default search action
Mingyi Hong 0001
Person information
- affiliation: University of Minnesota, Department of Electrical and Computer Engineering, Minneapolis , MN, USA
- affiliation: Iowa State University, Department of Industrial and Manufacturing Systems Engineering, Ames, IA, USA
- affiliation (PhD 2011): University of Virginia, Charlottesville, VA, USA
Other persons with the same name
- Ming-Yi Hong 0002 (aka: Mingyi Hong 0002) — National Taiwan University, Graduate Program of Data Science, Taipei, Taiwan (and 1 more)
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j87]Junyu Zhang, Mingyi Hong:
First-Order Algorithms Without Lipschitz Gradient: A Sequential Local Optimization Approach. INFORMS J. Optim. 6(2): 118-136 (2024) - [j86]Ya-Feng Liu, Tsung-Hui Chang, Mingyi Hong, Anthony Man-Cho So, Eduard A. Jorswieck, Wei Yu:
Guest Editorial Advanced Optimization Theory and Algorithms for Next-Generation Wireless Communication Networks. IEEE J. Sel. Areas Commun. 42(11): 2987-2991 (2024) - [j85]Ya-Feng Liu, Tsung-Hui Chang, Mingyi Hong, Zheyu Wu, Anthony Man-Cho So, Eduard A. Jorswieck, Wei Yu:
A Survey of Recent Advances in Optimization Methods for Wireless Communications. IEEE J. Sel. Areas Commun. 42(11): 2992-3031 (2024) - [j84]Yihua Zhang, Prashant Khanduri, Ioannis C. Tsaknakis, Yuguang Yao, Mingyi Hong, Sijia Liu:
An Introduction to Bilevel Optimization: Foundations and applications in signal processing and machine learning. IEEE Signal Process. Mag. 41(1): 38-59 (2024) - [j83]Shixiang Chen, Alfredo García, Mingyi Hong, Shahin Shahrampour:
On the Local Linear Rate of Consensus on the Stiefel Manifold. IEEE Trans. Autom. Control. 69(4): 2324-2339 (2024) - [j82]Xinwei Zhang, Mingyi Hong, Jie Chen:
GLASU: A Communication-Efficient Algorithm for Federated Learning with Vertically Distributed Graph Data. Trans. Mach. Learn. Res. 2024 (2024) - [j81]Xinwei Zhang, Wotao Yin, Mingyi Hong, Tianyi Chen:
Hybrid Federated Learning for Feature & Sample Heterogeneity: Algorithms and Implementation. Trans. Mach. Learn. Res. 2024 (2024) - [c137]Ruichen Jiang, Parameswaran Raman, Shoham Sabach, Aryan Mokhtari, Mingyi Hong, Volkan Cevher:
Krylov Cubic Regularized Newton: A Subspace Second-Order Method with Dimension-Free Convergence Rate. AISTATS 2024: 4411-4419 - [c136]Wenqiang Pu, Jiawei Zhang, Rui Zhou, Xiao Fu, Mingyi Hong:
A Smoothed Bregman Proximal Gradient Algorithm for Decentralized Nonconvex Optimization. ICASSP 2024: 8911-8915 - [c135]Ganghua Wang, Xun Xian, Ashish Kundu, Jayanth Srinivasa, Xuan Bi, Mingyi Hong, Jie Ding:
Demystifying Poisoning Backdoor Attacks from a Statistical Perspective. ICLR 2024 - [c134]Xinwei Zhang, Zhiqi Bu, Steven Wu, Mingyi Hong:
Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach. ICLR 2024 - [c133]Kaan Ozkara, Can Karakus, Parameswaran Raman, Mingyi Hong, Shoham Sabach, Branislav Kveton, Volkan Cevher:
MADA: Meta-Adaptive Optimizers Through Hyper-Gradient Descent. ICML 2024 - [c132]Chung-Yiu Yau, Hoi-To Wai, Parameswaran Raman, Soumajyoti Sarkar, Mingyi Hong:
EMC2: Efficient MCMC Negative Sampling for Contrastive Learning with Global Convergence. ICML 2024 - [c131]Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, Tianlong Chen:
Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark. ICML 2024 - [c130]Xinwei Zhang, Bingqing Song, Mehrdad Honarkhah, Jie Dingl, Mingyi Hong:
Building Large Models from Small Distributed Models: A Layer Matching Approach. SAM 2024: 1-5 - [c129]Toygan Kilic, Jürgen Herrler, Patrick Liebig, Ömer Burak Demirel, Armin M. Nagel, Mingyi Hong, Georgios B. Giannakis, Kâmil Ugurbil, Mehmet Akçakaya:
Towards Fast Hard-Constrained Parallel Transmit Design in Ultrahigh Field MRI with Physics-Driven Neural Networks. ISBI 2024: 1-5 - [c128]Wei Ye, Prashant Khanduri, Jiangweizhi Peng, Feng Tian, Jun Gao, Jie Ding, Zhi-Li Zhang, Mingyi Hong:
SHARE: A Distributed Learning Framework For Multivariate Time-Series Forecasting. SPAWC 2024: 76-80 - [i115]Ruichen Jiang, Parameswaran Raman, Shoham Sabach, Aryan Mokhtari, Mingyi Hong, Volkan Cevher:
Krylov Cubic Regularized Newton: A Subspace Second-Order Method with Dimension-Free Convergence Rate. CoRR abs/2401.03058 (2024) - [i114]Kaan Ozkara, Can Karakus, Parameswaran Raman, Mingyi Hong, Shoham Sabach, Branislav Kveton, Volkan Cevher:
MADA: Meta-Adaptive Optimizers through hyper-gradient Descent. CoRR abs/2401.08893 (2024) - [i113]Ya-Feng Liu, Tsung-Hui Chang, Mingyi Hong, Zheyu Wu, Anthony Man-Cho So, Eduard A. Jorswieck, Wei Yu:
A Survey of Advances in Optimization Methods for Wireless Communication System Design. CoRR abs/2401.12025 (2024) - [i112]Jiaxiang Li, Xuxing Chen, Shiqian Ma, Mingyi Hong:
Problem-Parameter-Free Decentralized Nonconvex Stochastic Optimization. CoRR abs/2402.08821 (2024) - [i111]Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Jason D. Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, Tianlong Chen:
Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark. CoRR abs/2402.11592 (2024) - [i110]Zhiqi Bu, Xinwei Zhang, Mingyi Hong, Sheng Zha, George Karypis:
Pre-training Differentially Private Models with Limited Public Data. CoRR abs/2402.18752 (2024) - [i109]Xun Xian, Ganghua Wang, Xuan Bi, Jayanth Srinivasa, Ashish Kundu, Mingyi Hong, Jie Ding:
RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees. CoRR abs/2403.18774 (2024) - [i108]Chung-Yiu Yau, Hoi-To Wai, Parameswaran Raman, Soumajyoti Sarkar, Mingyi Hong:
EMC2: Efficient MCMC Negative Sampling for Contrastive Learning with Global Convergence. CoRR abs/2404.10575 (2024) - [i107]Yimeng Zhang, Xin Chen, Jinghan Jia, Yihua Zhang, Chongyu Fan, Jiancheng Liu, Mingyi Hong, Ke Ding, Sijia Liu:
Defensive Unlearning with Adversarial Training for Robust Concept Erasure in Diffusion Models. CoRR abs/2405.15234 (2024) - [i106]Jiaxiang Li, Siliang Zeng, Hoi-To Wai, Chenliang Li, Alfredo García, Mingyi Hong:
Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment. CoRR abs/2405.17888 (2024) - [i105]Zhiwei Tang, Jiangweizhi Peng, Jiasheng Tang, Mingyi Hong, Fan Wang, Tsung-Hui Chang:
Tuning-Free Alignment of Diffusion Models with Direct Noise Optimization. CoRR abs/2405.18881 (2024) - [i104]Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Jawanpuria, Bamdev Mishra:
SLTrain: a sparse plus low-rank approach for parameter and memory efficient pretraining. CoRR abs/2406.02214 (2024) - [i103]Chenliang Li, Siliang Zeng, Zeyi Liao, Jiaxiang Li, Dongyeop Kang, Alfredo García, Mingyi Hong:
Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback. CoRR abs/2406.06874 (2024) - [i102]Xinwei Zhang, Zhiqi Bu, Mingyi Hong, Meisam Razaviyayn:
DOPPLER: Differentially Private Optimizers with Low-pass Filter for Privacy Noise Reduction. CoRR abs/2408.13460 (2024) - [i101]Xun Xian, Ganghua Wang, Xuan Bi, Jayanth Srinivasa, Ashish Kundu, Charles Fleming, Mingyi Hong, Jie Ding:
On the Vulnerability of Applying Retrieval-Augmented Generation within Knowledge-Intensive Application Domains. CoRR abs/2409.17275 (2024) - 2023
- [j80]Mingyi Hong, Hoi-To Wai, Zhaoran Wang, Zhuoran Yang:
A Two-Timescale Stochastic Algorithm Framework for Bilevel Optimization: Complexity Analysis and Application to Actor-Critic. SIAM J. Optim. 33(1): 147-180 (2023) - [j79]Xinwei Zhang, Mingyi Hong, Nicola Elia:
Understanding a Class of Decentralized and Federated Optimization Algorithms: A Multirate Feedback Control Perspective. SIAM J. Optim. 33(2): 652-683 (2023) - [j78]Junyu Zhang, Mengdi Wang, Mingyi Hong, Shuzhong Zhang:
Primal-Dual First-Order Methods for Affinely Constrained Multi-block Saddle Point Problems. SIAM J. Optim. 33(2): 1035-1060 (2023) - [j77]Ioannis C. Tsaknakis, Mingyi Hong, Shuzhong Zhang:
Minimax Problems with Coupled Linear Constraints: Computational Complexity and Duality. SIAM J. Optim. 33(4): 2675-2702 (2023) - [j76]Sagar Shrestha, Xiao Fu, Mingyi Hong:
Optimal Solutions for Joint Beamforming and Antenna Selection: From Branch and Bound to Graph Neural Imitation Learning. IEEE Trans. Signal Process. 71: 831-846 (2023) - [j75]Han Shen, Kaiqing Zhang, Mingyi Hong, Tianyi Chen:
Towards Understanding Asynchronous Advantage Actor-Critic: Convergence and Linear Speedup. IEEE Trans. Signal Process. 71: 2579-2594 (2023) - [j74]Minghe Zhu, Tsung-Hui Chang, Mingyi Hong:
Learning to Beamform in Heterogeneous Massive MIMO Networks. IEEE Trans. Wirel. Commun. 22(7): 4901-4915 (2023) - [c127]Ran Wei, Siliang Zeng, Chenliang Li, Alfredo García, Anthony D. McDonald, Mingyi Hong:
A Bayesian Approach to Robust Inverse Reinforcement Learning. CoRL 2023: 2304-2322 - [c126]Sagar Shrestha, Xiao Fu, Mingyi Hong:
Towards Efficient and Optimal Joint Beamforming and Antenna Selection: A Machine Learning Approach. ICASSP 2023: 1-5 - [c125]Ioannis C. Tsaknakis, Prashant Khanduri, Mingyi Hong:
An Implicit Gradient Method for Constrained Bilevel Problems Using Barrier Approximation. ICASSP 2023: 1-5 - [c124]Yihua Zhang, Pranay Sharma, Parikshit Ram, Mingyi Hong, Kush R. Varshney, Sijia Liu:
What Is Missing in IRM Training and Evaluation? Challenges and Solutions. ICLR 2023 - [c123]Prashant Khanduri, Ioannis C. Tsaknakis, Yihua Zhang, Jia Liu, Sijia Liu, Jiawei Zhang, Mingyi Hong:
Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach. ICML 2023: 16291-16325 - [c122]Bingqing Song, Prashant Khanduri, Xinwei Zhang, Jinfeng Yi, Mingyi Hong:
FedAvg Converges to Zero Training Loss Linearly for Overparameterized Multi-Layer Neural Networks. ICML 2023: 32304-32330 - [c121]Xun Xian, Ganghua Wang, Jayanth Srinivasa, Ashish Kundu, Xuan Bi, Mingyi Hong, Jie Ding:
Understanding Backdoor Attacks through the Adaptability Hypothesis. ICML 2023: 37952-37976 - [c120]Xun Xian, Ganghua Wang, Jayanth Srinivasa, Ashish Kundu, Xuan Bi, Mingyi Hong, Jie Ding:
A Unified Detection Framework for Inference-Stage Backdoor Defenses. NeurIPS 2023 - [c119]Zhanpeng Zeng, Cole Hawkins, Mingyi Hong, Aston Zhang, Nikolaos Pappas, Vikas Singh, Shuai Zheng:
VCC: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens. NeurIPS 2023 - [c118]Siliang Zeng, Chenliang Li, Alfredo García, Mingyi Hong:
When Demonstrations meet Generative World Models: A Maximum Likelihood Framework for Offline Inverse Reinforcement Learning. NeurIPS 2023 - [c117]Yihua Zhang, Yimeng Zhang, Aochuan Chen, Jinghan Jia, Jiancheng Liu, Gaowen Liu, Mingyi Hong, Shiyu Chang, Sijia Liu:
Selectivity Drives Productivity: Efficient Dataset Pruning for Enhanced Transfer Learning. NeurIPS 2023 - [c116]Bingqing Song, Zhicheng Zhou, Chenliang Li, Dongning Guo, Xiao Fu, Mingyi Hong:
Transformer Based Approach for Wireless Resource Allocation Problems Involving Mixed Discrete and Continuous Variables. SPAWC 2023: 636-640 - [i100]Siliang Zeng, Chenliang Li, Alfredo García, Mingyi Hong:
Understanding Expertise through Demonstrations: A Maximum Likelihood Framework for Offline Inverse Reinforcement Learning. CoRR abs/2302.07457 (2023) - [i99]Yihua Zhang, Pranay Sharma, Parikshit Ram, Mingyi Hong, Kush R. Varshney, Sijia Liu:
What Is Missing in IRM Training and Evaluation? Challenges and Solutions. CoRR abs/2303.02343 (2023) - [i98]Xinwei Zhang, Mingyi Hong, Jie Chen:
GLASU: A Communication-Efficient Algorithm for Federated Learning with Vertically Distributed Graph Data. CoRR abs/2303.09531 (2023) - [i97]Zhanpeng Zeng, Cole Hawkins, Mingyi Hong, Aston Zhang, Nikolaos Pappas, Vikas Singh, Shuai Zheng:
Vcc: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens. CoRR abs/2305.04241 (2023) - [i96]Yihua Zhang, Prashant Khanduri, Ioannis C. Tsaknakis, Yuguang Yao, Mingyi Hong, Sijia Liu:
An Introduction to Bi-level Optimization: Foundations and Applications in Signal Processing and Machine Learning. CoRR abs/2308.00788 (2023) - [i95]Ran Wei, Siliang Zeng, Chenliang Li, Alfredo García, Anthony D. McDonald, Mingyi Hong:
A Bayesian Approach to Robust Inverse Reinforcement Learning. CoRR abs/2309.08571 (2023) - [i94]Yihua Zhang, Yimeng Zhang, Aochuan Chen, Jinghan Jia, Jiancheng Liu, Gaowen Liu, Mingyi Hong, Shiyu Chang, Sijia Liu:
Selectivity Drives Productivity: Efficient Dataset Pruning for Enhanced Transfer Learning. CoRR abs/2310.08782 (2023) - [i93]Ganghua Wang, Xun Xian, Jayanth Srinivasa, Ashish Kundu, Xuan Bi, Mingyi Hong, Jie Ding:
Demystifying Poisoning Backdoor Attacks from a Statistical Perspective. CoRR abs/2310.10780 (2023) - [i92]Xinwei Zhang, Zhiqi Bu, Zhiwei Steven Wu, Mingyi Hong:
Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach. CoRR abs/2311.14632 (2023) - 2022
- [j73]Junyu Zhang, Mingyi Hong, Shuzhong Zhang:
On lower iteration complexity bounds for the convex concave saddle point problems. Math. Program. 194(1): 901-935 (2022) - [j72]Mingyi Hong, Siliang Zeng, Junyu Zhang, Haoran Sun:
On the Divergence of Decentralized Nonconvex Optimization. SIAM J. Optim. 32(4): 2879-2908 (2022) - [j71]Sagar Shrestha, Xiao Fu, Mingyi Hong:
Deep Spectrum Cartography: Completing Radio Map Tensors Using Learned Neural Models. IEEE Trans. Signal Process. 70: 1170-1184 (2022) - [j70]Wenqiang Pu, Shahana Ibrahim, Xiao Fu, Mingyi Hong:
Stochastic Mirror Descent for Low-Rank Tensor Decomposition Under Non-Euclidean Losses. IEEE Trans. Signal Process. 70: 1803-1818 (2022) - [j69]Haoran Sun, Wenqiang Pu, Xiao Fu, Tsung-Hui Chang, Mingyi Hong:
Learning to Continuously Optimize Wireless Resource in a Dynamic Environment: A Bilevel Optimization Perspective. IEEE Trans. Signal Process. 70: 1900-1917 (2022) - [j68]Yang Liu, Xinwei Zhang, Yan Kang, Liping Li, Tianjian Chen, Mingyi Hong, Qiang Yang:
FedBCD: A Communication-Efficient Collaborative Learning Framework for Distributed Features. IEEE Trans. Signal Process. 70: 4277-4290 (2022) - [j67]Xinran Wang, Jiawei Zhang, Mingyi Hong, Yuhong Yang, Jie Ding:
Parallel Assisted Learning. IEEE Trans. Signal Process. 70: 5848-5858 (2022) - [c115]Xun Xian, Mingyi Hong, Jie Ding:
Mismatched Supervised Learning. ICASSP 2022: 4228-4232 - [c114]Ioannis C. Tsaknakis, Prashant Khanduri, Mingyi Hong:
An Implicit Gradient-Type Method for Linearly Constrained Bilevel Problems. ICASSP 2022: 5438-5442 - [c113]Prashant Khanduri, Haibo Yang, Mingyi Hong, Jia Liu, Hoi-To Wai, Sijia Liu:
Decentralized Learning for Overparameterized Problems: A Multi-Agent Kernel Approximation Approach. ICLR 2022 - [c112]Yimeng Zhang, Yuguang Yao, Jinghan Jia, Jinfeng Yi, Mingyi Hong, Shiyu Chang, Sijia Liu:
How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective. ICLR 2022 - [c111]Xinwei Zhang, Xiangyi Chen, Mingyi Hong, Steven Wu, Jinfeng Yi:
Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy. ICML 2022: 26048-26067 - [c110]Xinwei Zhang, Mingyi Hong, Sairaj V. Dhople, Nicola Elia:
A Stochastic Multi-Rate Control Framework For Modeling Distributed Optimization Algorithms. ICML 2022: 26206-26222 - [c109]Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, Sijia Liu:
Revisiting and Advancing Fast Adversarial Training Through The Lens of Bi-Level Optimization. ICML 2022: 26693-26712 - [c108]Siliang Zeng, Tianyi Chen, Alfredo García, Mingyi Hong:
Learning to Coordinate in Multi-Agent Systems: A Coordinated Actor-Critic Algorithm and Finite-Time Guarantees. L4DC 2022: 278-290 - [c107]Boyi Liu, Jiayang Li, Zhuoran Yang, Hoi-To Wai, Mingyi Hong, Yu (Marco) Nie, Zhaoran Wang:
Inducing Equilibria via Incentives: Simultaneous Design-and-Play Ensures Global Convergence. NeurIPS 2022 - [c106]Songtao Lu, Siliang Zeng, Xiaodong Cui, Mark S. Squillante, Lior Horesh, Brian Kingsbury, Jia Liu, Mingyi Hong:
A Stochastic Linearized Augmented Lagrangian Method for Decentralized Bilevel Optimization. NeurIPS 2022 - [c105]Bingqing Song, Ioannis C. Tsaknakis, Chung-Yiu Yau, Hoi-To Wai, Mingyi Hong:
Distributed Optimization for Overparameterized Problems: Achieving Optimal Dimension Independent Communication Complexity. NeurIPS 2022 - [c104]Siliang Zeng, Chenliang Li, Alfredo García, Mingyi Hong:
Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time Guarantees. NeurIPS 2022 - [c103]Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen, Mingyi Hong, Yanzhi Wang, Sijia Liu:
Advancing Model Pruning via Bi-level Optimization. NeurIPS 2022 - [c102]Xun Xian, Mingyi Hong, Jie Ding:
Understanding Model Extraction Games. TPS-ISA 2022: 285-294 - [c101]Gaoyuan Zhang, Songtao Lu, Yihua Zhang, Xiangyi Chen, Pin-Yu Chen, Quanfu Fan, Lee Martie, Lior Horesh, Mingyi Hong, Sijia Liu:
Distributed adversarial training to robustify deep neural networks at scale. UAI 2022: 2353-2363 - [i91]Yimeng Zhang, Yuguang Yao, Jinghan Jia, Jinfeng Yi, Mingyi Hong, Shiyu Chang, Sijia Liu:
How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective. CoRR abs/2203.14195 (2022) - [i90]Xinwei Zhang, Mingyi Hong, Nicola Elia:
Understanding A Class of Decentralized and Federated Optimization Algorithms: A Multi-Rate Feedback Control Perspective. CoRR abs/2204.12663 (2022) - [i89]Ioannis C. Tsaknakis, Bhavya Kailkhura, Sijia Liu, Donald Loveland, James Diffenderfer, Anna Maria Hiszpanski, Mingyi Hong:
Zeroth-Order SciML: Non-intrusive Integration of Scientific Software with Deep Learning. CoRR abs/2206.02785 (2022) - [i88]Sagar Shrestha, Xiao Fu, Mingyi Hong:
Optimal Solutions for Joint Beamforming and Antenna Selection: From Branch and Bound to Machine Learning. CoRR abs/2206.05576 (2022) - [i87]Gaoyuan Zhang, Songtao Lu, Yihua Zhang, Xiangyi Chen, Pin-Yu Chen, Quanfu Fan, Lee Martie, Lior Horesh, Mingyi Hong, Sijia Liu:
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale. CoRR abs/2206.06257 (2022) - [i86]Xun Xian, Mingyi Hong, Jie Ding:
A Framework for Understanding Model Extraction Attack and Defense. CoRR abs/2206.11480 (2022) - [i85]Siliang Zeng, Mingyi Hong, Alfredo García:
Structural Estimation of Markov Decision Processes in High-Dimensional State Space with Finite-Time Guarantees. CoRR abs/2210.01282 (2022) - [i84]Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen, Mingyi Hong, Yanzhi Wang, Sijia Liu:
Advancing Model Pruning via Bi-level Optimization. CoRR abs/2210.04092 (2022) - [i83]Jiawei Zhang, Yushun Zhang, Mingyi Hong, Ruoyu Sun, Zhi-Quan Luo:
When Expressivity Meets Trainability: Fewer than n Neurons Can Work. CoRR abs/2210.12001 (2022) - 2021
- [j66]Kexin Tang, Nuowen Kan, Junni Zou, Chenglin Li, Xiao Fu, Mingyi Hong, Hongkai Xiong:
Multi-User Adaptive Video Delivery Over Wireless Networks: A Physical Layer Resource-Aware Deep Reinforcement Learning Approach. IEEE Trans. Circuits Syst. Video Technol. 31(2): 798-815 (2021) - [j65]Yijian Zhang, Emiliano Dall'Anese, Mingyi Hong:
Online Proximal-ADMM for Time-Varying Constrained Convex Optimization. IEEE Trans. Signal Inf. Process. over Networks 7: 144-155 (2021) - [j64]Songtao Lu, Jason D. Lee, Meisam Razaviyayn, Mingyi Hong:
Linearized ADMM Converges to Second-Order Stationary Points for Non-Convex Problems. IEEE Trans. Signal Process. 69: 4859-4874 (2021) - [j63]Xinwei Zhang, Mingyi Hong, Sairaj V. Dhople, Wotao Yin, Yang Liu:
FedPD: A Federated Learning Framework With Adaptivity to Non-IID Data. IEEE Trans. Signal Process. 69: 6055-6070 (2021) - [j62]Lingyun Zhou, Xihan Chen, Mingyi Hong, Shi Jin, Qingjiang Shi:
Efficient Resource Allocation for Multi-UAV Communication Against Adjacent and Co-Channel Interference. IEEE Trans. Veh. Technol. 70(10): 10222-10235 (2021) - [c100]Chi Zhang, Jinghan Jia, Burhaneddin Yaman, Steen Moeller, Sijia Liu, Mingyi Hong, Mehmet Akçakaya:
Instabilities in Conventional Multi-Coil MRI Reconstruction with Small Adversarial Perturbations. ACSCC 2021: 895-899 - [c99]Junyu Zhang, Mingyi Hong, Mengdi Wang, Shuzhong Zhang:
Generalization Bounds for Stochastic Saddle Point Problems. AISTATS 2021: 568-576 - [c98]Ioannis C. Tsaknakis, Mingyi Hong:
Finding First-Order Nash Equilibria of Zero-Sum Games with the Regularized Nikaido-Isoda Function. AISTATS 2021: 1189-1197 - [c97]Wenqiang Pu, Shahana Ibrahim, Xiao Fu, Mingyi Hong:
Fiber-Sampled Stochastic Mirror Descent for Tensor Decomposition with β-Divergence. ICASSP 2021: 2925-2929 - [c96]Sagar Shrestha, Xiao Fu, Mingyi Hong:
Deep Generative Model Learning For Blind Spectrum Cartography with NMF-Based Radio Map Disaggregation. ICASSP 2021: 4920-4924 - [c95]Haoran Sun, Wenqiang Pu, Minghe Zhu, Xiao Fu, Tsung-Hui Chang, Mingyi Hong:
Learning to Continuously Optimize Wireless Resource in Episodically Dynamic Environment. ICASSP 2021: 4945-4949 - [c94]Naichen Shi, Dawei Li, Mingyi Hong, Ruoyu Sun:
RMSprop converges with proper hyper-parameter. ICLR 2021 - [c93]Shixiang Chen, Alfredo García, Mingyi Hong, Shahin Shahrampour:
Decentralized Riemannian Gradient Descent on the Stiefel Manifold. ICML 2021: 1594-1605 - [c92]Prashant Khanduri, Pranay Sharma, Haibo Yang, Mingyi Hong, Jia Liu, Ketan Rajawat, Pramod K. Varshney:
STEM: A Stochastic Two-Sided Momentum Algorithm Achieving Near-Optimal Sample and Communication Complexities for Federated Learning. NeurIPS 2021: 6050-6061 - [c91]Jiawei Zhang, Yushun Zhang, Mingyi Hong, Ruoyu Sun, Zhi-Quan Luo:
When Expressivity Meets Trainability: Fewer than $n$ Neurons Can Work. NeurIPS 2021: 9167-9180 - [c90]Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, Zhuoran Yang:
A Near-Optimal Algorithm for Stochastic Bilevel Optimization via Double-Momentum. NeurIPS 2021: 30271-30283 - [c89]Bingqing Song, Haoran Sun, Wenqiang Pu, Sijia Liu, Mingyi Hong:
To Supervise or Not to Supervise: How to Effectively Learn Wireless Interference Management Models? SPAWC 2021: 211-215 - [i82]Shixiang Chen, Alfredo García, Mingyi Hong, Shahin Shahrampour:
On the Local Linear Rate of Consensus on the Stiefel Manifold. CoRR abs/2101.09346 (2021) - [i81]Shixiang Chen, Alfredo García, Mingyi Hong, Shahin Shahrampour:
Decentralized Riemannian Gradient Descent on the Stiefel Manifold. CoRR abs/2102.07091 (2021) - [i80]Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, Zhuoran Yang:
A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm for Bilevel Optimization. CoRR abs/2102.07367 (2021) - [i79]Chi Zhang, Jinghan Jia, Burhaneddin Yaman, Steen Moeller, Sijia Liu, Mingyi Hong, Mehmet Akçakaya:
On Instabilities of Conventional Multi-Coil MRI Reconstruction to Small Adverserial Perturbations. CoRR abs/2102.13066 (2021) - [i78]Wenqiang Pu, Shahana Ibrahim, Xiao Fu, Mingyi Hong:
Stochastic Mirror Descent for Low-Rank Tensor Decomposition Under Non-Euclidean Losses. CoRR abs/2104.14562 (2021) - [i77]Sagar Shrestha, Xiao Fu, Mingyi Hong:
Deep Spectrum Cartography: Completing Radio Map Tensors Using Learned Neural Models. CoRR abs/2105.00177 (2021) - [i76]Haoran Sun, Wenqiang Pu, Xiao Fu, Tsung-Hui Chang, Mingyi Hong:
Learning to Continuously Optimize Wireless Resource in a Dynamic Environment: A Bilevel Optimization Perspective. CoRR abs/2105.01696 (2021) - [i75]Prashant Khanduri, Pranay Sharma, Haibo Yang, Mingyi Hong, Jia Liu, Ketan Rajawat, Pramod K. Varshney:
STEM: A Stochastic Two-Sided Momentum Algorithm Achieving Near-Optimal Sample and Communication Complexities for Federated Learning. CoRR abs/2106.10435 (2021) - [i74]Xinwei Zhang, Xiangyi Chen, Mingyi Hong, Zhiwei Steven Wu, Jinfeng Yi:
Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy. CoRR abs/2106.13673 (2021) - [i73]Boyi Liu, Jiayang Li, Zhuoran Yang, Hoi-To Wai, Mingyi Hong, Yu Marco Nie, Zhaoran Wang:
Inducing Equilibria via Incentives: Simultaneous Design-and-Play Finds Global Optima. CoRR abs/2110.01212 (2021) - [i72]Siliang Zeng, Tianyi Chen, Alfredo García, Mingyi Hong:
Learning to Coordinate in Multi-Agent Systems: A Coordinated Actor-Critic Algorithm and Finite-Time Guarantees. CoRR abs/2110.05597 (2021) - [i71]Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, Sijia Liu:
Revisiting and Advancing Fast Adversarial Training Through The Lens of Bi-Level Optimization. CoRR abs/2112.12376 (2021) - [i70]Bingqing Song, Haoran Sun, Wenqiang Pu, Sijia Liu, Mingyi Hong:
To Supervise or Not: How to Effectively Learn Wireless Interference Management Models? CoRR abs/2112.14011 (2021) - 2020
- [j61]Ying Cui, Tsung-Hui Chang, Mingyi Hong, Jong-Shi Pang:
A Study of Piecewise Linear-Quadratic Programs. J. Optim. Theory Appl. 186(2): 523-553 (2020) - [j60]Seyed Amir Hossein Hosseini, Burhaneddin Yaman, Steen Moeller, Mingyi Hong, Mehmet Akçakaya:
Dense Recurrent Neural Networks for Accelerated MRI: History-Cognizant Unrolling of Optimization Algorithms. IEEE J. Sel. Top. Signal Process. 14(6): 1280-1291 (2020) - [j59]Mingyi Hong, Tsung-Hui Chang, Xiangfeng Wang, Meisam Razaviyayn, Shiqian Ma, Zhi-Quan Luo:
A Block Successive Upper-Bound Minimization Method of Multipliers for Linearly Constrained Convex Optimization. Math. Oper. Res. 45(3): 833-861 (2020) - [j58]Tsung-Hui Chang, Mingyi Hong, Hoi-To Wai, Xinwei Zhang, Songtao Lu:
Distributed Learning in the Nonconvex World: From batch data to streaming and beyond. IEEE Signal Process. Mag. 37(3): 26-38 (2020) - [j57]Meisam Razaviyayn, Tianjian Huang, Songtao Lu, Maher Nouiehed, Maziar Sanjabi, Mingyi Hong:
Nonconvex Min-Max Optimization: Applications, Challenges, and Recent Theoretical Advances. IEEE Signal Process. Mag. 37(5): 55-66 (2020) - [j56]Guoyong Zhang, Xiao Fu, Jun Wang, Xi-Le Zhao, Mingyi Hong:
Spectrum Cartography via Coupled Block-Term Tensor Decomposition. IEEE Trans. Signal Process. 68: 3660-3675 (2020) - [j55]Songtao Lu, Ioannis C. Tsaknakis, Mingyi Hong, Yongxin Chen:
Hybrid Block Successive Approximation for One-Sided Non-Convex Min-Max Problems: Algorithms and Applications. IEEE Trans. Signal Process. 68: 3676-3691 (2020) - [j54]Qingjiang Shi, Mingyi Hong:
Penalty Dual Decomposition Method for Nonsmooth Nonconvex Optimization - Part I: Algorithms and Convergence Analysis. IEEE Trans. Signal Process. 68: 4108-4122 (2020) - [j53]Qingjiang Shi, Mingyi Hong, Xiao Fu, Tsung-Hui Chang:
Penalty Dual Decomposition Method for Nonsmooth Nonconvex Optimization - Part II: Applications. IEEE Trans. Signal Process. 68: 4242-4257 (2020) - [j52]Yi Wei, Ming-Min Zhao, Mingyi Hong, Min-Jian Zhao, Ming Lei:
Learned Conjugate Gradient Descent Network for Massive MIMO Detection. IEEE Trans. Signal Process. 68: 6336-6349 (2020) - [c88]Xinwei Zhang, Victor Purba, Mingyi Hong, Sairaj V. Dhople:
A Sum-of-Squares Optimization Method for Learning and Controlling Photovoltaic Systems. ACC 2020: 2376-2381 - [c87]Ioannis C. Tsaknakis, Mingyi Hong, Sijia Liu:
Decentralized Min-Max Optimization: Formulations, Algorithms and Applications in Network Poisoning Attack. ICASSP 2020: 5755-5759 - [c86]Yi Wei, Ming-Min Zhao, Mingyi Hong, Min-Jian Zhao, Ming Lei:
Learned Conjugate Gradient Descent Network for Massive MIMO Detection. ICC 2020: 1-6 - [c85]Sijia Liu, Songtao Lu, Xiangyi Chen, Yao Feng, Kaidi Xu, Abdullah Al-Dujaili, Mingyi Hong, Una-May O'Reilly:
Min-Max Optimization without Gradients: Convergence and Applications to Black-Box Evasion and Poisoning Attacks. ICML 2020: 6282-6293 - [c84]Haoran Sun, Songtao Lu, Mingyi Hong:
Improving the Sample and Communication Complexity for Decentralized Non-Convex Optimization: Joint Gradient Estimation and Tracking. ICML 2020: 9217-9228 - [c83]Xiangyi Chen, Tiancong Chen, Haoran Sun, Zhiwei Steven Wu, Mingyi Hong:
Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms. NeurIPS 2020 - [c82]Xiangyi Chen, Zhiwei Steven Wu, Mingyi Hong:
Understanding Gradient Clipping in Private SGD: A Geometric Perspective. NeurIPS 2020 - [c81]Songtao Lu, Meisam Razaviyayn, Bo Yang, Kejun Huang, Mingyi Hong:
Finding Second-Order Stationary Points Efficiently in Smooth Nonconvex Linearly Constrained Optimization Problems. NeurIPS 2020 - [c80]Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, Mingyi Hong:
Provably Efficient Neural GTD for Off-Policy Learning. NeurIPS 2020 - [c79]Lingyun Zhou, Yihong Dong, Mingyi Hong, Qingjiang Shi:
Joint Channel Assignment And Power Allocation for Multi-UAVs Communication Systems. SPAWC 2020: 1-5 - [i69]Tsung-Hui Chang, Mingyi Hong, Hoi-To Wai, Xinwei Zhang, Songtao Lu:
Distributed Learning in the Non-Convex World: From Batch to Streaming Data, and Beyond. CoRR abs/2001.04786 (2020) - [i68]Yijian Zhang, Emiliano Dall'Anese, Mingyi Hong:
Online Proximal-ADMM For Time-varying Constrained Optimization. CoRR abs/2005.03267 (2020) - [i67]Xinwei Zhang, Mingyi Hong, Sairaj V. Dhople, Wotao Yin, Yang Liu:
FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity to Non-IID Data. CoRR abs/2005.11418 (2020) - [i66]Meisam Razaviyayn, Tianjian Huang, Songtao Lu, Maher Nouiehed, Maziar Sanjabi, Mingyi Hong:
Non-convex Min-Max Optimization: Applications, Challenges, and Recent Theoretical Advances. CoRR abs/2006.08141 (2020) - [i65]Mingyi Hong, Siliang Zeng, Junyu Zhang, Haoran Sun:
On the Divergence of Decentralized Non-Convex Optimization. CoRR abs/2006.11662 (2020) - [i64]Yingxue Zhou, Xiangyi Chen, Mingyi Hong, Zhiwei Steven Wu, Arindam Banerjee:
Private Stochastic Non-Convex Optimization: Adaptive Algorithms and Tighter Generalization Bounds. CoRR abs/2006.13501 (2020) - [i63]Xiangyi Chen, Zhiwei Steven Wu, Mingyi Hong:
Understanding Gradient Clipping in Private SGD: A Geometric Perspective. CoRR abs/2006.15429 (2020) - [i62]Mingyi Hong, Hoi-To Wai, Zhaoran Wang, Zhuoran Yang:
A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis and Application to Actor-Critic. CoRR abs/2007.05170 (2020) - [i61]Lingyun Zhou, Xihan Chen, Mingyi Hong, Shi Jin, Qingjiang Shi:
Joint Channel Assignment and Power Allocation for Multi-UAV Communication. CoRR abs/2008.08212 (2020) - [i60]Xun Xian, Xinran Wang, Mingyi Hong, Jie Ding, Reza Ghanadan:
Imitation Privacy. CoRR abs/2009.00442 (2020) - [i59]Minghe Zhu, Tsung-Hui Chang, Mingyi Hong:
Learning to Beamform in Heterogeneous Massive MIMO Networks. CoRR abs/2011.03971 (2020) - [i58]Haoran Sun, Wenqiang Pu, Minghe Zhu, Xiao Fu, Tsung-Hui Chang, Mingyi Hong:
Learning to Continuously Optimize Wireless Resource In Episodically Dynamic Environment. CoRR abs/2011.07782 (2020) - [i57]Xinwei Zhang, Wotao Yin, Mingyi Hong, Tianyi Chen:
Hybrid Federated Learning: Algorithms and Implementation. CoRR abs/2012.12420 (2020) - [i56]Han Shen, Kaiqing Zhang, Mingyi Hong, Tianyi Chen:
Asynchronous Advantage Actor Critic: Non-asymptotic Analysis and Linear Speedup. CoRR abs/2012.15511 (2020)
2010 – 2019
- 2019
- [j51]Davood Hajinezhad, Mingyi Hong:
Perturbed proximal primal-dual algorithm for nonconvex nonsmooth optimization. Math. Program. 176(1-2): 207-245 (2019) - [j50]Meisam Razaviyayn, Mingyi Hong, Navid Reyhanian, Zhi-Quan Luo:
A linearly convergent doubly stochastic Gauss-Seidel algorithm for solving linear equations and a certain class of over-parameterized optimization problems. Math. Program. 176(1-2): 465-496 (2019) - [j49]Xiao Fu, Kejun Huang, Nicholas D. Sidiropoulos, Qingjiang Shi, Mingyi Hong:
Anchor-Free Correlated Topic Modeling. IEEE Trans. Pattern Anal. Mach. Intell. 41(5): 1056-1071 (2019) - [j48]Davood Hajinezhad, Mingyi Hong, Alfredo García:
ZONE: Zeroth-Order Nonconvex Multiagent Optimization Over Networks. IEEE Trans. Autom. Control. 64(10): 3995-4010 (2019) - [j47]Charilaos I. Kanatsoulis, Xiao Fu, Nicholas D. Sidiropoulos, Mingyi Hong:
Structured SUMCOR Multiview Canonical Correlation Analysis for Large-Scale Data. IEEE Trans. Signal Process. 67(2): 306-319 (2019) - [j46]Haoran Sun, Mingyi Hong:
Distributed Non-Convex First-Order Optimization and Information Processing: Lower Complexity Bounds and Rate Optimal Algorithms. IEEE Trans. Signal Process. 67(22): 5912-5928 (2019) - [c78]Xinwei Zhang, John Sartori, Mingyi Hong, Sairaj V. Dhople:
DImplementing First-order Optimization Methods: Algorithmic Considerations and Bespoke Microcontrollers. ACSSC 2019: 296-300 - [c77]Songtao Lu, Rahul Singh, Xiangyi Chen, Yongxin Chen, Mingyi Hong:
Alternating Gradient Descent Ascent for Nonconvex Min-Max Problems in Robust Learning and GANs. ACSSC 2019: 680-684 - [c76]Guoyong Zhang, Xiao Fu, Jun Wang, Mingyi Hong:
Coupled Block-term Tensor Decomposition Based Blind Spectrum Cartography. ACSSC 2019: 1644-1648 - [c75]Jennifer Annoni, Emiliano Dall'Anese, Mingyi Hong, Christopher J. Bay:
Efficient Distributed Optimization of Wind Farms Using Proximal Primal-Dual Algorithms. ACC 2019: 4173-4178 - [c74]Kejun Huang, Zhuoran Yang, Zhaoran Wang, Mingyi Hong:
Learning Partially Observable Markov Decision Processes Using Coupled Canonical Polyadic Decomposition. DSW 2019: 295-299 - [c73]Songtao Lu, Xinwei Zhang, Haoran Sun, Mingyi Hong:
GNSD: a Gradient-Tracking Based Nonconvex Stochastic Algorithm for Decentralized Optimization. DSW 2019: 315-321 - [c72]Haoran Sun, Aliye Özge Kaya, Mike Macdonald, Harish Viswanathan, Mingyi Hong:
Deep Learning Based Preamble Detection and TOA Estimation. GLOBECOM 2019: 1-6 - [c71]Songtao Lu, Mingyi Hong, Zhengdao Wang:
Fast and Global Optimal Nonconvex Matrix Factorization via Perturbed Alternating Proximal Point. ICASSP 2019: 2907-2911 - [c70]Songtao Lu, Ioannis C. Tsaknakis, Mingyi Hong:
Block Alternating Optimization for Non-convex Min-max Problems: Algorithms and Applications in Signal Processing and Communications. ICASSP 2019: 4754-4758 - [c69]Songtao Lu, Ziping Zhao, Kejun Huang, Mingyi Hong:
Perturbed Projected Gradient Descent Converges to Approximate Second-order Points for Bound Constrained Nonconvex Problems. ICASSP 2019: 5356-5360 - [c68]Xiangyi Chen, Sijia Liu, Ruoyu Sun, Mingyi Hong:
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization. ICLR (Poster) 2019 - [c67]Sijia Liu, Pin-Yu Chen, Xiangyi Chen, Mingyi Hong:
signSGD via Zeroth-Order Oracle. ICLR (Poster) 2019 - [c66]Songtao Lu, Mingyi Hong, Zhengdao Wang:
PA-GD: On the Convergence of Perturbed Alternating Gradient Descent to Second-Order Stationary Points for Structured Nonconvex Optimization. ICML 2019: 4134-4143 - [c65]Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, Xue Lin:
Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective. IJCAI 2019: 3961-3967 - [c64]Hoi-To Wai, Mingyi Hong, Zhuoran Yang, Zhaoran Wang, Kexin Tang:
Variance Reduced Policy Evaluation with Smooth Function Approximation. NeurIPS 2019: 5776-5787 - [c63]Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, David D. Cox:
ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization. NeurIPS 2019: 7202-7213 - [c62]Zhuoran Yang, Yongxin Chen, Mingyi Hong, Zhaoran Wang:
Provably Global Convergence of Actor-Critic: A Case for Linear Quadratic Regulator with Ergodic Cost. NeurIPS 2019: 8351-8363 - [c61]Xingguo Li, Haoming Jiang, Jarvis D. Haupt, Raman Arora, Han Liu, Mingyi Hong, Tuo Zhao:
On Fast Convergence of Proximal Algorithms for SQRT-Lasso Optimization: Don't Worry About its Nonsmooth Loss Function. UAI 2019: 49-59 - [c60]Kexin Tang, Nuowen Kan, Junni Zou, Xiao Fu, Mingyi Hong, Hongkai Xiong:
Multiuser Video Streaming Rate Adaptation: A Physical Layer Resource-Aware Deep Reinforcement Learning Approach. VCIP 2019: 1-4 - [i55]Qi Cai, Mingyi Hong, Yongxin Chen, Zhaoran Wang:
On the Global Convergence of Imitation Learning: A Case for Linear Quadratic Regulator. CoRR abs/1901.03674 (2019) - [i54]Kexin Tang, Nuowen Kan, Junni Zou, Xiao Fu, Mingyi Hong, Hongkai Xiong:
Multiuser Video Streaming Rate Adaptation: A Physical Layer Resource-Aware Deep Reinforcement Learning Approach. CoRR abs/1902.00637 (2019) - [i53]Xiangyi Chen, Tiancong Chen, Haoran Sun, Zhiwei Steven Wu, Mingyi Hong:
Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms. CoRR abs/1906.01736 (2019) - [i52]Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, Xue Lin:
Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective. CoRR abs/1906.04214 (2019) - [i51]Songtao Lu, Meisam Razaviyayn, Bo Yang, Kejun Huang, Mingyi Hong:
SNAP: Finding Approximate Second-Order Stationary Solutions Efficiently for Non-convex Linearly Constrained Problems. CoRR abs/1907.04450 (2019) - [i50]Zhuoran Yang, Yongxin Chen, Mingyi Hong, Zhaoran Wang:
On the Global Convergence of Actor-Critic: A Case for Linear Quadratic Regulator with Ergodic Cost. CoRR abs/1907.06246 (2019) - [i49]Sijia Liu, Songtao Lu, Xiangyi Chen, Yao Feng, Kaidi Xu, Abdullah Al-Dujaili, Mingyi Hong, Una-May O'Reilly:
Min-Max Optimization without Gradients: Convergence and Applications to Adversarial ML. CoRR abs/1909.13806 (2019) - [i48]Haoran Sun, Songtao Lu, Mingyi Hong:
Improving the Sample and Communication Complexity for Decentralized Non-Convex Optimization: A Joint Gradient Estimation and Tracking Approach. CoRR abs/1910.05857 (2019) - [i47]Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, David D. Cox:
ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization. CoRR abs/1910.06513 (2019) - [i46]Seyed Amir Hossein Hosseini, Burhaneddin Yaman, Steen Moeller, Mingyi Hong, Mehmet Akçakaya:
Dense Recurrent Neural Networks for Inverse Problems: History-Cognizant Unrolling of Optimization Algorithms. CoRR abs/1912.07197 (2019) - [i45]Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng, Tianjian Chen, Mingyi Hong, Qiang Yang:
A Communication Efficient Vertical Federated Learning Framework. CoRR abs/1912.11187 (2019) - 2018
- [j45]Qingjiang Shi, Mingyi Hong:
Spectral Efficiency Optimization For Millimeter Wave Multiuser MIMO Systems. IEEE J. Sel. Top. Signal Process. 12(3): 455-468 (2018) - [j44]Mingyi Hong:
A Distributed, Asynchronous, and Incremental Algorithm for Nonconvex Optimization: An ADMM Approach. IEEE Trans. Control. Netw. Syst. 5(3): 935-945 (2018) - [j43]Yijian Zhang, Mingyi Hong, Emiliano Dall'Anese, Sairaj V. Dhople, Zi Xu:
Distributed Controllers Seeking AC Optimal Power Flow Solutions Using ADMM. IEEE Trans. Smart Grid 9(5): 4525-4537 (2018) - [j42]Wei-Cheng Liao, Mingyi Hong, Hamid Farmanbar, Zhi-Quan Luo:
A Distributed Semiasynchronous Algorithm for Network Traffic Engineering. IEEE Trans. Signal Inf. Process. over Networks 4(3): 436-450 (2018) - [j41]Haoran Sun, Xiangyi Chen, Qingjiang Shi, Mingyi Hong, Xiao Fu, Nicholas D. Sidiropoulos:
Learning to Optimize: Training Deep Neural Networks for Interference Management. IEEE Trans. Signal Process. 66(20): 5438-5453 (2018) - [c59]Haoran Sun, Mingyi Hong:
Distributed Non-Convex First-Order optimization and Information Processing: Lower Complexity Bounds and Rate Optimal Algorithms. ACSSC 2018: 38-42 - [c58]Ziping Zhao, Songtao Lu, Mingyi Hong, Daniel P. Palomar:
Distributed optimization for Generalized Phase Retrieval Over Networks. ACSSC 2018: 48-52 - [c57]Zhuoran Yang, Kaiqing Zhang, Mingyi Hong, Tamer Basar:
A Finite Sample Analysis of the Actor-Critic Algorithm. CDC 2018: 2759-2764 - [c56]Nan Zhang, Ya-Feng Liu, Hamid Farmanbar, Tsung-Hui Chang, Mingyi Hong, Zhi-Quan Luo:
Software Defined Resource Allocation for Service-Oriented Networks. ICASSP 2018: 3769-3773 - [c55]Charilaos I. Kanatsoulis, Xiao Fu, Nicholas D. Sidiropoulos, Mingyi Hong:
Large-Scale Regularized Sumcor GCCA via Penalty-Dual Decomposition. ICASSP 2018: 6363-6367 - [c54]Mingyi Hong, Meisam Razaviyayn, Jason D. Lee:
Gradient Primal-Dual Algorithm Converges to Second-Order Stationary Solution for Nonconvex Distributed Optimization Over Networks. ICML 2018: 2014-2023 - [c53]Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, Mingyi Hong:
Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization. NeurIPS 2018: 9672-9683 - [c52]Mohamed Salah Ibrahim, Aritra Konar, Mingyi Hong, Nicholas D. Sidiropoulos:
Mirror-Prox SCA Algorithm for Multicast Beamforming and Antenna Selection. SPAWC 2018: 1-5 - [c51]Haoran Sun, Ziping Zhao, Xiao Fu, Mingyi Hong:
Limited Feedback Double Directional Massive MIMO Channel Estimation: From Low-Rank Modeling to Deep Learning. SPAWC 2018: 1-5 - [i44]Qingjiang Shi, Mingyi Hong:
Spectral Efficiency Optimization For Millimeter Wave Multi-User MIMO Systems. CoRR abs/1801.07560 (2018) - [i43]Mingyi Hong, Jason D. Lee, Meisam Razaviyayn:
Gradient Primal-Dual Algorithm Converges to Second-Order Stationary Solutions for Nonconvex Distributed Optimization. CoRR abs/1802.08941 (2018) - [i42]Songtao Lu, Mingyi Hong, Zhengdao Wang:
On the Sublinear Convergence of Randomly Perturbed Alternating Gradient Descent to Second Order Stationary Solutions. CoRR abs/1802.10418 (2018) - [i41]Mohamed Salah Ibrahim, Aritra Konar, Mingyi Hong, Nicholas D. Sidiropoulos:
Mirror-Prox SCA Algorithm for Multicast Beamforming and Antenna Selection. CoRR abs/1803.00678 (2018) - [i40]Haoran Sun, Mingyi Hong:
Distributed Non-Convex First-Order Optimization and Information Processing: Lower Complexity Bounds and Rate Optimal Algorithms. CoRR abs/1804.02729 (2018) - [i39]Charilaos I. Kanatsoulis, Xiao Fu, Nicholas D. Sidiropoulos, Mingyi Hong:
Structured SUMCOR Multiview Canonical Correlation Analysis for Large-Scale Data. CoRR abs/1804.08806 (2018) - [i38]Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, Mingyi Hong:
Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization. CoRR abs/1806.00877 (2018) - [i37]Xiangyi Chen, Sijia Liu, Ruoyu Sun, Mingyi Hong:
On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization. CoRR abs/1808.02941 (2018) - 2017
- [j40]Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Mingyi Hong:
On Faster Convergence of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization. J. Mach. Learn. Res. 18: 184:1-184:24 (2017) - [j39]Nan Zhang, Ya-Feng Liu, Hamid Farmanbar, Tsung-Hui Chang, Mingyi Hong, Zhi-Quan Luo:
Network Slicing for Service-Oriented Networks Under Resource Constraints. IEEE J. Sel. Areas Commun. 35(11): 2512-2521 (2017) - [j38]Mingyi Hong, Zhi-Quan Luo:
On the linear convergence of the alternating direction method of multipliers. Math. Program. 162(1-2): 165-199 (2017) - [j37]Mingyi Hong, Xiangfeng Wang, Meisam Razaviyayn, Zhi-Quan Luo:
Iteration complexity analysis of block coordinate descent methods. Math. Program. 163(1-2): 85-114 (2017) - [j36]Ming-Min Zhao, Yunlong Cai, Qingjiang Shi, Mingyi Hong, Benoît Champagne:
Joint Transceiver Designs for Full-Duplex $K$ -Pair MIMO Interference Channel With SWIPT. IEEE Trans. Commun. 65(2): 890-905 (2017) - [j35]Mingyi Hong, Tsung-Hui Chang:
Stochastic Proximal Gradient Consensus Over Random Networks. IEEE Trans. Signal Process. 65(11): 2933-2948 (2017) - [j34]Songtao Lu, Mingyi Hong, Zhengdao Wang:
A Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization: Convergence Analysis and Optimality. IEEE Trans. Signal Process. 65(12): 3120-3135 (2017) - [j33]Xiao Fu, Kejun Huang, Mingyi Hong, Nicholas D. Sidiropoulos, Anthony Man-Cho So:
Scalable and Flexible Multiview MAX-VAR Canonical Correlation Analysis. IEEE Trans. Signal Process. 65(16): 4150-4165 (2017) - [c50]Songtao Lu, Mingyi Hong, Zhengdao Wang:
A Stochastic Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization. AISTATS 2017: 812-821 - [c49]Yijian Zhang, Emiliano Dall'Anese, Mingyi Hong, Sairaj V. Dhople, Zi Xu:
Regulation of renewable energy sources to optimal power flow solutions using ADMM. ACC 2017: 3394-3399 - [c48]Yijian Zhang, Emiliano Dall'Anese, Mingyi Hong:
Dynamic ADMM for real-time optimal power flow. GlobalSIP 2017: 1085-1089 - [c47]Xiongfei Zhai, Qingjiang Shi, Yunlong Cai, Mingyi Hong, Minjian Zhao:
Hybrid Transceiver Design for mmWave MIMO Systems with Non-Linear Power Consumption Model. GLOBECOM 2017: 1-6 - [c46]Songtao Lu, Mingyi Hong, Zhengdao Wang:
A nonconvex splitting method for symmetric nonnegative matrix factorization: Convergence analysis and optimality. ICASSP 2017: 2572-2576 - [c45]Nan Zhang, Wei-Cheng Liao, Mingyi Hong, Hamid Farmanbar, Zhi-Quan Luo:
Traffic engineering for backhaul networks with wireless link scheduling. ICASSP 2017: 3719-3723 - [c44]Qingjiang Shi, Mingyi Hong:
Penalty dual decomposition method with application in signal processing. ICASSP 2017: 4059-4063 - [c43]Xiao Fu, Kejun Huang, Mingyi Hong, Nicholas D. Sidiropoulos, Anthony Man-Cho So:
Scalable and flexible Max-Var generalized canonical correlation analysis via alternating optimization. ICASSP 2017: 5855-5859 - [c42]Mingyi Hong, Davood Hajinezhad, Ming-Min Zhao:
Prox-PDA: The Proximal Primal-Dual Algorithm for Fast Distributed Nonconvex Optimization and Learning Over Networks. ICML 2017: 1529-1538 - [c41]Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, Mingyi Hong:
Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering. ICML 2017: 3861-3870 - [c40]Haoran Sun, Xiangyi Chen, Qingjiang Shi, Mingyi Hong, Xiao Fu, Nikos D. Sidiropoulos:
Learning to optimize: Training deep neural networks for wireless resource management. SPAWC 2017: 1-6 - [c39]Ming-Min Zhao, Qingjiang Shi, Mingyi Hong, Yunlong Cai, Minjian Zhao:
Joint Transceiver Design for Full-Duplex Cloud Radio Access Networks with SWIPT. WCNC 2017: 1-6 - [i36]Haoran Sun, Xiangyi Chen, Qingjiang Shi, Mingyi Hong, Xiao Fu, Nikos D. Sidiropoulos:
Learning to Optimize: Training Deep Neural Networks for Wireless Resource Management. CoRR abs/1705.09412 (2017) - [i35]Nan Zhang, Ya-Feng Liu, Hamid Farmanbar, Tsung-Hui Chang, Mingyi Hong, Zhi-Quan Luo:
Network Slicing for Service-Oriented Networks Under Resource Constraints. CoRR abs/1708.07463 (2017) - [i34]Qingjiang Shi, Mingyi Hong, Xiao Fu, Tsung-Hui Chang:
Penalty Dual Decomposition Method For Nonsmooth Nonconvex Optimization. CoRR abs/1712.04767 (2017) - 2016
- [j32]Brendan P. W. Ames, Mingyi Hong:
Alternating direction method of multipliers for penalized zero-variance discriminant analysis. Comput. Optim. Appl. 64(3): 725-754 (2016) - [j31]Mingyi Hong, Zhi-Quan Luo, Meisam Razaviyayn:
Convergence Analysis of Alternating Direction Method of Multipliers for a Family of Nonconvex Problems. SIAM J. Optim. 26(1): 337-364 (2016) - [j30]Mingyi Hong, Meisam Razaviyayn, Zhi-Quan Luo, Jong-Shi Pang:
A Unified Algorithmic Framework for Block-Structured Optimization Involving Big Data: With applications in machine learning and signal processing. IEEE Signal Process. Mag. 33(1): 57-77 (2016) - [j29]Alfredo García, Mingyi Hong:
Efficient Rate Allocation in Wireless Networks Under Incomplete Information. IEEE Trans. Autom. Control. 61(5): 1397-1402 (2016) - [j28]Qingjiang Shi, Cheng Peng, WeiQiang Xu, Mingyi Hong, Yunlong Cai:
Energy Efficiency Optimization for MISO SWIPT Systems With Zero-Forcing Beamforming. IEEE Trans. Signal Process. 64(4): 842-854 (2016) - [j27]Qingjiang Shi, Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo:
SINR Constrained Beamforming for a MIMO Multi-User Downlink System: Algorithms and Convergence Analysis. IEEE Trans. Signal Process. 64(11): 2920-2933 (2016) - [j26]Tsung-Hui Chang, Mingyi Hong, Wei-Cheng Liao, Xiangfeng Wang:
Asynchronous Distributed ADMM for Large-Scale Optimization - Part I: Algorithm and Convergence Analysis. IEEE Trans. Signal Process. 64(12): 3118-3130 (2016) - [j25]Tsung-Hui Chang, Wei-Cheng Liao, Mingyi Hong, Xiangfeng Wang:
Asynchronous Distributed ADMM for Large-Scale Optimization - Part II: Linear Convergence Analysis and Numerical Performance. IEEE Trans. Signal Process. 64(12): 3131-3144 (2016) - [j24]Qingjiang Shi, Mingyi Hong, Xiqi Gao, Enbin Song, Yunlong Cai, WeiQiang Xu:
Joint Source-Relay Design for Full-Duplex MIMO AF Relay Systems. IEEE Trans. Signal Process. 64(23): 6118-6131 (2016) - [j23]Mingyi Hong, Qiang Li, Ya-Feng Liu:
Decomposition by Successive Convex Approximation: A Unifying Approach for Linear Transceiver Design in Heterogeneous Networks. IEEE Trans. Wirel. Commun. 15(2): 1377-1392 (2016) - [j22]Ya-Feng Liu, Mingyi Hong, Enbin Song:
Sample Approximation-Based Deflation Approaches for Chance SINR-Constrained Joint Power and Admission Control. IEEE Trans. Wirel. Commun. 15(7): 4535-4547 (2016) - [c38]Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Mingyi Hong:
An Improved Convergence Analysis of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization. AISTATS 2016: 491-499 - [c37]Ming-Min Zhao, Qingjiang Shi, Mingyi Hong:
A distributed algorithm for dictionary learning over networks. GlobalSIP 2016: 505-509 - [c36]Qingjiang Shi, Mingyi Hong, Enbin Song, Yunlong Cai, WeiQiang Xu:
A penalty-BSUM approach for rate optimization in full-duplex MIMO relay networks with relay processing delay. ICASSP 2016: 3646-3650 - [c35]Shengyu Zhu, Mingyi Hong, Biao Chen:
Quantized consensus ADMM for multi-agent distributed optimization. ICASSP 2016: 4134-4138 - [c34]Davood Hajinezhad, Tsung-Hui Chang, Xiangfeng Wang, Qingjiang Shi, Mingyi Hong:
Nonnegative matrix factorization using ADMM: Algorithm and convergence analysis. ICASSP 2016: 4742-4746 - [c33]Mingyi Hong, Tsung-Hui Chang:
Stochastic proximal gradient consensus over time-varying networks. ICASSP 2016: 4776-4780 - [c32]Tsung-Hui Chang, Mingyi Hong, Wei-Cheng Liao, Xiangfeng Wang:
Asynchronous distributed alternating direction method of multipliers: Algorithm and convergence analysis. ICASSP 2016: 4781-4785 - [c31]Davood Hajinezhad, Mingyi Hong, Tuo Zhao, Zhaoran Wang:
NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization. NIPS 2016: 3207-3215 - [c30]Yunlong Cai, Ming-Min Zhao, Qingjiang Shi, Mingyi Hong, Benoît Champagne:
Joint Transceiver Design for Full-Duplex K-Pair MIMO Interference Channel with Energy Harvesting. VTC Fall 2016: 1-5 - [p1]Mingyi Hong, Wei-Cheng Liao, Ruoyu Sun, Zhi-Quan Luo:
Optimization algorithms for big data with application in wireless networks. Big Data over Networks 2016: 66-100 - [i33]Mingyi Hong:
Decomposing Linearly Constrained Nonconvex Problems by a Proximal Primal Dual Approach: Algorithms, Convergence, and Applications. CoRR abs/1604.00543 (2016) - [i32]Davood Hajinezhad, Mingyi Hong, Tuo Zhao, Zhaoran Wang:
NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization. CoRR abs/1605.07747 (2016) - [i31]Xingguo Li, Jarvis D. Haupt, Raman Arora, Han Liu, Mingyi Hong, Tuo Zhao:
A First Order Free Lunch for SQRT-Lasso. CoRR abs/1605.07950 (2016) - [i30]Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, Mingyi Hong:
An Improved Convergence Analysis of Cyclic Block Coordinate Descent-type Methods for Strongly Convex Minimization. CoRR abs/1607.02793 (2016) - [i29]Qingjiang Shi, Haoran Sun, Songtao Lu, Mingyi Hong, Meisam Razaviyayn:
Inexact Block Coordinate Descent Methods For Symmetric Nonnegative Matrix Factorization. CoRR abs/1607.03092 (2016) - [i28]Qingjiang Shi, Mingyi Hong, Xiqi Gao, Enbin Song, Yunlong Cai, WeiQiang Xu:
Joint Source-Relay Design for Full-Duplex MIMO AF Relay Systems. CoRR abs/1607.03128 (2016) - [i27]Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, Mingyi Hong:
Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering. CoRR abs/1610.04794 (2016) - 2015
- [j21]Ruoyu Sun, Mingyi Hong, Zhi-Quan Luo:
Joint Downlink Base Station Association and Power Control for Max-Min Fairness: Computation and Complexity. IEEE J. Sel. Areas Commun. 33(6): 1040-1054 (2015) - [j20]Tsung-Hui Chang, Mingyi Hong, Xiangfeng Wang:
Multi-Agent Distributed Optimization via Inexact Consensus ADMM. IEEE Trans. Signal Process. 63(2): 482-497 (2015) - [c29]Cheng Peng, Qingjiang Shi, WeiQiang Xu, Mingyi Hong:
Energy efficiency optimization for multi-user MISO swipt systems. ChinaSIP 2015: 772-776 - [c28]Davood Hajinezhad, Mingyi Hong:
Nonconvex alternating direction method of multipliers for distributed sparse principal component analysis. GlobalSIP 2015: 255-259 - [c27]Hung-Wei Tseng, Mingyi Hong, Zhi-Quan Luo:
Combining sparse NMF with deep neural network: A new classification-based approach for speech enhancement. ICASSP 2015: 2145-2149 - [c26]Wei-Cheng Liao, Mingyi Hong, Hamid Farmanbar, Zhi-Quan Luo:
Semi-asynchronous routing for large scale hierarchical networks. ICASSP 2015: 2894-2898 - [c25]Mingyi Hong, Zhi-Quan Luo, Meisam Razaviyayn:
Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. ICASSP 2015: 3836-3840 - [c24]Wei-Cheng Liao, Mingyi Hong, Ivo Merks, Tao Zhang, Zhi-Quan Luo:
Incorporating spatial information in binaural beamforming for noise suppression in hearing aids. ICASSP 2015: 5733-5737 - [c23]Ruoyu Sun, Mingyi Hong:
Improved Iteration Complexity Bounds of Cyclic Block Coordinate Descent for Convex Problems. NIPS 2015: 1306-1314 - [i26]Qingjiang Shi, Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo:
SINR Constrained Beamforming for a MIMO Multi-user Downlink System. CoRR abs/1507.07115 (2015) - [i25]Tsung-Hui Chang, Mingyi Hong, Wei-Cheng Liao, Xiangfeng Wang:
Asynchronous Distributed ADMM for Large-Scale Optimization- Part I: Algorithm and Convergence Analysis. CoRR abs/1509.02597 (2015) - [i24]Tsung-Hui Chang, Wei-Cheng Liao, Mingyi Hong, Xiangfeng Wang:
Asynchronous Distributed ADMM for Large-Scale Optimization- Part II: Linear Convergence Analysis and Numerical Performance. CoRR abs/1509.02604 (2015) - [i23]Mingyi Hong, Tsung-Hui Chang:
Stochastic Proximal Gradient Consensus Over Random Networks. CoRR abs/1511.08905 (2015) - 2014
- [j19]Wei-Cheng Liao, Mingyi Hong, Hamid Farmanbar, Xu Li, Zhi-Quan Luo, Hang Zhang:
Min Flow Rate Maximization for Software Defined Radio Access Networks. IEEE J. Sel. Areas Commun. 32(6): 1282-1294 (2014) - [j18]Zi Xu, Mingyi Hong, Zhi-Quan Luo:
Semidefinite Approximation for Mixed Binary Quadratically Constrained Quadratic Programs. SIAM J. Optim. 24(3): 1265-1293 (2014) - [j17]Hadi Baligh, Mingyi Hong, Wei-Cheng Liao, Zhi-Quan Luo, Meisam Razaviyayn, Maziar Sanjabi, Ruoyu Sun:
Cross-Layer Provision of Future Cellular Networks: A WMMSE-based approach. IEEE Signal Process. Mag. 31(6): 56-68 (2014) - [j16]José Joaquín Escudero Garzás, Mingyi Hong, Alfredo García, Ana García Armada:
Interference Pricing Mechanism for Downlink Multicell Coordinated Beamforming. IEEE Trans. Commun. 62(6): 1871-1883 (2014) - [j15]Wei-Cheng Liao, Mingyi Hong, Ya-Feng Liu, Zhi-Quan Luo:
Base Station Activation and Linear Transceiver Design for Optimal Resource Management in Heterogeneous Networks. IEEE Trans. Signal Process. 62(15): 3939-3952 (2014) - [j14]Shuai Ma, Mingyi Hong, Enbin Song, Xiangfeng Wang, Dechun Sun:
Outage Constrained Robust Secure Transmission for MISO Wiretap Channels. IEEE Trans. Wirel. Commun. 13(10): 5558-5570 (2014) - [c22]Wei-Cheng Liao, Mingyi Hong, Zhi-Quan Luo:
Max-min network flow and resource allocation for backhaul constrained heterogeneous wireless networks. ICASSP 2014: 845-849 - [c21]Tsung-Hui Chang, Mingyi Hong, Xiangfeng Wang:
Multi-agent distributed large-scale optimization by inexact consensus alternating direction method of multipliers. ICASSP 2014: 6137-6141 - [c20]Mingyi Hong, Tsung-Hui Chang, Xiangfeng Wang, Meisam Razaviyayn, Shiqian Ma, Zhi-Quan Luo:
A block coordinate descent method of multipliers: Convergence analysis and applications. ICASSP 2014: 7689-7693 - [c19]Xiangfeng Wang, Mingyi Hong, Tsung-Hui Chang, Meisam Razaviyayn, Zhi-Quan Luo:
Joint day-ahead power procurement and load scheduling using stochastic alternating direction method of multipliers. ICASSP 2014: 7754-7758 - [c18]Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo, Jong-Shi Pang:
Parallel Successive Convex Approximation for Nonsmooth Nonconvex Optimization. NIPS 2014: 1440-1448 - [c17]Mingyi Hong, Hao Zhu:
Power-efficient operation of wireless heterogeneous networks using Smart Grids. SmartGridComm 2014: 236-241 - [c16]Maziar Sanjabi, Mingyi Hong, Meisam Razaviyayn, Zhi-Quan Luo:
Joint base station clustering and beamformer design for partial coordinated transmission using statistical channel state information. SPAWC 2014: 359-363 - [i22]Tsung-Hui Chang, Mingyi Hong, Xiangfeng Wang:
Multi-Agent Distributed Optimization via Inexact Consensus ADMM. CoRR abs/1402.6065 (2014) - [i21]Hadi Baligh, Mingyi Hong, Wei-Cheng Liao, Zhi-Quan Luo, Meisam Razaviyayn, Maziar Sanjabi, Ruoyu Sun:
Cross Layer Provision of Future Cellular Networks. CoRR abs/1407.1424 (2014) - [i20]Ruoyu Sun, Mingyi Hong, Zhi-Quan Luo:
Joint Downlink Base Station Association and Power Control for Max-Min Fairness: Computation and Complexity. CoRR abs/1407.2791 (2014) - [i19]Mingyi Hong:
A Distributed, Asynchronous and Incremental Algorithm for Nonconvex Optimization: An ADMM Based Approach. CoRR abs/1412.6058 (2014) - 2013
- [j13]Mingyi Hong, Ruoyu Sun, Hadi Baligh, Zhi-Quan Luo:
Joint Base Station Clustering and Beamformer Design for Partial Coordinated Transmission in Heterogeneous Networks. IEEE J. Sel. Areas Commun. 31(2): 226-240 (2013) - [j12]Qiang Li, Mingyi Hong, Hoi-To Wai, Ya-Feng Liu, Wing-Kin Ma, Zhi-Quan Luo:
Transmit Solutions for MIMO Wiretap Channels using Alternating Optimization. IEEE J. Sel. Areas Commun. 31(9): 1714-1727 (2013) - [j11]Mingyi Hong, Zi Xu, Meisam Razaviyayn, Zhi-Quan Luo:
Joint User Grouping and Linear Virtual Beamforming: Complexity, Algorithms and Approximation Bounds. IEEE J. Sel. Areas Commun. 31(10): 2013-2027 (2013) - [j10]Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo:
A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization. SIAM J. Optim. 23(2): 1126-1153 (2013) - [j9]Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo:
Linear transceiver design for a MIMO interfering broadcast channel achieving max-min fairness. Signal Process. 93(12): 3327-3340 (2013) - [j8]Ya-Feng Liu, Mingyi Hong, Yu-Hong Dai:
Max-Min Fairness Linear Transceiver Design Problem for a Multi-User SIMO Interference Channel is Polynomial Time Solvable. IEEE Signal Process. Lett. 20(1): 27-30 (2013) - [j7]Mingyi Hong, Zhi-Quan Luo:
Distributed Linear Precoder Optimization and Base Station Selection for an Uplink Heterogeneous Network. IEEE Trans. Signal Process. 61(12): 3214-3228 (2013) - [j6]Mingyi Hong, Alfredo García, Jorge Barrera, Stephen G. Wilson:
Joint Access Point Selection and Power Allocation for Uplink Wireless Networks. IEEE Trans. Signal Process. 61(13): 3334-3347 (2013) - [c15]Jorge Barrera, Alfredo García, Mingyi Hong:
Auction design for spectrum allocation under interference constraints. GLOBECOM 2013: 3035-3041 - [c14]Shu-Hsien Chu, Mingyi Hong, Zhi-Quan Luo, Kelly Fitz, Martin F. McKinney, Tao Zhang:
Derivative-free optimization of hearing aid parameters. ICASSP 2013: 393-397 - [c13]Qiang Li, Mingyi Hong, Hoi-To Wai, Wing-Kin Ma, Ya-Feng Liu, Zhi-Quan Luo:
An alternating optimization algorithm for the MIMO secrecy capacity problem under sum power and per-antenna power constraints. ICASSP 2013: 4359-4363 - [c12]Wei-Cheng Liao, Mingyi Hong, Zhi-Quan Luo:
Base station activation and linear transceiver design for utility maximization in Heterogeneous networks. ICASSP 2013: 4419-4423 - [c11]Hung-Wei Tseng, Srikanth Vishnubhotla, Mingyi Hong, Jinjun Xiao, Zhi-Quan Luo, Tao Zhang:
A novel single channel speech enhancement approach by combining Wiener filter and dictionary learning. ICASSP 2013: 8653-8657 - [c10]Hung-Wei Tseng, Srikanth Vishnubhotla, Mingyi Hong, Xiangfeng Wang, Jinjun Xiao, Zhi-Quan Luo, Tao Zhang:
A single channel speech enhancement approach by combining statistical criterion and multi-frame sparse dictionary learning. INTERSPEECH 2013: 451-455 - [i18]Xiangfeng Wang, Mingyi Hong, Shiqian Ma, Zhi-Quan Luo:
Solving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers. CoRR abs/1308.5294 (2013) - [i17]Wei-Cheng Liao, Mingyi Hong, Ya-Feng Liu, Zhi-Quan Luo:
Base Station Activation and Linear Transceiver Design for Optimal Resource Management in Heterogeneous Networks. CoRR abs/1309.4138 (2013) - [i16]Shuai Ma, Mingyi Hong, Enbin Song, Xiangfeng Wang, Dechun Sun:
Outage Constrained Robust Secure Transmission for MISO Wiretap Channels. CoRR abs/1310.7158 (2013) - [i15]Wei-Cheng Liao, Mingyi Hong, Hamid Farmanbar, Xu Li, Zhi-Quan Luo, Hang Zhang:
Min Flow Rate Maximization for Software Defined Radio Access Networks. CoRR abs/1312.5345 (2013) - 2012
- [j5]Alfredo García, Mingyi Hong, Jorge Barrera:
"Cap and Trade" for Congestion Control. Dyn. Games Appl. 2(3): 280-293 (2012) - [j4]Mingyi Hong, Alfredo García:
Mechanism Design for Base Station Association and Resource Allocation in Downlink OFDMA Network. IEEE J. Sel. Areas Commun. 30(11): 2238-2250 (2012) - [c9]Mingyi Hong, Meisam Razaviyayn, Ruoyu Sun, Zhi-Quan Luo:
Joint transceiver design and base station clustering for heterogeneous networks. ACSCC 2012: 574-578 - [c8]Qingjiang Shi, Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo:
SINR constrained beamforming for a MIMO multi-user downlink system. ACSCC 2012: 1991-1995 - [c7]Mingyi Hong, Zhi-Quan Luo:
Joint linear precoder optimization and base station selection for an uplink MIMO network: A game theoretic approach. ICASSP 2012: 2941-2944 - [c6]Ruoyu Sun, Mingyi Hong, Zhi-Quan Luo:
Optimal joint base station assignment and power allocation in a cellular network. SPAWC 2012: 234-238 - [i14]Mingyi Hong, Ruoyu Sun, Hadi Baligh, Zhi-Quan Luo:
Joint Base Station Clustering and Beamformer Design for Partial Coordinated Transmission in Heterogenous Networks. CoRR abs/1203.6390 (2012) - [i13]Mingyi Hong, Alfredo García:
Mechanism Design for Base Station Association and Resource Allocation in Downlink OFDMA Network. CoRR abs/1204.6105 (2012) - [i12]Mingyi Hong, Zhi-Quan Luo:
Distributed Linear Precoder Optimization and Base Station Selection for an Uplink Heterogeneous Network. CoRR abs/1205.0181 (2012) - [i11]Mingyi Hong, Zhi-Quan Luo:
Signal Processing and Optimal Resource Allocation for the Interference Channel. CoRR abs/1206.5144 (2012) - [i10]Mingyi Hong, Alfredo García, Jorge Barrera, Stephen G. Wilson:
Joint Access Point Selection and Power Allocation for Uplink Wireless Networks. CoRR abs/1207.4393 (2012) - [i9]Chenyang Li, Mingyi Hong, Randy Cogill, Alfredo García:
An Adaptive Online Ad Auction Scoring Algorithm for Revenue Maximization. CoRR abs/1207.4701 (2012) - [i8]Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo:
Linear Transceiver Design for a MIMO Interfering Broadcast Channel Achieving Max-Min Fairness. CoRR abs/1208.6357 (2012) - [i7]Mingyi Hong, Zi Xu, Meisam Razaviyayn, Zhi-Quan Luo:
Joint User Grouping and Linear Virtual Beamforming: Complexity, Algorithms and Approximation Bounds. CoRR abs/1209.4683 (2012) - [i6]Mingyi Hong, Qiang Li, Ya-Feng Liu, Zhi-Quan Luo:
Decomposition by Successive Convex Approximation: A Unifying Approach for Linear Transceiver Design in Heterogeneous Networks. CoRR abs/1210.1507 (2012) - 2011
- [j3]Mingyi Hong, Alfredo García:
Averaged Iterative Water-Filling Algorithm: Robustness and Convergence. IEEE Trans. Signal Process. 59(5): 2448-2454 (2011) - [j2]Mingyi Hong, Alfredo García:
Equilibrium Pricing of Interference in Cognitive Radio Networks. IEEE Trans. Signal Process. 59(12): 6058-6072 (2011) - [c5]Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo:
Linear transceiver design for a MIMO interfering broadcast channel achieving max-min fairness. ACSCC 2011: 1309-1313 - [c4]Mingyi Hong, Alfredo García, Jorge Barrera:
Joint distributed access point selection and power allocation in cognitive radio networks. INFOCOM 2011: 2516-2524 - [c3]Zhiheng Xie, Mingyi Hong, Hengchang Liu, Jingyuan Li, Kangyuan Zhu, John A. Stankovic:
Quantitative uncertainty-based incremental localization and anchor selection in wireless sensor networks. MSWiM 2011: 417-426 - [i5]Mingyi Hong, Alfredo García, Stephen G. Wilson:
Distributed Uplink Resource Allocation in Cognitive Radio Networks -- Part I: Equilibria and Algorithms for Power Allocation. CoRR abs/1102.1959 (2011) - [i4]Mingyi Hong, Alfredo García:
Averaged Iterative Water-Filling Algorithm: Robustness and Convergence. CoRR abs/1102.1960 (2011) - [i3]Mingyi Hong, Alfredo García, Jorge Barrera:
Distributed Uplink Resource Allocation in Cognitive Radio Networks -- Part II: Equilibria and Algorithms for Joint Access Point Selection and Power Allocation. CoRR abs/1102.1965 (2011) - [i2]Mingyi Hong, Alfredo García, Jorge Barrera:
Joint Distributed Access Point Selection and Power Allocation in Cognitive Radio Networks. CoRR abs/1102.2176 (2011) - [i1]Mingyi Hong, Alfredo García, José Joaquín Escudero Garzás, Ana García Armada:
Lower Bounds Optimization for Coordinated Linear Transmission Beamformer Design in Multicell Network Downlink. CoRR abs/1111.6223 (2011) - 2010
- [j1]Mingyi Hong, Mónica F. Bugallo, Petar M. Djuric:
Joint Model Selection and Parameter Estimation by Population Monte Carlo Simulation. IEEE J. Sel. Top. Signal Process. 4(3): 526-539 (2010) - [c2]Mingyi Hong, Alfredo García:
Competitive sharing of the spectrum in cognitive radio network: A market equilibrium framework. WiOpt 2010: 40-49
2000 – 2009
- 2009
- [c1]Mónica F. Bugallo, Mingyi Hong, Petar M. Djuric:
Marginalized population Monte Carlo. ICASSP 2009: 2925-2928
Coauthor Index
aka: Nikos D. Sidiropoulos
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-08 20:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint