a Classifier Based on a Feature Space Partitioning. Int. J. Neural Syst. 24(3) (2014) - [j9]Bartosz Krawczyk, Michal Wozniak:
Diversity measures for one-class classifier ensembles. Neurocomputing 126: 36-44 (2014) - [j8]Bartosz Krawczyk, Michal Wozniak, Boguslaw Cyganek:
Clustering-based ensembles for one-class classification. Inf. Sci. 264: 182-195 (2014) - [j7]Gerald Schaefer, Bartosz Krawczyk, M. Emre Celebi, Hitoshi Iyatomi:
An ensemble classification approach for melanoma diagnosis. Memetic Comput. 6(4): 233-240 (2014) - [j6]Bartosz Krawczyk, Gerald Schaefer:
Breast Thermogram Analysis Using Classifier Ensembles and Image Symmetry Features. IEEE Syst. J. 8(3): 921-928 (2014) - [c49]Bartosz Krawczyk, Michal Wozniak:
Optimization Algorithms for One-Class Classification Ensemble Pruning. ACIIDS (2) 2014: 127-136 - [c48]Gerald Schaefer, Bartosz Krawczyk, M. Emre Celebi, Hitoshi Iyatomi, Aboul Ella Hassanien:
Melanoma Classification Based on Ensemble Classification of Dermoscopy Image Features. AMLTA 2014: 291-298 - [c47]Gerald Schaefer, Bartosz Krawczyk, Niraj P. Doshi, Tomoharu Nakashima:
Cost-sensitive texture classification. IEEE Congress on Evolutionary Computation 2014: 105-108 - [c46]Bartosz Krawczyk, Isaac Triguero, Salvador García, Michal Wozniak, Francisco Herrera:
A first attempt on evolutionary prototype reduction for nearest neighbor one-class classification. IEEE Congress on Evolutionary Computation 2014: 747-753 - [c45]Bartosz Krawczyk, Lukasz Jelen, Michal Wozniak:
Adaptive Splitting and Selection ensemble for breast cancer malignancy grading. CICARE 2014: 104-111 - [c44]Bartosz Krawczyk, Michal Wozniak, Francisco Herrera:
Weighted one-class classification for different types of minority class examples in imbalanced data. CIDM 2014: 337-344 - [c43]Bartosz Krawczyk, Michal Wozniak:
Experiments on simultaneous combination rule training and ensemble pruning algorithm. CIEL 2014: 1-6 - [c42]Pedro Villar, Bartosz Krawczyk, Ana M. Sánchez, Rosana Montes, Francisco Herrera:
Designing a compact Genetic fuzzy rule-based system for one-class classification. FUZZ-IEEE 2014: 2163-2170 - [c41]Bartosz Krawczyk, Pawel Ksieniewicz, Michal Wozniak:
Hyperspectral Image Analysis Based on Color Channels and Ensemble Classifier. HAIS 2014: 274-284 - [c40]Bartosz Krawczyk, Michal Wozniak, Boguslaw Cyganek:
Clustering-Based Ensemble of One-Class Classifiers for Hyperspectral Image Segmentation. HAIS 2014: 678-688 - [c39]Bartosz Krawczyk, Lukasz Jelen, Adam Krzyzak, Thomas Fevens:
One-Class Classification Decomposition for Imbalanced Classification of Breast Cancer Malignancy Data. ICAISC (1) 2014: 539-550 - [c38]Bartosz Krawczyk, Michal Wozniak, Boguslaw Cyganek:
Weighted One-Class Classifier Ensemble Based on Fuzzy Feature Space Partitioning. ICPR 2014: 2838-2843 - [c37]Bartosz Krawczyk, Michal Wozniak:
Hypertension Type Classification Using Hierarchical Ensemble of One-Class Classifiers for Imbalanced Data. ICT Innovations 2014: 341-349 - [c36]Bartosz Krawczyk, Michal Wozniak:
Handling Label Noise in Microarray Classification with One-Class Classifier Ensemble. ICT Innovations 2014: 351-359 - [c35]Bartosz Krawczyk, Michal Wozniak:
New untrained aggregation methods for classifier combination. IJCNN 2014: 617-622 - [c34]Bartosz Krawczyk, Michal Wozniak:
Untrained Method for Ensemble Pruning and Weighted Combination. ISNN 2014: 358-365 - [c33]Bartosz Krawczyk, Michal Wozniak:
One-Class Classification Ensemble with Dynamic Classifier Selection. ISNN 2014: 542-549 - [c32]Sylwia Olsztynska-Janus, Barbara Kmiecik, Bartosz Krawczyk, Malgorzata Komorowska:
Determination of changes in plasma structure during extracorporeal circulation - studies by ATR-FTIR spectroscopy and machine learning methods. IWBBIO 2014: 1416-1417 - [c31]Bartosz Krawczyk, Pawel Ksieniewicz, Michal Wozniak:
Hyperspectral Image Analysis Based on Quad Tree Decomposition. SOCO-CISIS-ICEUTE 2014: 105-113 - [c30]Bartosz Krawczyk, Michal Wozniak:
Evolutionary Cost-Sensitive Ensemble for Malware Detection. SOCO-CISIS-ICEUTE 2014: 433-442 - 2013
- [j5]Konrad Jackowski, Bartosz Krawczyk, Michal Wozniak:
Application of Adaptive Splitting and Selection Classifier to the Spam Filtering Problem. Cybern. Syst. 44(6-7): 569-588 (2013) - [j4]Mateusz Budnik, Bartosz Krawczyk:
On optimal settings of classification tree ensembles for medical decision support. Health Informatics J. 19(1): 3-15 (2013) - [j3]Pawel Filipczuk, Bartosz Krawczyk, Michal Wozniak:
Classifier ensemble for an effective cytological image analysis. Pattern Recognit. Lett. 34(14): 1748-1757 (2013) - [j2]Tomasz Orczyk, Piotr Porwik, Bartosz Krawczyk, Michal Wozniak, Joanna Musialik, Barbara Blonska-Fajfrowska:
E-medical diagnosis support system for non-invasive liver fibrosis recognition. Stud. Inform. Univ. 11(3): 1-17 (2013) - [c29]Bartosz Krawczyk, Michal Wozniak, Tomasz Orczyk, Piotr Porwik:
Adaptive Splitting and Selection Method for Noninvasive Recognition of Liver Fibrosis Stage. ACIIDS (2) 2013: 215-224 - [c28]Bartosz Krawczyk, Gerald Schaefer:
An Analysis of Properties of Malignant Cases for Imbalanced Breast Thermogram Feature Classification. ACPR 2013: 305-309 - [c27]Gerald Schaefer, Bartosz Krawczyk, M. Emre Celebi, Hitoshi Iyatomi:
Melanoma Classification Using Dermoscopy Imaging and Ensemble Learning. ACPR 2013: 386-390 - [c26]Gerald Schaefer, Niraj P. Doshi, Bartosz Krawczyk:
HEp-2 Cell Classification Using Multi-dimensional Local Binary Patterns and Ensemble Classification. ACPR 2013: 951-955 - [c25]Bartosz Krawczyk, Gerald Schaefer, Shao Ying Zhu:
Breast Cancer Identification Based on Thermal Analysis and a Clustering and Selection Classification Ensemble. Brain and Health Informatics 2013: 256-265 - [c24]Bartosz Krawczyk, Michal Wozniak:
Accuracy and diversity in classifier selection for one-class classification ensembles. CIEL 2013: 46-51 - [c23]Bartosz Krawczyk, Michal Wozniak:
On diversity measures for fuzzy one-class classifier ensembles. CIEL 2013: 60-65 - [c22]Bartosz Krawczyk, Gerald Schaefer, Michal Wozniak:
Combining one-class classifiers for imbalanced classification of breast thermogram features. CIMI 2013: 36-41 - [c21]Bartosz Krawczyk, Michal Wozniak:
Incremental Learning and Forgetting in One-Class Classifiers for Data Streams. CORES 2013: 319-328 - [c20]Bartosz Krawczyk, Michal Wozniak, Tomasz Orczyk, Piotr Porwik:
Cost Sensitive Hierarchical Classifiers for Non-invasive Recognition of Liver Fibrosis Stage. CORES 2013: 639-647 - [c19]Gerald Schaefer, Bartosz Krawczyk, Niraj P. Doshi, Arcangelo Merla:
Scleroderma capillary pattern identification using texture descriptors and ensemble classification. EMBC 2013: 5473-5476 - [c18]Bartosz Krawczyk, Gerald Schaefer:
A pruned ensemble classifier for effective breast thermogram analysis. EMBC 2013: 7120-7123 - [c17]Bartosz Krawczyk:
Combining One-Class Support Vector Machines for Microarray Classification. FedCSIS 2013: 83-89 - [c16]Bartosz Krawczyk, Michal Wozniak:
Distributed Privacy-Preserving Minimal Distance Classification. HAIS 2013: 462-471 - [c15]Bartosz Krawczyk, Michal Wozniak:
Pruning One-Class Classifier Ensembles by Combining Sphere Intersection and Consistency Measures. ICAISC (1) 2013: 426-436 - [c14]Gerald Schaefer, Bartosz Krawczyk, Niraj P. Doshi:
Improved LBP texture classification using ensemble learning. ICME 2013: 1-6 - [c13]Bartosz Krawczyk, Gerald Schaefer:
An improved ensemble approach for imbalanced classification problems. SACI 2013: 423-426 - [c12]Bartosz Krawczyk, Gerald Schaefer, Michal Wozniak:
A cost-sensitive ensemble classifier for breast cancer classification. SACI 2013: 427-430 - 2012
- [j1]Michal Wozniak, Bartosz Krawczyk:
Combined classifier based on feature space partitioning. Int. J. Appl. Math. Comput. Sci. 22(4): 855-866 (2012) - [c11]Bartosz Krawczyk:
Diversity in Ensembles for One-Class Classification. ADBIS Workshops 2012: 119-129 - [c10]Bartosz Krawczyk, Gerald Schaefer, Michal Wozniak:
Breast thermogram analysis using a cost-sensitive multiple classifier system. BHI 2012: 507-510 - [c9]Bartosz Krawczyk, Michal Wozniak:
Experiments on distance measures for combining one-class classifiers. FedCSIS 2012: 89-92 - [c8]Bartosz Krawczyk, Michal Wozniak:
Combining Diverse One-Class Classifiers. HAIS (2) 2012: 590-601 - [c7]Bartosz Krawczyk, Pawel Filipczuk, Michal Wozniak:
Adaptive Splitting and Selection Algorithm for Classification of Breast Cytology Images. ICCCI (1) 2012: 475-484 - [c6]Bartosz Krawczyk, Lukasz Jelen, Adam Krzyzak, Thomas Fevens:
Oversampling Methods for Classification of Imbalanced Breast Cancer Malignancy Data. ICCVG 2012: 483-490 - [c5]Bartosz Krawczyk, Gerald Schaefer:
Effective multiple classifier systems for breast thermogram analysis. ICPR 2012: 3345-3348 - [c4]Konrad Jackowski, Bartosz Krawczyk, Michal Wozniak:
Cost-Sensitive Splitting and Selection Method for Medical Decision Support System. IDEAL 2012: 850-857 - [c3]Bartosz Krawczyk, Michal Wozniak:
Analysis of Diversity Assurance Methods for Combined Classifiers. IP&C 2012: 179-186 - [c2]Marcin Zmyslony, Bartosz Krawczyk, Michal Wozniak:
Combined Classifiers with Neural Fuser for Spam Detection. CISIS/ICEUTE/SOCO Special Sessions 2012: 245-252 - 2011
- [c1]Bartosz Krawczyk, Michal Wozniak:
Designing Cost-Sensitive Ensemble - Genetic Approach. IP&C 2011: 227-234 - [p1]Bartosz Krawczyk, Michal Wozniak:
Privacy Preserving Models of k-NN Algorithm. Computer Recognition Systems 4 2011: 207-217
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-23 19:35 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint