default search action
Yvan Saeys
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j41]Edith Heiter, Robin Vandaele, Tijl De Bie, Yvan Saeys, Jefrey Lijffijt:
Incorporating Topological Priors Into Low-Dimensional Visualizations Through Topological Regularization. IEEE Access 12: 129541-129573 (2024) - [j40]Arne Gevaert, Axel-Jan Rousseau, Thijs Becker, Dirk Valkenborg, Tijl De Bie, Yvan Saeys:
Evaluating feature attribution methods in the image domain. Mach. Learn. 113(9): 6019-6064 (2024) - [j39]Jonathan Peck, Bart Goossens, Yvan Saeys:
An Introduction to Adversarially Robust Deep Learning. IEEE Trans. Pattern Anal. Mach. Intell. 46(4): 2071-2090 (2024) - [c49]Edith Heiter, Liesbet Martens, Ruth Seurinck, Martin Guilliams, Tijl De Bie, Yvan Saeys, Jefrey Lijffijt:
Pattern or Artifact? Interactively Exploring Embedding Quality with TRACE. ECML/PKDD (8) 2024: 379-382 - [i15]Edith Heiter, Liesbet Martens, Ruth Seurinck, Martin Guilliams, Tijl De Bie, Yvan Saeys, Jefrey Lijffijt:
Pattern or Artifact? Interactively Exploring Embedding Quality with TRACE. CoRR abs/2406.12953 (2024) - 2023
- [c48]Arne Gevaert, Anna Saranti, Andreas Holzinger, Yvan Saeys:
Efficient Approximation of Asymmetric Shapley Values Using Functional Decomposition. CD-MAKE 2023: 13-30 - [i14]Edith Heiter, Robin Vandaele, Tijl De Bie, Yvan Saeys, Jefrey Lijffijt:
Topologically Regularized Data Embeddings. CoRR abs/2301.03338 (2023) - [i13]David Novak, Sofie Van Gassen, Yvan Saeys:
GroupEnc: encoder with group loss for global structure preservation. CoRR abs/2309.02917 (2023) - 2022
- [c47]Robin Vandaele, Bo Kang, Tijl De Bie, Yvan Saeys:
The Curse Revisited: When are Distances Informative for the Ground Truth in Noisy High-Dimensional Data? AISTATS 2022: 2158-2172 - [c46]Arne Gevaert, Jonathan Peck, Yvan Saeys:
Distilling Deep RL Models Into Interpretable Neuro-Fuzzy Systems. FUZZ-IEEE 2022: 1-8 - [c45]Robin Vandaele, Bo Kang, Jefrey Lijffijt, Tijl De Bie, Yvan Saeys:
Topologically Regularized Data Embeddings. ICLR 2022 - [c44]Benjamin Rombaut, Joris Roels, Yvan Saeys:
BioSegment: Active Learning segmentation for 3D electron microscopy imaging. IAL@PKDD/ECML 2022: 7-26 - [d2]Arne Gevaert, Axel-Jan Rousseau, Thijs Becker, Dirk Valkenborg, Tijl De Bie, Yvan Saeys:
Evaluating Feature Attribution Methods in the Image Domain: Benchmark results and model parameters. Zenodo, 2022 - [d1]Arne Gevaert, Axel-Jan Rousseau, Thijs Becker, Dirk Valkenborg, Tijl De Bie, Yvan Saeys:
Evaluating Feature Attribution Methods in the Image Domain: High-Dimensional Datasets. Zenodo, 2022 - [i12]Arne Gevaert, Axel-Jan Rousseau, Thijs Becker, Dirk Valkenborg, Tijl De Bie, Yvan Saeys:
Evaluating Feature Attribution Methods in the Image Domain. CoRR abs/2202.12270 (2022) - [i11]Arne Gevaert, Yvan Saeys:
PDD-SHAP: Fast Approximations for Shapley Values using Functional Decomposition. CoRR abs/2208.12595 (2022) - [i10]Arne Gevaert, Jonathan Peck, Yvan Saeys:
Distilling Deep RL Models Into Interpretable Neuro-Fuzzy Systems. CoRR abs/2209.03357 (2022) - 2021
- [j38]Francisco Javier Baldan, Daniel Peralta, Yvan Saeys, José Manuel Benítez:
SCMFTS: Scalable and Distributed Complexity Measures and Features for Univariate and Multivariate Time Series in Big Data Environments. Int. J. Comput. Intell. Syst. 14(1): 186 (2021) - [j37]Robin Vandaele, Bastian Rieck, Yvan Saeys, Tijl De Bie:
Stable topological signatures for metric trees through graph approximations. Pattern Recognit. Lett. 147: 85-92 (2021) - [c43]Daniel Peralta, Lin Tang, Maxim Lippeveld, Yvan Saeys:
A study on the calibration of fingerprint classifiers. IEEE BigData 2021: 698-704 - [i9]Robin Vandaele, Bo Kang, Tijl De Bie, Yvan Saeys:
The Curse Revisited: a Newly Quantified Concept of Meaningful Distances for Learning from High-Dimensional Noisy Data. CoRR abs/2109.10569 (2021) - [i8]Robin Vandaele, Bo Kang, Jefrey Lijffijt, Tijl De Bie, Yvan Saeys:
Topologically Regularized Data Embeddings. CoRR abs/2110.09193 (2021) - 2020
- [j36]Andres Jesus Sanchez, Luis F. Romero, Daniel Peralta, Miguel Angel Medina-Pérez, Yvan Saeys, Francisco Herrera, Siham Tabik:
Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems. IEEE Access 8: 124236-124253 (2020) - [j35]Daniel Peralta, Yvan Saeys:
Robust unsupervised dimensionality reduction based on feature clustering for single-cell imaging data. Appl. Soft Comput. 93: 106421 (2020) - [j34]Helena Todorov, Robrecht Cannoodt, Wouter Saelens, Yvan Saeys:
TinGa: fast and flexible trajectory inference with Growing Neural Gas. Bioinform. 36(Supplement-1): i66-i74 (2020) - [j33]Jonathan Peck, Bart Goossens, Yvan Saeys:
Detecting adversarial manipulation using inductive Venn-ABERS predictors. Neurocomputing 416: 202-217 (2020) - [j32]Robin Vandaele, Yvan Saeys, Tijl De Bie:
Mining Topological Structure in Graphs through Forest Representations. J. Mach. Learn. Res. 21: 215:1-215:68 (2020) - [c42]Robin Vandaele, Yvan Saeys, Tijl De Bie:
Graph Approximations to Geodesics on Metric Graphs. ICPR 2020: 7328-7334 - [i7]Utku Ozbulak, Jonathan Peck, Wesley De Neve, Bart Goossens, Yvan Saeys, Arnout Van Messem:
Regional Image Perturbation Reduces Lp Norms of Adversarial Examples While Maintaining Model-to-model Transferability. CoRR abs/2007.03198 (2020)
2010 – 2019
- 2019
- [j31]Sarah Vluymans, Neil Mac Parthaláin, Chris Cornelis, Yvan Saeys:
Weight selection strategies for ordered weighted average based fuzzy rough sets. Inf. Sci. 501: 155-171 (2019) - [j30]Pieter Meysman, Yvan Saeys, Ehsan Sabaghian, Wout Bittremieux, Yves Van de Peer, Bart Goethals, Kris Laukens:
Mining the Enriched Subgraphs for Specific Vertices in a Biological Graph. IEEE ACM Trans. Comput. Biol. Bioinform. 16(5): 1496-1507 (2019) - [c41]Daniel Peralta, Yvan Saeys:
Distributed, Numerically Stable Distance and Covariance Computation with MPI for Extremely Large Datasets. BigData Congress 2019: 77-84 - [c40]Arne Gevaert, Jonathan Peck, Yvan Saeys:
Distillation of Deep Reinforcement Learning Models Using Fuzzy Inference Systems. BNAIC/BENELEARN 2019 - [c39]Maxim Lippeveld, Carly Knill, Emma Ladlow, Andrew Fuller, Louise J. Michaelis, Yvan Saeys, Andrew Filby, Daniel Peralta:
Classification of Human White Blood Cells Using Machine Learning for Stain-Free Imaging Flow Cytometry. BNAIC/BENELEARN 2019 - [c38]Jonathan Peck, Bart Goossens, Yvan Saeys:
Calibrated Multi-Probabilistic Prediction as a Defense against Adversarial Attacks. BNAIC/BENELEARN 2019 - [c37]Jonathan Peck, Bart Goossens, Yvan Saeys:
Calibrated Multi-probabilistic Prediction as a Defense Against Adversarial Attacks. BNAIC/BENELEARN (Selected Papers) 2019: 85-125 - [c36]Joris Roels, Yvan Saeys:
Cost-Efficient Segmentation of Electron Microscopy Images Using Active Learning. BNAIC/BENELEARN 2019 - [c35]Jonathan Peck, Bart Goossens, Yvan Saeys:
Detecting adversarial examples with inductive Venn-ABERS predictors. ESANN 2019 - [c34]Joris Roels, Julian Hennies, Yvan Saeys, Wilfried Philips, Anna Kreshuk:
Domain Adaptive Segmentation In Volume Electron Microscopy Imaging. ISBI 2019: 1519-1522 - [i6]Joris Roels, Yvan Saeys:
Cost-efficient segmentation of electron microscopy images using active learning. CoRR abs/1911.05548 (2019) - 2018
- [j29]Jasper Zuallaert, Fréderic Godin, Mijung Kim, Arne Soete, Yvan Saeys, Wesley De Neve:
SpliceRover: interpretable convolutional neural networks for improved splice site prediction. Bioinform. 34(24): 4180-4188 (2018) - [j28]Jasper Zuallaert, Mijung Kim, Arne Soete, Yvan Saeys, Wesley De Neve:
TISRover: ConvNets learn biologically relevant features for effective translation initiation site prediction. Int. J. Data Min. Bioinform. 20(3): 267-284 (2018) - [j27]Daniel Peralta, Isaac Triguero, Salvador García, Yvan Saeys, José Manuel Benítez, Francisco Herrera:
On the use of convolutional neural networks for robust classification of multiple fingerprint captures. Int. J. Intell. Syst. 33(1): 213-230 (2018) - [j26]Sarah Vluymans, Chris Cornelis, Francisco Herrera, Yvan Saeys:
Multi-label classification using a fuzzy rough neighborhood consensus. Inf. Sci. 433-434: 96-114 (2018) - [j25]Sarah Vluymans, Alberto Fernández, Yvan Saeys, Chris Cornelis, Francisco Herrera:
Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition: a fuzzy rough set approach. Knowl. Inf. Syst. 56(1): 55-84 (2018) - [c33]Robin Vandaele, Tijl De Bie, Yvan Saeys:
Local Topological Data Analysis to Uncover the Global Structure of Data Approaching Graph-Structured Topologies. ECML/PKDD (2) 2018: 19-36 - [i5]Joris Roels, Julian Hennies, Yvan Saeys, Wilfried Philips, Anna Kreshuk:
Domain Adaptive Segmentation in Volume Electron Microscopy Imaging. CoRR abs/1810.09734 (2018) - [i4]Joris Roels, Jonas De Vylder, Jan Aelterman, Yvan Saeys, Wilfried Philips:
Convolutional Neural Network Pruning to Accelerate Membrane Segmentation in Electron Microscopy. CoRR abs/1810.09735 (2018) - [i3]Joris Roels, Jan Aelterman, Jonas De Vylder, Hiep Luong, Yvan Saeys, Wilfried Philips:
Bayesian Deconvolution of Scanning Electron Microscopy Images Using Point-spread Function Estimation and Non-local Regularization. CoRR abs/1810.09739 (2018) - 2017
- [j24]Daniel Peralta, Isaac Triguero, Salvador García, Yvan Saeys, José Manuel Benítez, Francisco Herrera:
Distributed incremental fingerprint identification with reduced database penetration rate using a hierarchical classification based on feature fusion and selection. Knowl. Based Syst. 126: 91-103 (2017) - [j23]Lukasz Kreft, Arne Soete, Paco Hulpiau, Alexander Botzki, Yvan Saeys, Pieter J. De Bleser:
ConTra v3: a tool to identify transcription factor binding sites across species, update 2017. Nucleic Acids Res. 45(Webserver-Issue): W490-W494 (2017) - [c32]Jasper Zuallaert, Mijung Kim, Yvan Saeys, Wesley De Neve:
Interpretable convolutional neural networks for effective translation initiation site prediction. BIBM 2017: 1233-1237 - [c31]Joris Roels, Jonas De Vylder, Jan Aelterman, Yvan Saeys, Wilfried Philips:
Convolutional neural network pruning to accelerate membrane segmentation in electron microscopy. ISBI 2017: 633-637 - [c30]Jonathan Peck, Joris Roels, Bart Goossens, Yvan Saeys:
Lower bounds on the robustness to adversarial perturbations. NIPS 2017: 804-813 - [i2]Daniel Peralta, Isaac Triguero, Salvador García, Yvan Saeys, José Manuel Benítez, Francisco Herrera:
Fingerprint classification with a new deep neural network model: robustness for different captures of the same fingerprints. CoRR abs/1703.07270 (2017) - [i1]Jasper Zuallaert, Mijung Kim, Yvan Saeys, Wesley De Neve:
Interpretable Convolutional Neural Networks for Effective Translation Initiation Site Prediction. CoRR abs/1711.09558 (2017) - 2016
- [j22]Nele Verbiest, Sarah Vluymans, Chris Cornelis, Nicolás García-Pedrajas, Yvan Saeys:
Improving nearest neighbor classification using Ensembles of Evolutionary Generated Prototype Subsets. Appl. Soft Comput. 44: 75-88 (2016) - [j21]Joeri Ruyssinck, Piet Demeester, Tom Dhaene, Yvan Saeys:
Netter: re-ranking gene network inference predictions using structural network properties. BMC Bioinform. 17: 76 (2016) - [j20]Sarah Vluymans, Isaac Triguero, Chris Cornelis, Yvan Saeys:
EPRENNID: An evolutionary prototype reduction based ensemble for nearest neighbor classification of imbalanced data. Neurocomputing 216: 596-610 (2016) - [j19]Sarah Vluymans, Dánel Sánchez Tarragó, Yvan Saeys, Chris Cornelis, Francisco Herrera:
Fuzzy rough classifiers for class imbalanced multi-instance data. Pattern Recognit. 53: 36-45 (2016) - [j18]Sarah Vluymans, Dánel Sánchez Tarragó, Yvan Saeys, Chris Cornelis, Francisco Herrera:
Fuzzy Multi-Instance Classifiers. IEEE Trans. Fuzzy Syst. 24(6): 1395-1409 (2016) - [c29]Joris Roels, Jonas De Vylder, Yvan Saeys, Bart Goossens, Wilfried Philips:
Decreasing Time Consumption of Microscopy Image Segmentation Through Parallel Processing on the GPU. ACIVS 2016: 147-159 - [c28]Joris Roels, Jan Aelterman, Jonas De Vylder, Hiêp Quang Luong, Yvan Saeys, Wilfried Philips:
Bayesian deconvolution of scanning electron microscopy images using point-spread function estimation and non-local regularization. EMBC 2016: 443-447 - [c27]Sarah Vluymans, Neil Mac Parthaláin, Chris Cornelis, Yvan Saeys:
Fuzzy rough sets for self-labelling: An exploratory analysis. FUZZ-IEEE 2016: 931-938 - [c26]Sofie Van Gassen, Tom Dhaene, Yvan Saeys:
Machine Learning Challenges for Single Cell Data. ECML/PKDD (3) 2016: 275-279 - 2015
- [j17]Sarah Vluymans, Lynn D'eer, Yvan Saeys, Chris Cornelis:
Applications of Fuzzy Rough Set Theory in Machine Learning: a Survey. Fundam. Informaticae 142(1-4): 53-86 (2015) - [c25]Isaac Triguero, Mikel Galar, Sarah Vluymans, Chris Cornelis, Humberto Bustince, Francisco Herrera, Yvan Saeys:
Evolutionary undersampling for imbalanced big data classification. CEC 2015: 715-722 - [c24]Leen De Baets, Sofie Van Gassen, Tom Dhaene, Yvan Saeys:
Unsupervised Trajectory Inference Using Graph Mining. CIBB 2015: 84-97 - [c23]Sarah Vluymans, Yvan Saeys, Chris Cornelis, Ankur Teredesai, Martine De Cock:
Fuzzy Rough Set Prototype Selection for Regression. FUZZ-IEEE 2015: 1-8 - [c22]Sarah Vluymans, Hasan Asfoor, Yvan Saeys, Chris Cornelis, Matthew E. Tolentino, Ankur Teredesai, Martine De Cock:
Distributed fuzzy rough prototype selection for Big Data regression. NAFIPS/WConSC 2015: 1-6 - [c21]Richard Jensen, Sarah Vluymans, Neil Mac Parthaláin, Chris Cornelis, Yvan Saeys:
Semi-Supervised Fuzzy-Rough Feature Selection. RSFDGrC 2015: 185-195 - 2014
- [c20]Celine Vens, Sofie Van Gassen, Tom Dhaene, Yvan Saeys:
Complex Aggregates over Clusters of Elements. ILP 2014: 181-193 - [c19]Joris Roels, Jan Aelterman, Jonas De Vylder, Hiêp Quang Luong, Yvan Saeys, Saskia Lippens, Wilfried Philips:
Noise Analysis and Removal in 3D Electron Microscopy. ISVC (1) 2014: 31-40 - 2012
- [j16]Vân Anh Huynh-Thu, Yvan Saeys, Louis Wehenkel, Pierre Geurts:
Statistical interpretation of machine learning-based feature importance scores for biomarker discovery. Bioinform. 28(13): 1766-1774 (2012) - [c18]Dieter Mourisse, Els Lefever, Nele Verbiest, Yvan Saeys, Martine De Cock, Chris Cornelis:
SBFC: An Efficient Feature Frequency-Based Approach to Tackle Cross-Lingual Word Sense Disambiguation. TSD 2012: 248-255 - 2011
- [j15]Jan Fostier, Sebastian Proost, Bart Dhoedt, Yvan Saeys, Piet Demeester, Yves Van de Peer, Klaas Vandepoele:
A greedy, graph-based algorithm for the alignment of multiple homologous gene lists. Bioinform. 27(6): 749-756 (2011) - [j14]Sofie Van Landeghem, Bernard De Baets, Yves Van de Peer, Yvan Saeys:
High-Precision Bio-molecular Event Extraction from Text Using Parallel Binary Classifiers. Comput. Intell. 27(4): 645-664 (2011) - [j13]Rubén Armañanzas, Yvan Saeys, Iñaki Inza, Miguel García-Torres, Concha Bielza, Yves Van de Peer, Pedro Larrañaga:
Peakbin Selection in Mass Spectrometry Data Using a Consensus Approach with Estimation of Distribution Algorithms. IEEE ACM Trans. Comput. Biol. Bioinform. 8(3): 760-774 (2011) - [c17]Huu Minh Nguyen, Ivo Couckuyt, Luc Knockaert, Tom Dhaene, Dirk Gorissen, Yvan Saeys:
An alternative approach to avoid overfitting for surrogate models. WSC 2011: 2765-2776 - 2010
- [j12]Thomas Abeel, Thibault Helleputte, Yves Van de Peer, Pierre Dupont, Yvan Saeys:
Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinform. 26(3): 392-398 (2010) - [j11]Sofie Van Landeghem, Thomas Abeel, Yvan Saeys, Yves Van de Peer:
Discriminative and informative features for biomolecular text mining with ensemble feature selection. Bioinform. 26(18) (2010) - [j10]Thomas Abeel, Sofie Van Landeghem, Roser Morante, Vincent Van Asch, Yves Van de Peer, Walter Daelemans, Yvan Saeys:
Highlights of the BioTM 2010 workshop on advances in bio text mining. BMC Bioinform. 11(S-5): I1 (2010) - [c16]Catherine Middag, Yvan Saeys, Jean-Pierre Martens:
Towards an ASR-free objective analysis of pathological speech. INTERSPEECH 2010: 294-297 - [c15]Yvan Saeys, Sofie Van Landeghem, Yves Van de Peer:
Event based text mining for integrated network construction. MLSB 2010: 112-121
2000 – 2009
- 2009
- [j9]Thomas Abeel, Yves Van de Peer, Yvan Saeys:
Toward a gold standard for promoter prediction evaluation. Bioinform. 25(12) (2009) - [j8]Thomas Abeel, Yves Van de Peer, Yvan Saeys:
Java-ML: A Machine Learning Library. J. Mach. Learn. Res. 10: 931-934 (2009) - [c14]Sofie Van Landeghem, Yvan Saeys, Bernard De Baets, Yves Van de Peer:
Analyzing text in search of bio-molecular events: a high-precision machine learning framework. BioNLP@HLT-NAACL (Shared Task) 2009: 128-136 - [c13]Nele Verbiest, Chris Cornelis, Yvan Saeys:
Valued Constraint Satisfaction Problems Applied to Functional Harmony. IFSA/EUSFLAT Conf. 2009: 925-930 - 2008
- [j7]Rubén Armañanzas, Iñaki Inza, Roberto Santana, Yvan Saeys, Jose Luis Flores, José Antonio Lozano, Yves Van de Peer, Rosa Blanco, Víctor Robles, Concha Bielza, Pedro Larrañaga:
A review of estimation of distribution algorithms in bioinformatics. BioData Min. 1 (2008) - [j6]Michiel Van Bel, Yvan Saeys, Yves Van de Peer:
FunSiP: a modular and extensible classifier for the prediction of functional sites in DNA. Bioinform. 24(13): 1532-1533 (2008) - [c12]Thomas Abeel, Yvan Saeys, Pierre Rouzé, Yves Van de Peer:
ProSOM: core promoter prediction based on unsupervised clustering of DNA physical profiles. ISMB 2008: 24-31 - [c11]Isis Bonet, Abdel Rodríguez, Ricardo Grau Ábalo, María M. García, Yvan Saeys, Ann Nowé:
Comparing Distance Measures with Visual Methods. MICAI 2008: 90-99 - [c10]Yvan Saeys, Thomas Abeel, Yves Van de Peer:
Robust Feature Selection Using Ensemble Feature Selection Techniques. ECML/PKDD (2) 2008: 313-325 - [c9]Yvan Saeys, Huan Liu, Iñaki Inza, Louis Wehenkel, Yves Van de Peer:
Preface. FSDM 2008: 1-4 - [e2]Yvan Saeys, Huan Liu, Iñaki Inza, Louis Wehenkel, Yves Van de Peer:
Third Workshop on New Challenges for Feature Selection in Data Mining and Knowledge Discovery, FSDM 2008, held at ECML-PKDD 2008, Antwerp, Belgium, September 15, 2008. JMLR Proceedings 4, JMLR.org 2008 [contents] - 2007
- [j5]Yvan Saeys, Pierre Rouzé, Yves Van de Peer:
In search of the small ones: improved prediction of short exons in vertebrates, plants, fungi and protists. Bioinform. 23(4): 414-420 (2007) - [j4]Yvan Saeys, Iñaki Inza, Pedro Larrañaga:
A review of feature selection techniques in bioinformatics. Bioinform. 23(19): 2507-2517 (2007) - [j3]Tom Michoel, Steven Maere, Eric Bonnet, Anagha Joshi, Yvan Saeys, Tim Van den Bulcke, Koenraad Van Leemput, Piet van Remortel, Martin Kuiper, Kathleen Marchal, Yves Van de Peer:
Validating module network learning algorithms using simulated data. BMC Bioinform. 8(S-2) (2007) - [c8]Yvan Saeys, Thomas Abeel, Sven Degroeve, Yves Van de Peer:
Translation initiation site prediction on a genomic scale: beauty in simplicity. ISMB/ECCB (Supplement of Bioinformatics) 2007: 418-423 - [c7]Isis Bonet, María M. García, Yvan Saeys, Yves Van de Peer, Ricardo Grau Ábalo:
Predicting Human Immunodeficiency Virus (HIV) Drug Resistance Using Recurrent Neural Networks. IWINAC (1) 2007: 234-243 - [e1]Karl Tuyls, Ronald L. Westra, Yvan Saeys, Ann Nowé:
Knowledge Discovery and Emergent Complexity in Bioinformatics, First International Workshop, KDECB 2006, Ghent, Belgium, May 10, 2006. Revised Selected Papers. Lecture Notes in Computer Science 4366, Springer 2007, ISBN 978-3-540-71036-3 [contents] - 2006
- [c6]Isis Bonet, Yvan Saeys, Ricardo Grau Ábalo, María M. García, Robersy Sanchez, Yves Van de Peer:
Feature Extraction Using Clustering of Protein. CIARP 2006: 614-623 - [c5]Philippe Faes, Bram Minnaert, Mark Christiaens, Eric Bonnet, Yvan Saeys, Dirk Stroobandt, Yves Van de Peer:
Scalable hardware accelerator for comparing DNA and protein sequences. Infoscale 2006: 33 - [c4]Ronald L. Westra, Karl Tuyls, Yvan Saeys, Ann Nowé:
Knowledge Discovery and Emergent Complexity in Bioinformatics. KDECB 2006: 1-9 - [c3]Yvan Saeys, Yves Van de Peer:
Enhancing Coding Potential Prediction for Short Sequences Using Complementary Sequence Features and Feature Selection. KDECB 2006: 107-118 - [p1]Yvan Saeys, Sven Degroeve, Yves Van de Peer:
Feature Ranking Using an EDA-based Wrapper Approach. Towards a New Evolutionary Computation 2006: 243-257 - 2005
- [j2]Sven Degroeve, Yvan Saeys, Bernard De Baets, Pierre Rouzé, Yves Van de Peer:
SpliceMachine: predicting splice sites from high-dimensional local context representations. Bioinform. 21(8): 1332-1338 (2005) - 2004
- [j1]Yvan Saeys, Sven Degroeve, Dirk Aeyels, Pierre Rouzé, Yves Van de Peer:
Feature selection for splice site prediction: A new method using EDA-based feature ranking. BMC Bioinform. 5: 64 (2004) - [c2]Yvan Saeys, Sven Degroeve, Yves Van de Peer:
Digging into Acceptor Splice Site Prediction: An Iterative Feature Selection Approach. PKDD 2004: 386-397 - 2003
- [c1]Yvan Saeys, Sven Degroeve, Dirk Aeyels, Yves Van de Peer, Pierre Rouzé:
Fast feature selection using a simple estimation of distribution algorithm: a case study on splice site prediction. ECCB 2003: 179-188
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 22:56 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint