default search action
Jean-Philippe Vert
Person information
- affiliation: PSL University, France
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [j46]Nelle Varoquaux, William S. Noble, Jean-Philippe Vert:
Inference of 3D genome architecture by modeling overdispersion of Hi-C data. Bioinform. 39(1) (2023) - [c50]Lawrence Stewart, Francis R. Bach, Quentin Berthet, Jean-Philippe Vert:
Regression as Classification: Influence of Task Formulation on Neural Network Features. AISTATS 2023: 11563-11582 - 2022
- [j45]Ran Zhang, Laetitia Meng-Papaxanthos, Jean-Philippe Vert, William Stafford Noble:
Multimodal Single-Cell Translation and Alignment with Semi-Supervised Learning. J. Comput. Biol. 29(11): 1198-1212 (2022) - [j44]Luigi Carratino, Moustapha Cissé, Rodolphe Jenatton, Jean-Philippe Vert:
On Mixup Regularization. J. Mach. Learn. Res. 23: 325:1-325:31 (2022) - [c49]Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López, Fabian Pedregosa, Jean-Philippe Vert:
Efficient and Modular Implicit Differentiation. NeurIPS 2022 - [c48]Ran Zhang, Laetitia Meng-Papaxanthos, Jean-Philippe Vert, William Stafford Noble:
Semi-supervised Single-Cell Cross-modality Translation Using Polarbear. RECOMB 2022: 20-35 - [i32]Pierre Marion, Adeline Fermanian, Gérard Biau, Jean-Philippe Vert:
Scaling ResNets in the Large-depth Regime. CoRR abs/2206.06929 (2022) - [i31]Lawrence Stewart, Francis R. Bach, Quentin Berthet, Jean-Philippe Vert:
Regression as Classification: Influence of Task Formulation on Neural Network Features. CoRR abs/2211.05641 (2022) - 2021
- [c47]Mathieu Blondel, Arthur Mensch, Jean-Philippe Vert:
Differentiable Divergences Between Time Series. AISTATS 2021: 3853-3861 - [c46]Adeline Fermanian, Pierre Marion, Jean-Philippe Vert, Gérard Biau:
Framing RNN as a kernel method: A neural ODE approach. NeurIPS 2021: 3121-3134 - [c45]Vincent Mallet, Jean-Philippe Vert:
Reverse-Complement Equivariant Networks for DNA Sequences. NeurIPS 2021: 13511-13523 - [i30]Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López, Fabian Pedregosa, Jean-Philippe Vert:
Efficient and Modular Implicit Differentiation. CoRR abs/2105.15183 (2021) - [i29]Adeline Fermanian, Pierre Marion, Jean-Philippe Vert, Gérard Biau:
Framing RNN as a kernel method: A neural ODE approach. CoRR abs/2106.01202 (2021) - 2020
- [j43]Pierre-Cyril Aubin-Frankowski, Jean-Philippe Vert:
Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference. Bioinform. 36(18): 4774-4780 (2020) - [c44]Marco Cuturi, Olivier Teboul, Jonathan Niles-Weed, Jean-Philippe Vert:
Supervised Quantile Normalization for Low Rank Matrix Factorization. ICML 2020: 2269-2279 - [c43]Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, Francis R. Bach:
Learning with Differentiable Pertubed Optimizers. NeurIPS 2020 - [i28]Marco Cuturi, Olivier Teboul, Jonathan Niles-Weed, Jean-Philippe Vert:
Supervised Quantile Normalization for Low-rank Matrix Approximation. CoRR abs/2002.03229 (2020) - [i27]Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, Francis R. Bach:
Learning with Differentiable Perturbed Optimizers. CoRR abs/2002.08676 (2020) - [i26]Imke Mayer, Julie Josse, Félix Raimundo, Jean-Philippe Vert:
MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent Variable Models. CoRR abs/2002.10837 (2020) - [i25]Marco Cuturi, Olivier Teboul, Jean-Philippe Vert:
Noisy Adaptive Group Testing using Bayesian Sequential Experimental Design. CoRR abs/2004.12508 (2020) - [i24]Luigi Carratino, Moustapha Cissé, Rodolphe Jenatton, Jean-Philippe Vert:
On Mixup Regularization. CoRR abs/2006.06049 (2020) - [i23]Mathieu Blondel, Arthur Mensch, Jean-Philippe Vert:
Differentiable Divergences Between Time Series. CoRR abs/2010.08354 (2020)
2010 – 2019
- 2019
- [j42]Romain Menegaux, Jean-Philippe Vert:
Continuous Embeddings of DNA Sequencing Reads and Application to Metagenomics. J. Comput. Biol. 26(6): 509-518 (2019) - [j41]Olivier Collier, Véronique Stoven, Jean-Philippe Vert:
LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes. PLoS Comput. Biol. 15(9) (2019) - [c42]Lotfi Slim, Clément Chatelain, Chloé-Agathe Azencott, Jean-Philippe Vert:
kernelPSI: a Post-Selection Inference Framework for Nonlinear Variable Selection. ICML 2019: 5857-5865 - [c41]Marco Cuturi, Olivier Teboul, Jean-Philippe Vert:
Differentiable Ranking and Sorting using Optimal Transport. NeurIPS 2019: 6858-6868 - [c40]Jie Liu, Yuanhao Huang, Ritambhara Singh, Jean-Philippe Vert, William Stafford Noble:
Jointly Embedding Multiple Single-Cell Omics Measurements. WABI 2019: 10:1-10:13 - [c39]Alexandra Gesine Cauer, Gürkan Yardimci, Jean-Philippe Vert, Nelle Varoquaux, William Stafford Noble:
Inferring Diploid 3D Chromatin Structures from Hi-C Data. WABI 2019: 11:1-11:13 - [i22]Marco Cuturi, Olivier Teboul, Jean-Philippe Vert:
Differentiable Sorting using Optimal Transport: The Sinkhorn CDF and Quantile Operator. CoRR abs/1905.11885 (2019) - [i21]Gabriel Dulac-Arnold, Neil Zeghidour, Marco Cuturi, Lucas Beyer, Jean-Philippe Vert:
Deep multi-class learning from label proportions. CoRR abs/1905.12909 (2019) - [i20]Beyrem Khalfaoui, Joseph Boyd, Jean-Philippe Vert:
ASNI: Adaptive Structured Noise Injection for shallow and deep neural networks. CoRR abs/1909.09819 (2019) - [i19]Aude Genevay, Gabriel Dulac-Arnold, Jean-Philippe Vert:
Differentiable Deep Clustering with Cluster Size Constraints. CoRR abs/1910.09036 (2019) - 2018
- [j40]Peiying Ruan, Morihiro Hayashida, Tatsuya Akutsu, Jean-Philippe Vert:
Improving prediction of heterodimeric protein complexes using combination with pairwise kernel. BMC Bioinform. 19-S(1): 73-84 (2018) - [j39]Nicolas Servant, Nelle Varoquaux, Edith Heard, Emmanuel Barillot, Jean-Philippe Vert:
Effective normalization for copy number variation in Hi-C data. BMC Bioinform. 19(1): 313:1-313:16 (2018) - [j38]Yunlong Jiao, Jean-Philippe Vert:
The Kendall and Mallows Kernels for Permutations. IEEE Trans. Pattern Anal. Mach. Intell. 40(7): 1755-1769 (2018) - [c38]Yunlong Jiao, Jean-Philippe Vert:
The Weighted Kendall and High-order Kernels for Permutations. ICML 2018: 2319-2327 - [c37]Marine Le Morvan, Jean-Philippe Vert:
WHInter: A Working set algorithm for High-dimensional sparse second order Interaction models. ICML 2018: 3632-3641 - [c36]Edouard Pauwels, Francis R. Bach, Jean-Philippe Vert:
Relating Leverage Scores and Density using Regularized Christoffel Functions. NeurIPS 2018: 1670-1679 - [i18]Marine Le Morvan, Jean-Philippe Vert:
WHInter: A Working set algorithm for High-dimensional sparse second order Interaction models. CoRR abs/1802.05980 (2018) - [i17]Yunlong Jiao, Jean-Philippe Vert:
The Weighted Kendall and High-order Kernels for Permutations. CoRR abs/1802.08526 (2018) - [i16]Beyrem Khalfaoui, Jean-Philippe Vert:
DropLasso: A robust variant of Lasso for single cell RNA-seq data. CoRR abs/1802.09381 (2018) - [i15]Edouard Pauwels, Francis R. Bach, Jean-Philippe Vert:
Relating Leverage Scores and Density using Regularized Christoffel Functions. CoRR abs/1805.07943 (2018) - 2017
- [j37]Marine Le Morvan, Andrei Yu. Zinovyev, Jean-Philippe Vert:
NetNorM: Capturing cancer-relevant information in somatic exome mutation data with gene networks for cancer stratification and prognosis. PLoS Comput. Biol. 13(6) (2017) - [i14]Marine Le Morvan, Jean-Philippe Vert:
Supervised Quantile Normalisation. CoRR abs/1706.00244 (2017) - 2016
- [j36]Kevin Vervier, Pierre Mahé, Maud Tournoud, Jean-Baptiste Veyrieras, Jean-Philippe Vert:
Large-scale machine learning for metagenomics sequence classification. Bioinform. 32(7): 1023-1032 (2016) - 2015
- [j35]Alice Schoenauer Sebag, Sandra Plancade, Céline Raulet-Tomkiewicz, Robert Barouki, Jean-Philippe Vert, Thomas Walter:
A generic methodological framework for studying single cell motility in high-throughput time-lapse data. Bioinform. 31(12): 320-328 (2015) - [j34]Elsa Bernard, Laurent Jacob, Julien Mairal, Eric Viara, Jean-Philippe Vert:
A convex formulation for joint RNA isoform detection and quantification from multiple RNA-seq samples. BMC Bioinform. 16: 262:1-262:10 (2015) - [c35]Yunlong Jiao, Jean-Philippe Vert:
The Kendall and Mallows Kernels for Permutations. ICML 2015: 1935-1944 - [c34]Alice Schoenauer Sebag, Sandra Plancade, Céline Raulet-Tomkiewicz, Robert Barouki, Jean-Philippe Vert, Thomas Walter:
Infering an ontology of single cell motions from high-throughput microscopy data. ISBI 2015: 160-163 - [i13]Kevin Vervier, Pierre Mahé, Maud Tournoud, Jean-Baptiste Veyrieras, Jean-Philippe Vert:
Large-scale Machine Learning for Metagenomics Sequence Classification. CoRR abs/1505.06915 (2015) - [i12]Kevin Vervier, Pierre Mahé, Jean-Baptiste Veyrieras, Jean-Philippe Vert:
Benchmark of structured machine learning methods for microbial identification from mass-spectrometry data. CoRR abs/1506.07251 (2015) - 2014
- [j33]Toby Dylan Hocking, Valentina Boeva, Guillem Rigaill, Gudrun Schleiermacher, Isabelle Janoueix-Lerosey, Olivier Delattre, Wilfrid Richer, Franck Bourdeaut, Miyuki Suguro, Masao Seto, Francis R. Bach, Jean-Philippe Vert:
SegAnnDB: interactive Web-based genomic segmentation. Bioinform. 30(11): 1539-1546 (2014) - [j32]Nelle Varoquaux, Ferhat Ay, William Stafford Noble, Jean-Philippe Vert:
A statistical approach for inferring the 3D structure of the genome. Bioinform. 30(12): 26-33 (2014) - [j31]Elsa Bernard, Laurent Jacob, Julien Mairal, Jean-Philippe Vert:
Efficient RNA isoform identification and quantification from RNA-Seq data with network flows. Bioinform. 30(17): 2447-2455 (2014) - [j30]Edouard Pauwels, Christian Lajaunie, Jean-Philippe Vert:
A Bayesian active learning strategy for sequential experimental design in systems biology. BMC Syst. Biol. 8(1): 102:1-102:11 (2014) - [j29]Fantine Mordelet, Jean-Philippe Vert:
A bagging SVM to learn from positive and unlabeled examples. Pattern Recognit. Lett. 37: 201-209 (2014) - [c33]Emile Richard, Guillaume Obozinski, Jean-Philippe Vert:
Tight convex relaxations for sparse matrix factorization. NIPS 2014: 3284-3292 - [c32]Kevin Vervier, Pierre Mahé, Alexandre d'Aspremont, Jean-Baptiste Veyrieras, Jean-Philippe Vert:
On Learning Matrices with Orthogonal Columns or Disjoint Supports. ECML/PKDD (3) 2014: 274-289 - [i11]Emile Richard, Guillaume Obozinski, Jean-Philippe Vert:
Tight convex relaxations for sparse matrix factorization. CoRR abs/1407.5158 (2014) - 2013
- [j28]Yang Zhao, Takeyuki Tamura, Tatsuya Akutsu, Jean-Philippe Vert:
Flux balance impact degree: a new definition of impact degree to properly treat reversible reactions in metabolic networks. Bioinform. 29(17): 2178-2185 (2013) - [j27]Toby Dylan Hocking, Gudrun Schleiermacher, Isabelle Janoueix-Lerosey, Valentina Boeva, Julie Cappo, Olivier Delattre, Francis R. Bach, Jean-Philippe Vert:
Learning smoothing models of copy number profiles using breakpoint annotations. BMC Bioinform. 14: 164 (2013) - [c31]Toby Hocking, Guillem Rigaill, Jean-Philippe Vert, Francis R. Bach:
Learning Sparse Penalties for Change-point Detection using Max Margin Interval Regression. ICML (3) 2013: 172-180 - [c30]Emile Richard, Francis R. Bach, Jean-Philippe Vert:
Intersecting singularities for multi-structured estimation. ICML (3) 2013: 1157-1165 - 2012
- [j26]Anne-Claire Haury, Fantine Mordelet, Paola Vera-Licona, Jean-Philippe Vert:
TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. BMC Syst. Biol. 6: 145 (2012) - 2011
- [j25]Valentina Boeva, Andrei Yu. Zinovyev, Kevin Bleakley, Jean-Philippe Vert, Isabelle Janoueix-Lerosey, Olivier Delattre, Emmanuel Barillot:
Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization. Bioinform. 27(2): 268-269 (2011) - [j24]Fantine Mordelet, Jean-Philippe Vert:
ProDiGe: PRioritization Of Disease Genes with multitask machine learning from positive and unlabeled examples. BMC Bioinform. 12: 389 (2011) - [c29]Tomoko Matsui, Masataka Goto, Jean-Philippe Vert, Yuji Uchiyama:
Gradient-based musical feature extraction based on scale-invariant feature transform. EUSIPCO 2011: 724-728 - [c28]Toby Hocking, Jean-Philippe Vert, Francis R. Bach, Armand Joulin:
Clusterpath: an Algorithm for Clustering using Convex Fusion Penalties. ICML 2011: 745-752 - [i10]Guillaume Obozinski, Laurent Jacob, Jean-Philippe Vert:
Group Lasso with Overlaps: the Latent Group Lasso approach. CoRR abs/1110.0413 (2011) - 2010
- [j23]Brice Hoffmann, Mikhail Zaslavskiy, Jean-Philippe Vert, Véronique Stoven:
A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction. BMC Bioinform. 11: 99 (2010) - [j22]Martial Hue, Michael Riffle, Jean-Philippe Vert, William Stafford Noble:
Large-scale prediction of protein-protein interactions from structures. BMC Bioinform. 11: 144 (2010) - [c27]Martial Hue, Jean-Philippe Vert:
On learning with kernels for unordered pairs. ICML 2010: 463-470 - [c26]Jean-Philippe Vert, Kevin Bleakley:
Fast detection of multiple change-points shared by many signals using group LARS. NIPS 2010: 2343-2351 - [c25]Mikhail Zaslavskiy, Francis R. Bach, Jean-Philippe Vert:
Many-to-Many Graph Matching: A Continuous Relaxation Approach. ECML/PKDD (3) 2010: 515-530 - [i9]Mikhail Zaslavskiy, Francis R. Bach, Jean-Philippe Vert:
Many-to-Many Graph Matching: a Continuous Relaxation Approach. CoRR abs/1004.4965 (2010)
2000 – 2009
- 2009
- [j21]Mikhail Zaslavskiy, Francis R. Bach, Jean-Philippe Vert:
Global alignment of protein-protein interaction networks by graph matching methods. Bioinform. 25(12) (2009) - [j20]Jacob D. Abernethy, Francis R. Bach, Theodoros Evgeniou, Jean-Philippe Vert:
A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization. J. Mach. Learn. Res. 10: 803-826 (2009) - [j19]Pierre Mahé, Jean-Philippe Vert:
Graph kernels based on tree patterns for molecules. Mach. Learn. 75(1): 3-35 (2009) - [j18]Mikhail Zaslavskiy, Francis R. Bach, Jean-Philippe Vert:
A Path Following Algorithm for the Graph Matching Problem. IEEE Trans. Pattern Anal. Mach. Intell. 31(12): 2227-2242 (2009) - [c24]Jean-Philippe Vert, Tomoko Matsui, Shin'ichi Satoh, Yuji Uchiyama:
High-level feature extraction using SVM with walk-based graph kernel. ICASSP 2009: 1121-1124 - [c23]Laurent Jacob, Guillaume Obozinski, Jean-Philippe Vert:
Group lasso with overlap and graph lasso. ICML 2009: 433-440 - [c22]Marco Cuturi, Jean-Philippe Vert, Alexandre d'Aspremont:
White Functionals for Anomaly Detection in Dynamical Systems. NIPS 2009: 432-440 - 2008
- [j17]Laurent Jacob, Jean-Philippe Vert:
Efficient peptide-MHC-I binding prediction for alleles with few known binders. Bioinform. 24(3): 358-366 (2008) - [j16]Laurent Jacob, Jean-Philippe Vert:
Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinform. 24(19): 2149-2156 (2008) - [j15]Laurent Jacob, Brice Hoffmann, Véronique Stoven, Jean-Philippe Vert:
Virtual screening of GPCRs: An in silico chemogenomics approach. BMC Bioinform. 9 (2008) - [j14]Jacob D. Abernethy, Theodoros Evgeniou, Olivier Toubia, Jean-Philippe Vert:
Eliciting Consumer Preferences Using Robust Adaptive Choice Questionnaires. IEEE Trans. Knowl. Data Eng. 20(2): 145-155 (2008) - [c21]Fantine Mordelet, Jean-Philippe Vert:
SIRENE: supervised inference of regulatory networks. ECCB 2008: 76-82 - [c20]Mikhail Zaslavskiy, Francis R. Bach, Jean-Philippe Vert:
A Path Following Algorithm for Graph Matching. ICISP 2008: 329-337 - [c19]Franck Rapaport, Emmanuel Barillot, Jean-Philippe Vert:
Classification of arrayCGH data using fused SVM. ISMB 2008: 375-382 - [c18]Laurent Jacob, Francis R. Bach, Jean-Philippe Vert:
Clustered Multi-Task Learning: A Convex Formulation. NIPS 2008: 745-752 - [c17]Tomoko Matsui, Jean-Philippe Vert, Shin'ichi Satoh, Yuji Uchiyama:
ISM TRECVID2008 High-level Feature Extraction. TRECVID 2008 - [i8]Mikhail Zaslavskiy, Francis R. Bach, Jean-Philippe Vert:
Path following algorithm for the graph matching problem. CoRR abs/0801.3654 (2008) - [i7]Jean-Philippe Vert:
The optimal assignment kernel is not positive definite. CoRR abs/0801.4061 (2008) - [i6]Francis R. Bach, Jacob D. Abernethy, Jean-Philippe Vert, Theodoros Evgeniou:
A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization. CoRR abs/0802.1430 (2008) - [i5]Laurent Jacob, Francis R. Bach, Jean-Philippe Vert:
Clustered Multi-Task Learning: A Convex Formulation. CoRR abs/0809.2085 (2008) - 2007
- [j13]Jian Qiu, Martial Hue, Asa Ben-Hur, Jean-Philippe Vert, William Stafford Noble:
A structural alignment kernel for protein structures. Bioinform. 23(9): 1090-1098 (2007) - [j12]Yoshihiro Yamanishi, Francis R. Bach, Jean-Philippe Vert:
Glycan classification with tree kernels. Bioinform. 23(10): 1211-1216 (2007) - [j11]Franck Rapaport, Andrei Yu. Zinovyev, Marie Dutreix, Emmanuel Barillot, Jean-Philippe Vert:
Classification of microarray data using gene networks. BMC Bioinform. 8 (2007) - [j10]Jean-Philippe Vert, Jian Qiu, William Stafford Noble:
A new pairwise kernel for biological network inference with support vector machines. BMC Bioinform. 8(S-10) (2007) - [c16]Marco Cuturi, Jean-Philippe Vert, Øystein Birkenes, Tomoko Matsui:
A Kernel for Time Series Based on Global Alignments. ICASSP (2) 2007: 413-416 - [c15]Kevin Bleakley, Gérard Biau, Jean-Philippe Vert:
Supervised reconstruction of biological networks with local models. ISMB/ECCB (Supplement of Bioinformatics) 2007: 57-65 - [i4]Pierre Mahé, Jean-Philippe Vert:
Virtual screening with support vector machines and structure kernels. CoRR abs/0708.0171 (2007) - 2006
- [j9]Hiroto Saigo, Jean-Philippe Vert, Tatsuya Akutsu:
Optimizing amino acid substitution matrices with a local alignment kernel. BMC Bioinform. 7: 246 (2006) - [j8]Jean-Philippe Vert, Nicolas Foveau, Christian Lajaunie, Yves Vandenbrouck:
An accurate and interpretable model for siRNA efficacy prediction. BMC Bioinform. 7: 520 (2006) - [j7]Pierre Mahé, Liva Ralaivola, Véronique Stoven, Jean-Philippe Vert:
The Pharmacophore Kernel for Virtual Screening with Support Vector Machines. J. Chem. Inf. Model. 46(5): 2003-2014 (2006) - [j6]Régis Vert, Jean-Philippe Vert:
Consistency and Convergence Rates of One-Class SVMs and Related Algorithms. J. Mach. Learn. Res. 7: 817-854 (2006) - [c14]Jean-Philippe Vert:
Classification of Biological Sequences with Kernel Methods. ICGI 2006: 7-18 - [i3]Marco Cuturi, Jean-Philippe Vert, Øystein Birkenes, Tomoko Matsui:
A kernel for time series based on global alignments. CoRR abs/cs/0610033 (2006) - [i2]Jacob D. Abernethy, Francis R. Bach, Theodoros Evgeniou, Jean-Philippe Vert:
Low-rank matrix factorization with attributes. CoRR abs/cs/0611124 (2006) - [i1]Jean-Philippe Vert, Jian Qiu, William Stafford Noble:
Metric learning pairwise kernel for graph inference. CoRR abs/q-bio/0610040 (2006) - 2005
- [j5]Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, Jean-Philippe Vert:
Graph Kernels for Molecular Structure-Activity Relationship Analysis with Support Vector Machines. J. Chem. Inf. Model. 45(4): 939-951 (2005) - [j4]Marco Cuturi, Kenji Fukumizu, Jean-Philippe Vert:
Semigroup Kernels on Measures. J. Mach. Learn. Res. 6: 1169-1198 (2005) - [j3]Marco Cuturi, Jean-Philippe Vert:
The context-tree kernel for strings. Neural Networks 18(8): 1111-1123 (2005) - [c13]Yoshihiro Yamanishi, Jean-Philippe Vert, Minoru Kanehisa:
Supervised enzyme network inference from the integration of genomic data and chemical information. ISMB (Supplement of Bioinformatics) 2005: 468-477 - [c12]Jean-Philippe Vert, Robert E. Thurman, William Stafford Noble:
Kernels for gene regulatory regions. NIPS 2005: 1401-1408 - [c11]Régis Vert, Jean-Philippe Vert:
Consistency of one-class SVM and related algorithms. NIPS 2005: 1409-1416 - 2004
- [j2]Hiroto Saigo, Jean-Philippe Vert, Nobuhisa Ueda, Tatsuya Akutsu:
Protein homology detection using string alignment kernels. Bioinform. 20(11): 1682-1689 (2004) - [c10]Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, Jean-Philippe Vert:
Extensions of marginalized graph kernels. ICML 2004 - [c9]Yoshihiro Yamanishi, Jean-Philippe Vert, Minoru Kanehisa:
Protein network inference from multiple genomic data: a supervised approach. ISMB/ECCB (Supplement of Bioinformatics) 2004: 363-370 - [c8]Marco Cuturi, Jean-Philippe Vert:
Semigroup Kernels on Finite Sets. NIPS 2004: 329-336 - [c7]Jean-Philippe Vert, Yoshihiro Yamanishi:
Supervised Graph Inference. NIPS 2004: 1433-1440 - 2003
- [c6]Jean-Philippe Vert, Minoru Kanehisa:
Extracting active pathways from gene expression data. ECCB 2003: 238-244 - [c5]Yoshihiro Yamanishi, Jean-Philippe Vert, Akihiro Nakaya, Minoru Kanehisa:
Extraction of correlated gene clusters from multiple genomic data by generalized kernel canonical correlation analysis. ISMB (Supplement of Bioinformatics) 2003: 323-330 - 2002
- [c4]Jean-Philippe Vert:
A tree kernel to analyse phylogenetic profiles. ISMB 2002: 276-284 - [c3]Jean-Philippe Vert, Minoru Kanehisa:
Graph-Driven Feature Extraction From Microarray Data Using Diffusion Kernels and Kernel CCA. NIPS 2002: 1425-1432 - [c2]Jean-Philippe Vert:
Support Vector Machine Prediction of Signal Peptide Cleavage Site Using a New Class of Kernels for Strings. Pacific Symposium on Biocomputing 2002: 649-660 - 2001
- [j1]Jean-Philippe Vert:
Adaptive context trees and text clustering. IEEE Trans. Inf. Theory 47(5): 1884-1901 (2001) - [c1]Jean-Philippe Vert:
Text Categorization Using Adaptive Context Trees. CICLing 2001: 423-436
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:19 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint