default search action
Ferdinando Fioretto
Person information
- affiliation: University of Virginia, Charlottesville, VA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j13]Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns, Ferdinando Fioretto:
Decision-Focused Learning: Foundations, State of the Art, Benchmark and Future Opportunities. J. Artif. Intell. Res. 80: 1623-1701 (2024) - [c63]Saswat Das, Keyu Zhu, Christine Task, Pascal Van Hentenryck, Ferdinando Fioretto:
Finding ε and δ of Traditional Disclosure Control Systems. AAAI 2024: 22013-22020 - [c62]James Kotary, Vincenzo Di Vito, Jacob Christopher, Pascal Van Hentenryck, Ferdinando Fioretto:
Learning Joint Models of Prediction and Optimization. ECAI 2024: 2476-2483 - [c61]My H. Dinh, James Kotary, Ferdinando Fioretto:
Learning Fair Ranking Policies via Differentiable Optimization of Ordered Weighted Averages. FAccT 2024: 2508-2517 - [c60]Saswat Das, Marco Romanelli, Ferdinando Fioretto:
Disparate Impact on Group Accuracy of Linearization for Private Inference. ICML 2024 - [c59]Sree Harsha Nelaturu, Nishaanth Kanna Ravichandran, Cuong Tran, Sara Hooker, Ferdinando Fioretto:
On The Fairness Impacts of Hardware Selection in Machine Learning. ICML 2024 - [c58]Cuong Tran, Keyu Zhu, Pascal Van Hentenryck, Ferdinando Fioretto:
On the Effects of Fairness to Adversarial Vulnerability. IJCAI 2024: 521-529 - [i63]Jacob K. Christopher, Stephen Baek, Ferdinando Fioretto:
Projected Generative Diffusion Models for Constraint Satisfaction. CoRR abs/2402.03559 (2024) - [i62]Saswat Das, Marco Romanelli, Ferdinando Fioretto:
Disparate Impact on Group Accuracy of Linearization for Private Inference. CoRR abs/2402.03629 (2024) - [i61]My H. Dinh, James Kotary, Ferdinando Fioretto:
Learning Fair Ranking Policies via Differentiable Optimization of Ordered Weighted Averages. CoRR abs/2402.05252 (2024) - [i60]My H. Dinh, James Kotary, Ferdinando Fioretto:
End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty. CoRR abs/2402.07772 (2024) - [i59]James Kotary, Ferdinando Fioretto:
Learning Constrained Optimization with Deep Augmented Lagrangian Methods. CoRR abs/2403.03454 (2024) - [i58]Ethan King, James Kotary, Ferdinando Fioretto, Ján Drgona:
Metric Learning to Accelerate Convergence of Operator Splitting Methods for Differentiable Parametric Programming. CoRR abs/2404.00882 (2024) - [i57]Saswat Das, Marco Romanelli, Cuong Tran, Zarreen Reza, Bhavya Kailkhura, Ferdinando Fioretto:
Low-rank finetuning for LLMs: A fairness perspective. CoRR abs/2405.18572 (2024) - [i56]Prakhar Ganesh, Cuong Tran, Reza Shokri, Ferdinando Fioretto:
The Data Minimization Principle in Machine Learning. CoRR abs/2405.19471 (2024) - [i55]Ferdinando Fioretto, Diptangshu Sen, Juba Ziani:
Differentially Private Data Release on Graphs: Inefficiencies and Unfairness. CoRR abs/2408.05246 (2024) - [i54]Jacob K. Christopher, Brian R. Bartoldson, Bhavya Kailkhura, Ferdinando Fioretto:
Speculative Diffusion Decoding: Accelerating Language Generation through Diffusion. CoRR abs/2408.05636 (2024) - [i53]Joonhyuk Ko, Juba Ziani, Saswat Das, Matt Williams, Ferdinando Fioretto:
Fairness Issues and Mitigations in (Differentially Private) Socio-demographic Data Processes. CoRR abs/2408.08471 (2024) - [i52]James Kotary, Vincenzo Di Vito, Jacob Christopher, Pascal Van Hentenryck, Ferdinando Fioretto:
Learning Joint Models of Prediction and Optimization. CoRR abs/2409.04898 (2024) - [i51]Vincenzo Di Vito, Mostafa Mohammadian, Kyri Baker, Ferdinando Fioretto:
Learning To Solve Differential Equation Constrained Optimization Problems. CoRR abs/2410.01786 (2024) - 2023
- [c57]James Kotary, Vincenzo Di Vito, Ferdinando Fioretto:
End-to-End Optimization and Learning for Multiagent Ensembles. AAMAS 2023: 2613-2615 - [c56]Cuong Tran, Keyu Zhu, Ferdinando Fioretto, Pascal Van Hentenryck:
SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles. IJCAI 2023: 501-509 - [c55]Cuong Tran, Ferdinando Fioretto:
On the Fairness Impacts of Private Ensembles Models. IJCAI 2023: 510-518 - [c54]James Kotary, Vincenzo Di Vito, Ferdinando Fioretto:
Differentiable Model Selection for Ensemble Learning. IJCAI 2023: 1954-1962 - [c53]James Kotary, My H. Dinh, Ferdinando Fioretto:
Backpropagation of Unrolled Solvers with Folded Optimization. IJCAI 2023: 1963-1970 - [c52]Cuong Tran, Ferdinando Fioretto:
Data Minimization at Inference Time. NeurIPS 2023 - [i50]James Kotary, My H. Dinh, Ferdinando Fioretto:
Folded Optimization for End-to-End Model-Based Learning. CoRR abs/2301.12047 (2023) - [i49]Keyu Zhu, Ferdinando Fioretto, Pascal Van Hentenryck, Saswat Das, Christine Task:
Privacy and Bias Analysis of Disclosure Avoidance Systems. CoRR abs/2301.12204 (2023) - [i48]My H. Dinh, Ferdinando Fioretto:
Context-Aware Differential Privacy for Language Modeling. CoRR abs/2301.12288 (2023) - [i47]Cuong Tran, Ferdinando Fioretto:
Personalized Privacy Auditing and Optimization at Test Time. CoRR abs/2302.00077 (2023) - [i46]Cuong Tran, Ferdinando Fioretto:
On the Fairness Impacts of Private Ensembles Models. CoRR abs/2305.11807 (2023) - [i45]Khang Tran, Ferdinando Fioretto, Issa Khalil, My T. Thai, NhatHai Phan:
FairDP: Certified Fairness with Differential Privacy. CoRR abs/2305.16474 (2023) - [i44]Cuong Tran, Ferdinando Fioretto:
Data Minimization at Inference Time. CoRR abs/2305.17593 (2023) - [i43]Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns, Ferdinando Fioretto:
Decision-Focused Learning: Foundations, State of the Art, Benchmark and Future Opportunities. CoRR abs/2307.13565 (2023) - [i42]Vladimir Dvorkin, Ferdinando Fioretto:
Price-Aware Deep Learning for Electricity Markets. CoRR abs/2308.01436 (2023) - [i41]James Kotary, Vincenzo Di Vito, Jacob Christopher, Pascal Van Hentenryck, Ferdinando Fioretto:
Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and Optimization. CoRR abs/2311.13087 (2023) - [i40]Sree Harsha Nelaturu, Nishaanth Kanna Ravichandran, Cuong Tran, Sara Hooker, Ferdinando Fioretto:
On The Fairness Impacts of Hardware Selection in Machine Learning. CoRR abs/2312.03886 (2023) - [i39]James Kotary, Jacob Christopher, My H. Dinh, Ferdinando Fioretto:
Analyzing and Enhancing the Backward-Pass Convergence of Unrolled Optimization. CoRR abs/2312.17394 (2023) - 2022
- [j12]Khoi D. Hoang, Ferdinando Fioretto, Ping Hou, William Yeoh, Makoto Yokoo, Roie Zivan:
Proactive Dynamic Distributed Constraint Optimization Problems. J. Artif. Intell. Res. 74: 179-225 (2022) - [c51]James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck:
Fast Approximations for Job Shop Scheduling: A Lagrangian Dual Deep Learning Method. AAAI 2022: 7239-7246 - [c50]Awa Dieng, Miriam Rateike, Golnoosh Farnadi, Ferdinando Fioretto, Matt J. Kusner, Jessica Schrouff:
Algorithmic Fairness through the Lens of Causality and Privacy (AFCP) 2022. AFCP 2022: 1-6 - [c49]Keyu Zhu, Ferdinando Fioretto, Pascal Van Hentenryck:
Post-processing of Differentially Private Data: A Fairness Perspective. IJCAI 2022: 4029-4035 - [c48]Ferdinando Fioretto, Cuong Tran, Pascal Van Hentenryck, Keyu Zhu:
Differential Privacy and Fairness in Decisions and Learning Tasks: A Survey. IJCAI 2022: 5470-5477 - [c47]Ferdinando Fioretto:
Integrating Machine Learning and Optimization to Boost Decision Making. IJCAI 2022: 5808-5812 - [c46]Cuong Tran, Ferdinando Fioretto, Jung-Eun Kim, Rakshit Naidu:
Pruning has a disparate impact on model accuracy. NeurIPS 2022 - [c45]James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, Ziwei Zhu:
End-to-End Learning for Fair Ranking Systems. WWW 2022: 3520-3530 - [e1]Awa Dieng, Miriam Rateike, Golnoosh Farnadi, Ferdinando Fioretto, Matt J. Kusner, Jessica Schrouff:
Algorithmic Fairness through the Lens of Causality and Privacy Workshop, AFCP 2022, New Orleans, LA, USA (hybrid), 03 December 2022. Proceedings of Machine Learning Research 214, PMLR 2022 [contents] - [i38]Keyu Zhu, Ferdinando Fioretto, Pascal Van Hentenryck:
Post-processing of Differentially Private Data: A Fairness Perspective. CoRR abs/2201.09425 (2022) - [i37]Lesia Mitridati, Emma Romei, Gabriela Hug, Ferdinando Fioretto:
Differentially-Private Heat and Electricity Markets Coordination. CoRR abs/2201.10634 (2022) - [i36]Sawinder Kaur, Ferdinando Fioretto, Asif Salekin:
Deadwooding: Robust Global Pruning for Deep Neural Networks. CoRR abs/2202.05226 (2022) - [i35]Ferdinando Fioretto, Cuong Tran, Pascal Van Hentenryck, Keyu Zhu:
Differential Privacy and Fairness in Decisions and Learning Tasks: A Survey. CoRR abs/2202.08187 (2022) - [i34]Cuong Tran, Keyu Zhu, Ferdinando Fioretto, Pascal Van Hentenryck:
SF-PATE: Scalable, Fair, and Private Aggregation of Teacher Ensembles. CoRR abs/2204.05157 (2022) - [i33]Cuong Tran, Ferdinando Fioretto, Jung-Eun Kim, Rakshit Naidu:
Pruning has a disparate impact on model accuracy. CoRR abs/2205.13574 (2022) - [i32]Mostafa Mohammadian, Kyri Baker, Ferdinando Fioretto:
Gradient-Enhanced Physics-Informed Neural Networks for Power Systems Operational Support. CoRR abs/2206.10579 (2022) - [i31]James Kotary, Vincenzo Di Vito, Ferdinando Fioretto:
End-to-End Optimization and Learning for Multiagent Ensembles. CoRR abs/2211.00251 (2022) - [i30]Cuong Tran, Keyu Zhu, Ferdinando Fioretto, Pascal Van Hentenryck:
Fairness Increases Adversarial Vulnerability. CoRR abs/2211.11835 (2022) - 2021
- [j11]Ferdinando Fioretto, Pascal Van Hentenryck, Keyu Zhu:
Differential privacy of hierarchical Census data: An optimization approach. Artif. Intell. 296: 103475 (2021) - [c44]Cuong Tran, Ferdinando Fioretto, Pascal Van Hentenryck:
Differentially Private and Fair Deep Learning: A Lagrangian Dual Approach. AAAI 2021: 9932-9939 - [c43]Keyu Zhu, Pascal Van Hentenryck, Ferdinando Fioretto:
Bias and Variance of Post-processing in Differential Privacy. AAAI 2021: 11177-11184 - [c42]Anudit Nagar, Cuong Tran, Ferdinando Fioretto:
Privacy-Preserving and Accountable Multi-agent Learning. AAMAS 2021: 1605-1606 - [c41]Ferdinando Fioretto:
Constrained-Based Differential Privacy (Invited Talk). CP 2021: 2:1-2:1 - [c40]Cuong Tran, Ferdinando Fioretto, Pascal Van Hentenryck, Zhiyan Yao:
Decision Making with Differential Privacy under a Fairness Lens. IJCAI 2021: 560-566 - [c39]James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, Bryan Wilder:
End-to-End Constrained Optimization Learning: A Survey. IJCAI 2021: 4475-4482 - [c38]James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck:
Learning Hard Optimization Problems: A Data Generation Perspective. NeurIPS 2021: 24981-24992 - [c37]Cuong Tran, My H. Dinh, Ferdinando Fioretto:
Differentially Private Empirical Risk Minimization under the Fairness Lens. NeurIPS 2021: 27555-27565 - [i29]Terrence W. K. Mak, Ferdinando Fioretto, Pascal Van Hentenryck:
Load Embeddings for Scalable AC-OPF Learning. CoRR abs/2101.03973 (2021) - [i28]James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, Bryan Wilder:
End-to-End Constrained Optimization Learning: A Survey. CoRR abs/2103.16378 (2021) - [i27]Ferdinando Fioretto, Cuong Tran, Pascal Van Hentenryck:
Decision Making with Differential Privacy under a Fairness Lens. CoRR abs/2105.07513 (2021) - [i26]Anudit Nagar, Cuong Tran, Ferdinando Fioretto:
A Privacy-Preserving and Trustable Multi-agent Learning Framework. CoRR abs/2106.01242 (2021) - [i25]James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck:
Learning Hard Optimization Problems: A Data Generation Perspective. CoRR abs/2106.02601 (2021) - [i24]Cuong Tran, My H. Dinh, Ferdinando Fioretto:
Differentially Private Deep Learning under the Fairness Lens. CoRR abs/2106.02674 (2021) - [i23]Cuong Tran, My H. Dinh, Kyle Beiter, Ferdinando Fioretto:
A Fairness Analysis on Private Aggregation of Teacher Ensembles. CoRR abs/2109.08630 (2021) - [i22]James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck:
Fast Approximations for Job Shop Scheduling: A Lagrangian Dual Deep Learning Method. CoRR abs/2110.06365 (2021) - [i21]James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, Ziwei Zhu:
End-to-end Learning for Fair Ranking Systems. CoRR abs/2111.10723 (2021) - [i20]My H. Dinh, Ferdinando Fioretto, Mostafa Mohammadian, Kyri Baker:
Towards Understanding the Unreasonable Effectiveness of Learning AC-OPF Solutions. CoRR abs/2111.11168 (2021) - 2020
- [j10]Grace Bang, Guy Barash, Ryan Beal, Jacques Calì, Mauricio Castillo-Effen, Xin Cynthia Chen, Niyati Chhaya, Rachel Cummings, Rohan Dhoopar, Sebastijan Dumancic, Huáscar Espinoza, Eitan Farchi, Ferdinando Fioretto, Raquel Fuentetaja, Christopher William Geib, Odd Erik Gundersen, José Hernández-Orallo, Xiaowei Huang, Kokil Jaidka, Sarah Keren, Seokhwan Kim, Michel Galley, Xiaomo Liu, Tyler Lu, Zhiqiang Ma, Richard Mallah, John A. McDermid, Martin Michalowski, Reuth Mirsky, Seán Ó hÉigeartaigh, Deepak Ramachandran, Javier Segovia-Aguas, Onn Shehory, Arash Shaban-Nejad, Vered Shwartz, Siddharth Srivastava, Kartik Talamadupula, Jian Tang, Pascal Van Hentenryck, Dell Zhang, Jian Zhang:
The Association for the Advancement of Artificial Intelligence 2020 Workshop Program. AI Mag. 41(4): 100-114 (2020) - [j9]Ferdinando Fioretto, Terrence W. K. Mak, Pascal Van Hentenryck:
Differential Privacy for Power Grid Obfuscation. IEEE Trans. Smart Grid 11(2): 1356-1366 (2020) - [c36]Ferdinando Fioretto, Terrence W. K. Mak, Pascal Van Hentenryck:
Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods. AAAI 2020: 630-637 - [c35]Ferdinando Fioretto, Lesia Mitridati, Pascal Van Hentenryck:
Differential Privacy for Stackelberg Games. IJCAI 2020: 3480-3486 - [c34]Ferdinando Fioretto, Pascal Van Hentenryck:
OptStream: Releasing Time Series Privately (Extended Abstract). IJCAI 2020: 5135-5139 - [c33]Ferdinando Fioretto, Pascal Van Hentenryck, Terrence W. K. Mak, Cuong Tran, Federico Baldo, Michele Lombardi:
Lagrangian Duality for Constrained Deep Learning. ECML/PKDD (5) 2020: 118-135 - [c32]Atena M. Tabakhi, William Yeoh, Ferdinando Fioretto:
The Smart Appliance Scheduling Problem: A Bayesian Optimization Approach. PRIMA 2020: 100-115 - [i19]Ferdinando Fioretto, Terrence W. K. Mak, Federico Baldo, Michele Lombardi, Pascal Van Hentenryck:
A Lagrangian Dual Framework for Deep Neural Networks with Constraints. CoRR abs/2001.09394 (2020) - [i18]Ferdinando Fioretto, Terrence W. K. Mak, Pascal Van Hentenryck:
Bilevel Optimization for Differentially Private Optimization. CoRR abs/2001.09508 (2020) - [i17]Ferdinando Fioretto, Lesia Mitridati, Pascal Van Hentenryck:
Differential Privacy for Stackelberg Games. CoRR abs/2002.00944 (2020) - [i16]Vladimir Dvorkin, Ferdinando Fioretto, Pascal Van Hentenryck, Jalal Kazempour, Pierre Pinson:
Differentially Private Optimal Power Flow for Distribution Grids. CoRR abs/2004.03921 (2020) - [i15]Vladimir Dvorkin, Ferdinando Fioretto, Pascal Van Hentenryck, Jalal Kazempour, Pierre Pinson:
Differentially Private Convex Optimization with Feasibility Guarantees. CoRR abs/2006.12338 (2020) - [i14]Ferdinando Fioretto, Pascal Van Hentenryck, Keyu Zhu:
Differential Privacy of Hierarchical Census Data: An Optimization Approach. CoRR abs/2006.15673 (2020) - [i13]Minas Chatzos, Ferdinando Fioretto, Terrence W. K. Mak, Pascal Van Hentenryck:
High-Fidelity Machine Learning Approximations of Large-Scale Optimal Power Flow. CoRR abs/2006.16356 (2020) - [i12]Cuong Tran, Ferdinando Fioretto, Pascal Van Hentenryck:
Differentially Private and Fair Deep Learning: A Lagrangian Dual Approach. CoRR abs/2009.12562 (2020) - [i11]Keyu Zhu, Pascal Van Hentenryck, Ferdinando Fioretto:
Bias and Variance of Post-processing in Differential Privacy. CoRR abs/2010.04327 (2020)
2010 – 2019
- 2019
- [j8]Ferdinando Fioretto, Pascal Van Hentenryck:
OptStream: Releasing Time Series Privately. J. Artif. Intell. Res. 65: 423-456 (2019) - [c31]Ferdinando Fioretto, Pascal Van Hentenryck:
Privacy-Preserving Federated Data Sharing. AAMAS 2019: 638-646 - [c30]Ferdinando Fioretto, Pascal Van Hentenryck:
Differential Privacy of Hierarchical Census Data: An Optimization Approach. CP 2019: 639-655 - [c29]Ferdinando Fioretto, Terrence W. K. Mak, Pascal Van Hentenryck:
Privacy-Preserving Obfuscation of Critical Infrastructure Networks. IJCAI 2019: 1086-1092 - [i10]Ferdinando Fioretto, Terrence W. K. Mak, Pascal Van Hentenryck:
Differential Privacy for Power Grid Obfuscation. CoRR abs/1901.06949 (2019) - [i9]Ferdinando Fioretto, Terrence W. K. Mak, Pascal Van Hentenryck:
Privacy-Preserving Obfuscation of Critical Infrastructure Networks. CoRR abs/1905.09778 (2019) - [i8]Ferdinando Fioretto, Terrence W. K. Mak, Pascal Van Hentenryck:
Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods. CoRR abs/1909.10461 (2019) - [i7]Terrence W. K. Mak, Ferdinando Fioretto, Pascal Van Hentenryck:
Privacy-Preserving Obfuscation for Distributed Power Systems. CoRR abs/1910.04250 (2019) - [i6]Ferdinando Fioretto, Lesia Mitridati, Pascal Van Hentenryck:
PPSM: A Privacy-Preserving Stackelberg Mechanism: Privacy Guarantees for the Coordination of Sequential Electricity and Gas Markets. CoRR abs/1911.10178 (2019) - 2018
- [j7]Ferdinando Fioretto, William Yeoh:
AI buzzwords explained: distributed constraint optimization problems. AI Matters 3(4): 8-13 (2018) - [j6]Ferdinando Fioretto, Enrico Pontelli, William Yeoh, Rina Dechter:
Accelerating exact and approximate inference for (distributed) discrete optimization with GPUs. Constraints An Int. J. 23(1): 1-43 (2018) - [j5]Ferdinando Fioretto, Agostino Dovier, Enrico Pontelli:
Distributed multi-agent optimization for smart grids and home automation. Intelligenza Artificiale 12(2): 67-87 (2018) - [j4]Ferdinando Fioretto, Enrico Pontelli, William Yeoh:
Distributed Constraint Optimization Problems and Applications: A Survey. J. Artif. Intell. Res. 61: 623-698 (2018) - [j3]Ferdinando Fioretto, Enrico Pontelli:
Past and present (and future) of parallel and distributed computation in (constraint) logic programming. Theory Pract. Log. Program. 18(5-6): 722-724 (2018) - [c28]Ferdinando Fioretto, Chansoo Lee, Pascal Van Hentenryck:
Constrained-Based Differential Privacy for Mobility Services. AAMAS 2018: 1405-1413 - [c27]Khoi D. Hoang, Ferdinando Fioretto, William Yeoh, Enrico Pontelli, Roie Zivan:
A Large Neighboring Search Schema for Multi-agent Optimization. CP 2018: 688-706 - [c26]Ferdinando Fioretto, Pascal Van Hentenryck:
Constrained-Based Differential Privacy: Releasing Optimal Power Flow Benchmarks Privately - Releasing Optimal Power Flow Benchmarks Privately. CPAIOR 2018: 215-231 - [c25]Ferdinando Fioretto, Hong Xu, Sven Koenig, T. K. Satish Kumar:
Constraint Composite Graph-Based Lifted Message Passing for Distributed Constraint Optimization Problems. ISAIM 2018 - [c24]Ferdinando Fioretto, Hong Xu, Sven Koenig, T. K. Satish Kumar:
Solving Multiagent Constraint Optimization Problems on the Constraint Composite Graph. PRIMA 2018: 106-122 - [i5]Ferdinando Fioretto, Pascal Van Hentenryck:
Differential Private Stream Processing of Energy Consumption. CoRR abs/1808.01949 (2018) - 2017
- [c23]Ferdinando Fioretto, William Yeoh, Enrico Pontelli:
A Multiagent System Approach to Scheduling Devices in Smart Homes. AAAI Workshops 2017 - [c22]William Kluegel, Muhammad A. Iqbal, Ferdinando Fioretto, William Yeoh, Enrico Pontelli:
A Realistic Dataset for the Smart Home Device Scheduling Problem for DCOPs. AAMAS Workshops (Visionary Papers) 2017: 125-142 - [c21]Khoi D. Hoang, Ping Hou, Ferdinando Fioretto, William Yeoh, Roie Zivan, Makoto Yokoo:
Infinite-Horizon Proactive Dynamic DCOPs. AAMAS 2017: 212-220 - [c20]Ferdinando Fioretto, William Yeoh, Enrico Pontelli:
A Multiagent System Approach to Scheduling Devices in Smart Homes. AAMAS 2017: 981-989 - [c19]Ferdinando Fioretto, William Yeoh, Enrico Pontelli, Ye Ma, Satishkumar J. Ranade:
A Distributed Constraint Optimization (DCOP) Approach to the Economic Dispatch with Demand Response. AAMAS 2017: 999-1007 - [c18]Atena M. Tabakhi, Tiep Le, Ferdinando Fioretto, William Yeoh:
Preference Elicitation for DCOPs. CP 2017: 278-296 - [i4]Ferdinando Fioretto, Agostino Dovier, Enrico Pontelli, William Yeoh, Roie Zivan:
Solving DCOPs with Distributed Large Neighborhood Search. CoRR abs/1702.06915 (2017) - [i3]William Kluegel, Muhammad Aamir Iqbal, Ferdinando Fioretto, William Yeoh, Enrico Pontelli:
A Realistic Dataset for the Smart Home Device Scheduling Problem for DCOPs. CoRR abs/1702.06970 (2017) - 2016
- [b1]Ferdinando Fioretto:
Exploiting the Structure of Distributed Constraint Optimization Problems. University of Udine, Italy, 2016 - [c17]Ferdinando Fioretto, William Yeoh, Enrico Pontelli:
Multi-Variable Agents Decomposition for DCOPs. AAAI 2016: 2480-2486 - [c16]Khoi D. Hoang, Ferdinando Fioretto, Ping Hou, Makoto Yokoo, William Yeoh, Roie Zivan:
Proactive Dynamic DCOPs. AAAI Workshop: AI for Smart Grids and Smart Buildings 2016 - [c15]Moinul Morshed Porag Chowdhury, Russell Y. Folk, Ferdinando Fioretto, Christopher Kiekintveld, William Yeoh:
Investigation of Learning Strategies for the SPOT Broker in Power TAC. AMEC/TADA 2016: 96-111 - [c14]Khoi D. Hoang, Ferdinando Fioretto, Ping Hou, Makoto Yokoo, William Yeoh, Roie Zivan:
Proactive Dynamic Distributed Constraint Optimization. AAMAS 2016: 597-605 - [c13]Tiep Le, Ferdinando Fioretto, William Yeoh, Tran Cao Son, Enrico Pontelli:
ER-DCOPs: A Framework for Distributed Constraint Optimization with Uncertainty in Constraint Utilities. AAMAS 2016: 606-614 - [c12]Ferdinando Fioretto, William Yeoh, Enrico Pontelli:
A Dynamic Programming-Based MCMC Framework for Solving DCOPs with GPUs. CP 2016: 813-831 - [i2]Ferdinando Fioretto, Enrico Pontelli, William Yeoh:
Distributed Constraint Optimization Problems and Applications: A Survey. CoRR abs/1602.06347 (2016) - [i1]Ferdinando Fioretto, Enrico Pontelli, William Yeoh, Rina Dechter:
Accelerating Exact and Approximate Inference for (Distributed) Discrete Optimization with GPUs. CoRR abs/1608.05288 (2016) - 2015
- [j2]Ferdinando Fioretto, Agostino Dovier, Enrico Pontelli:
Constrained Community-Based Gene Regulatory Network Inference. ACM Trans. Model. Comput. Simul. 25(2): 11:1-11:26 (2015) - [c11]Ferdinando Fioretto:
Exploiting the Structure of Distributed Constraint Optimization Problems. AAAI 2015: 4233- - [c10]Ferdinando Fioretto, William Yeoh, Enrico Pontelli:
Multi-Variable Agents Decomposition for DCOPs to Exploit Multi-Level Parallelism. AAMAS 2015: 1823-1824 - [c9]Ferdinando Fioretto, Federico Campeotto, Agostino Dovier, Enrico Pontelli, William Yeoh:
Large Neighborhood Search with Quality Guarantees for Distributed Constraint Optimization Problems. AAMAS 2015: 1835-1836 - [c8]Ferdinando Fioretto:
Exploiting the Structure of Distributed Constraint Optimization Problems. AAMAS 2015: 2007-2008 - [c7]Ferdinando Fioretto, Tiep Le, Enrico Pontelli, William Yeoh, Tran Cao Son:
Exploiting GPUs in Solving (Distributed) Constraint Optimization Problems with Dynamic Programming. CP 2015: 121-139 - 2014
- [c6]Ferdinando Fioretto, Federico Campeotto, Luca Da Rin Fioretto, William Yeoh, Enrico Pontelli:
GD-GIBBS: a GPU-based sampling algorithm for solving distributed constraint optimization problems. AAMAS 2014: 1339-1340 - [c5]Ferdinando Fioretto, Tiep Le, William Yeoh, Enrico Pontelli, Tran Cao Son:
Improving DPOP with Branch Consistency for Solving Distributed Constraint Optimization Problems. CP 2014: 307-323 - [c4]Federico Campeotto, Agostino Dovier, Ferdinando Fioretto, Enrico Pontelli:
A GPU Implementation of Large Neighborhood Search for Solving Constraint Optimization Problems. ECAI 2014: 189-194 - [c3]Federico Campeotto, Alessandro Dal Palù, Agostino Dovier, Ferdinando Fioretto, Enrico Pontelli:
Exploring the Use of GPUs in Constraint Solving. PADL 2014: 152-167 - 2013
- [j1]Federico Campeotto, Alessandro Dal Palù, Agostino Dovier, Ferdinando Fioretto, Enrico Pontelli:
A Constraint Solver for Flexible Protein Model. J. Artif. Intell. Res. 48: 953-1000 (2013) - [c2]Ferdinando Fioretto, Enrico Pontelli:
Constraint Programming in Community-Based Gene Regulatory Network Inference. CMSB 2013: 135-149 - 2012
- [c1]Federico Campeotto, Alessandro Dal Palù, Agostino Dovier, Ferdinando Fioretto, Enrico Pontelli:
A Filtering Technique for Fragment Assembly- Based Proteins Loop Modeling with Constraints. CP 2012: 850-866
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-08 20:29 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint