default search action
Amin Karbasi
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j19]Siyuan Dong, Zhuotong Cai, Gilbert Hangel, Wolfgang Bogner, Georg Widhalm, Yaqing Huang, Qinghao Liang, Chenyu You, Chathura Kumaragamage, Robert K. Fulbright, Amit Mahajan, Amin Karbasi, John A. Onofrey, Robin A. de Graaf, James S. Duncan:
A Flow-based Truncated Denoising Diffusion Model for super-resolution Magnetic Resonance Spectroscopic Imaging. Medical Image Anal. 99: 103358 (2025) - 2024
- [c116]Loay Raed Mualem, Ethan R. Elenberg, Moran Feldman, Amin Karbasi:
Submodular Minimax Optimization: Finding Effective Sets. AISTATS 2024: 1081-1089 - [c115]Amin Karbasi, Kasper Green Larsen:
The Impossibility of Parallelizing Boosting. ALT 2024: 635-653 - [c114]Idan Attias, Steve Hanneke, Alkis Kalavasis, Amin Karbasi, Grigoris Velegkas:
Universal Rates for Regression: Separations between Cut-Off and Absolute Loss. COLT 2024: 359-405 - [c113]Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P. Woodruff, Amir Zandieh:
HyperAttention: Long-context Attention in Near-Linear Time. ICLR 2024 - [c112]Patrik Okanovic, Roger Waleffe, Vasilis Mageirakos, Konstantinos E. Nikolakakis, Amin Karbasi, Dionysios S. Kalogerias, Nezihe Merve Gürel, Theodoros Rekatsinas:
Repeated Random Sampling for Minimizing the Time-to-Accuracy of Learning. ICLR 2024 - [c111]Alkis Kalavasis, Amin Karbasi, Kasper Green Larsen, Grigoris Velegkas, Felix Zhou:
Replicable Learning of Large-Margin Halfspaces. ICML 2024 - [c110]Daniel LeVine, Syed Asad Rizvi, Sacha Lévy, Nazreen Pallikkavaliyaveetil, David Zhang, Xingyu Chen, Sina Ghadermarzi, Ruiming Wu, Zihe Zheng, Ivan Vrkic, Anna Zhong, Daphne Raskin, Insu Han, Antonio Henrique de Oliveira Fonseca, Josue Ortega Caro, Amin Karbasi, Rahul Madhav Dhodapkar, David van Dijk:
Cell2Sentence: Teaching Large Language Models the Language of Biology. ICML 2024 - [i98]Amir Zandieh, Insu Han, Vahab Mirrokni, Amin Karbasi:
SubGen: Token Generation in Sublinear Time and Memory. CoRR abs/2402.06082 (2024) - [i97]Alkis Kalavasis, Amin Karbasi, Kasper Green Larsen, Grigoris Velegkas, Felix Zhou:
Replicable Learning of Large-Margin Halfspaces. CoRR abs/2402.13857 (2024) - [i96]Alkis Kalavasis, Amin Karbasi, Grigoris Velegkas, Felix Zhou:
On the Computational Landscape of Replicable Learning. CoRR abs/2405.15599 (2024) - [i95]Alkis Kalavasis, Amin Karbasi, Argyris Oikonomou, Katerina Sotiraki, Grigoris Velegkas, Manolis Zampetakis:
Injecting Undetectable Backdoors in Deep Learning and Language Models. CoRR abs/2406.05660 (2024) - [i94]Ellen Su, Anu Vellore, Amy Chang, Raffaele Mura, Blaine Nelson, Paul Kassianik, Amin Karbasi:
Extracting Memorized Training Data via Decomposition. CoRR abs/2409.12367 (2024) - [i93]Shiyang Zhang, Aakash Patel, Syed Asad Rizvi, Nianchen Liu, Sizhuang He, Amin Karbasi, Emanuele Zappala, David van Dijk:
Intelligence at the Edge of Chaos. CoRR abs/2410.02536 (2024) - 2023
- [j18]Moran Feldman, Christopher Harshaw, Amin Karbasi:
How Do You Want Your Greedy: Simultaneous or Repeated? J. Mach. Learn. Res. 24: 72:1-72:87 (2023) - [j17]Javid Dadashkarimi, Amin Karbasi, Qinghao Liang, Matthew Rosenblatt, Stephanie Noble, Maya Foster, Raimundo X. Rodriguez, Brendan Adkinson, Jean Ye, Huili Sun, Chris Camp, Michael Farruggia, Link Tejavibulya, Wei Dai, Rongtao Jiang, Angeliki Pollatou, Dustin Scheinost:
Cross Atlas Remapping via Optimal Transport (CAROT): Creating connectomes for different atlases when raw data is not available. Medical Image Anal. 88: 102864 (2023) - [c109]Jane H. Lee, Saeid Haghighatshoar, Amin Karbasi:
Exact Gradient Computation for Spiking Neural Networks via Forward Propagation. AISTATS 2023: 1812-1831 - [c108]Javid Dadashkarimi, Matthew Rosenblatt, Amin Karbasi, Dustin Scheinost:
Stacking multiple optimal transport policies to map functional connectomes. CISS 2023: 1-6 - [c107]Hossein Esfandiari, Alkis Kalavasis, Amin Karbasi, Andreas Krause, Vahab Mirrokni, Grigoris Velegkas:
Replicable Bandits. ICLR 2023 - [c106]Konstantinos E. Nikolakakis, Farzin Haddadpour, Amin Karbasi, Dionysios S. Kalogerias:
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for Full-Batch GD. ICLR 2023 - [c105]Alkis Kalavasis, Amin Karbasi, Shay Moran, Grigoris Velegkas:
Statistical Indistinguishability of Learning Algorithms. ICML 2023: 15586-15622 - [c104]Amin Karbasi, Nikki Lijing Kuang, Yi-An Ma, Siddharth Mitra:
Langevin Thompson Sampling with Logarithmic Communication: Bandits and Reinforcement Learning. ICML 2023: 15828-15860 - [c103]Amir Zandieh, Insu Han, Majid Daliri, Amin Karbasi:
KDEformer: Accelerating Transformers via Kernel Density Estimation. ICML 2023: 40605-40623 - [c102]Idan Attias, Steve Hanneke, Alkis Kalavasis, Amin Karbasi, Grigoris Velegkas:
Optimal Learners for Realizable Regression: PAC Learning and Online Learning. NeurIPS 2023 - [c101]Hossein Esfandiari, Amin Karbasi, Vahab Mirrokni, Grigoris Velegkas, Felix Zhou:
Replicable Clustering. NeurIPS 2023 - [c100]Amin Karbasi, Grigoris Velegkas, Lin Yang, Felix Zhou:
Replicability in Reinforcement Learning. NeurIPS 2023 - [c99]Liang Zhang, Junchi Yang, Amin Karbasi, Niao He:
Optimal Guarantees for Algorithmic Reproducibility and Gradient Complexity in Convex Optimization. NeurIPS 2023 - [i92]Amin Karbasi, Kasper Green Larsen:
The Impossibility of Parallelizing Boosting. CoRR abs/2301.09627 (2023) - [i91]Amir Zandieh, Insu Han, Majid Daliri, Amin Karbasi:
KDEformer: Accelerating Transformers via Kernel Density Estimation. CoRR abs/2302.02451 (2023) - [i90]Hossein Esfandiari, Amin Karbasi, Vahab Mirrokni, Grigoris Velegkas, Felix Zhou:
Replicable Clustering. CoRR abs/2302.10359 (2023) - [i89]Konstantinos E. Nikolakakis, Amin Karbasi, Dionysis Kalogerias:
Select without Fear: Almost All Mini-Batch Schedules Generalize Optimally. CoRR abs/2305.02247 (2023) - [i88]Lin Chen, Gang Fu, Amin Karbasi, Vahab Mirrokni:
Learning from Aggregated Data: Curated Bags versus Random Bags. CoRR abs/2305.09557 (2023) - [i87]Alkis Kalavasis, Amin Karbasi, Shay Moran, Grigoris Velegkas:
Statistical Indistinguishability of Learning Algorithms. CoRR abs/2305.14311 (2023) - [i86]Loay Mualem, Ethan R. Elenberg, Moran Feldman, Amin Karbasi:
Submodular Minimax Optimization: Finding Effective Sets. CoRR abs/2305.16903 (2023) - [i85]Patrik Okanovic, Roger Waleffe, Vasilis Mageirakos, Konstantinos E. Nikolakakis, Amin Karbasi, Dionysios S. Kalogerias, Nezihe Merve Gürel, Theodoros Rekatsinas:
Repeated Random Sampling for Minimizing the Time-to-Accuracy of Learning. CoRR abs/2305.18424 (2023) - [i84]Amin Karbasi, Grigoris Velegkas, Lin F. Yang, Felix Zhou:
Replicability in Reinforcement Learning. CoRR abs/2305.19562 (2023) - [i83]Amin Karbasi, Nikki Lijing Kuang, Yi-An Ma, Siddharth Mitra:
Langevin Thompson Sampling with Logarithmic Communication: Bandits and Reinforcement Learning. CoRR abs/2306.08803 (2023) - [i82]Idan Attias, Steve Hanneke, Alkis Kalavasis, Amin Karbasi, Grigoris Velegkas:
Optimal Learners for Realizable Regression: PAC Learning and Online Learning. CoRR abs/2307.03848 (2023) - [i81]Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P. Woodruff, Amir Zandieh:
HyperAttention: Long-context Attention in Near-Linear Time. CoRR abs/2310.05869 (2023) - [i80]Liang Zhang, Junchi Yang, Amin Karbasi, Niao He:
Optimal Guarantees for Algorithmic Reproducibility and Gradient Complexity in Convex Optimization. CoRR abs/2310.17759 (2023) - [i79]Anay Mehrotra, Manolis Zampetakis, Paul Kassianik, Blaine Nelson, Hyrum S. Anderson, Yaron Singer, Amin Karbasi:
Tree of Attacks: Jailbreaking Black-Box LLMs Automatically. CoRR abs/2312.02119 (2023) - 2022
- [j16]Christopher Harshaw, Ehsan Kazemi, Moran Feldman, Amin Karbasi:
The Power of Subsampling in Submodular Maximization. Math. Oper. Res. 47(2): 1365-1393 (2022) - [c98]Zebang Shen, Hamed Hassani, Satyen Kale, Amin Karbasi:
Federated Functional Gradient Boosting. AISTATS 2022: 7814-7840 - [c97]Zebang Shen, Zhenfu Wang, Satyen Kale, Alejandro Ribeiro, Amin Karbasi, Hamed Hassani:
Self-Consistency of the Fokker Planck Equation. COLT 2022: 817-841 - [c96]Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, Amin Karbasi:
Learning Distributionally Robust Models at Scale via Composite Optimization. ICLR 2022 - [c95]Insu Han, Mike Gartrell, Jennifer Gillenwater, Elvis Dohmatob, Amin Karbasi:
Scalable Sampling for Nonsymmetric Determinantal Point Processes. ICLR 2022 - [c94]Insu Han, Mike Gartrell, Elvis Dohmatob, Amin Karbasi:
Scalable MCMC Sampling for Nonsymmetric Determinantal Point Processes. ICML 2022: 8213-8229 - [c93]Qinghao Liang, Javid Dadashkarimi, Wei Dai, Amin Karbasi, Joseph Chang, Harrison H. Zhou, Dustin Scheinost:
Transforming Connectomes to "Any" Parcellation via Graph Matching. ISGIE/GRAIL@MICCAI 2022: 118-127 - [c92]Javid Dadashkarimi, Amin Karbasi, Dustin Scheinost:
Combining Multiple Atlases to Estimate Data-Driven Mappings Between Functional Connectomes Using Optimal Transport. MICCAI (1) 2022: 386-395 - [c91]Insu Han, Amir Zandieh, Jaehoon Lee, Roman Novak, Lechao Xiao, Amin Karbasi:
Fast Neural Kernel Embeddings for General Activations. NeurIPS 2022 - [c90]Steve Hanneke, Amin Karbasi, Mohammad Mahmoody, Idan Mehalel, Shay Moran:
On Optimal Learning Under Targeted Data Poisoning. NeurIPS 2022 - [c89]Steve Hanneke, Amin Karbasi, Shay Moran, Grigoris Velegkas:
Universal Rates for Interactive Learning. NeurIPS 2022 - [c88]Alkis Kalavasis, Grigoris Velegkas, Amin Karbasi:
Multiclass Learnability Beyond the PAC Framework: Universal Rates and Partial Concept Classes. NeurIPS 2022 - [c87]Wenxin Li, Moran Feldman, Ehsan Kazemi, Amin Karbasi:
Submodular Maximization in Clean Linear Time. NeurIPS 2022 - [c86]Konstantinos E. Nikolakakis, Farzin Haddadpour, Dionysios S. Kalogerias, Amin Karbasi:
Black-Box Generalization: Stability of Zeroth-Order Learning. NeurIPS 2022 - [c85]Grigoris Velegkas, Zhuoran Yang, Amin Karbasi:
Reinforcement Learning with Logarithmic Regret and Policy Switches. NeurIPS 2022 - [i78]Insu Han, Mike Gartrell, Jennifer Gillenwater, Elvis Dohmatob, Amin Karbasi:
Scalable Sampling for Nonsymmetric Determinantal Point Processes. CoRR abs/2201.08417 (2022) - [i77]Konstantinos E. Nikolakakis, Farzin Haddadpour, Dionysios S. Kalogerias, Amin Karbasi:
Black-Box Generalization. CoRR abs/2202.06880 (2022) - [i76]Mohammad Fereydounian, Hamed Hassani, Javid Dadashkarimi, Amin Karbasi:
The Exact Class of Graph Functions Generated by Graph Neural Networks. CoRR abs/2202.08833 (2022) - [i75]Grigoris Velegkas, Zhuoran Yang, Amin Karbasi:
The Best of Both Worlds: Reinforcement Learning with Logarithmic Regret and Policy Switches. CoRR abs/2203.01491 (2022) - [i74]Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, Amin Karbasi:
Learning Distributionally Robust Models at Scale via Composite Optimization. CoRR abs/2203.09607 (2022) - [i73]Konstantinos E. Nikolakakis, Farzin Haddadpour, Amin Karbasi, Dionysios S. Kalogerias:
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for Full-Batch GD. CoRR abs/2204.12446 (2022) - [i72]Zebang Shen, Zhenfu Wang, Satyen Kale, Alejandro Ribeiro, Amin Karbasi, Hamed Hassani:
Self-Consistency of the Fokker-Planck Equation. CoRR abs/2206.00860 (2022) - [i71]Insu Han, Mike Gartrell, Elvis Dohmatob, Amin Karbasi:
Scalable MCMC Sampling for Nonsymmetric Determinantal Point Processes. CoRR abs/2207.00486 (2022) - [i70]Insu Han, Amir Zandieh, Jaehoon Lee, Roman Novak, Lechao Xiao, Amin Karbasi:
Fast Neural Kernel Embeddings for General Activations. CoRR abs/2209.04121 (2022) - [i69]Hossein Esfandiari, Alkis Kalavasis, Amin Karbasi, Andreas Krause, Vahab Mirrokni, Grigoris Velegkas:
Reproducible Bandits. CoRR abs/2210.01898 (2022) - [i68]Alkis Kalavasis, Grigoris Velegkas, Amin Karbasi:
Multiclass Learnability Beyond the PAC Framework: Universal Rates and Partial Concept Classes. CoRR abs/2210.02297 (2022) - [i67]Steve Hanneke, Amin Karbasi, Mohammad Mahmoody, Idan Mehalel, Shay Moran:
On Optimal Learning Under Targeted Data Poisoning. CoRR abs/2210.02713 (2022) - [i66]Jane H. Lee, Saeid Haghighatshoar, Amin Karbasi:
Exact Gradient Computation for Spiking Neural Networks Through Forward Propagation. CoRR abs/2210.15415 (2022) - 2021
- [c84]Hossein Esfandiari, Amin Karbasi, Abbas Mehrabian, Vahab S. Mirrokni:
Regret Bounds for Batched Bandits. AAAI 2021: 7340-7348 - [c83]Ruitu Xu, Lin Chen, Amin Karbasi:
Meta Learning in the Continuous Time Limit. AISTATS 2021: 3052-3060 - [c82]Hossein Esfandiari, Amin Karbasi, Vahab S. Mirrokni:
Adaptivity in Adaptive Submodularity. COLT 2021: 1823-1846 - [c81]Ehsan Kazemi, Shervin Minaee, Moran Feldman, Amin Karbasi:
Regularized Submodular Maximization at Scale. ICML 2021: 5356-5366 - [c80]Javid Dadashkarimi, Amin Karbasi, Dustin Scheinost:
Data-Driven Mapping Between Functional Connectomes Using Optimal Transport. MICCAI (3) 2021: 293-302 - [c79]Lin Chen, Yifei Min, Mikhail Belkin, Amin Karbasi:
Multiple Descent: Design Your Own Generalization Curve. NeurIPS 2021: 8898-8912 - [c78]Amin Karbasi, Vahab S. Mirrokni, Mohammad Shadravan:
Parallelizing Thompson Sampling. NeurIPS 2021: 10535-10548 - [c77]Siddharth Mitra, Moran Feldman, Amin Karbasi:
Submodular + Concave. NeurIPS 2021: 11577-11591 - [c76]Shashank Rajput, Kartik Sreenivasan, Dimitris S. Papailiopoulos, Amin Karbasi:
An Exponential Improvement on the Memorization Capacity of Deep Threshold Networks. NeurIPS 2021: 12674-12685 - [c75]Yifei Min, Lin Chen, Amin Karbasi:
The curious case of adversarially robust models: More data can help, double descend, or hurt generalization. UAI 2021: 129-139 - [c74]Ji Gao, Amin Karbasi, Mohammad Mahmoody:
Learning and certification under instance-targeted poisoning. UAI 2021: 2135-2145 - [i65]Quanquan Gu, Amin Karbasi, Khashayar Khosravi, Vahab S. Mirrokni, Dongruo Zhou:
Batched Neural Bandits. CoRR abs/2102.13028 (2021) - [i64]Zebang Shen, Hamed Hassani, Satyen Kale, Amin Karbasi:
Federated Functional Gradient Boosting. CoRR abs/2103.06972 (2021) - [i63]Christopher Harshaw, Ehsan Kazemi, Moran Feldman, Amin Karbasi:
The Power of Subsampling in Submodular Maximization. CoRR abs/2104.02772 (2021) - [i62]Ji Gao, Amin Karbasi, Mohammad Mahmoody:
Learning and Certification under Instance-targeted Poisoning. CoRR abs/2105.08709 (2021) - [i61]Amin Karbasi, Vahab S. Mirrokni, Mohammad Shadravan:
Parallelizing Thompson Sampling. CoRR abs/2106.01420 (2021) - [i60]Siddharth Mitra, Moran Feldman, Amin Karbasi:
Submodular + Concave. CoRR abs/2106.04769 (2021) - [i59]Shashank Rajput, Kartik Sreenivasan, Dimitris S. Papailiopoulos, Amin Karbasi:
An Exponential Improvement on the Memorization Capacity of Deep Threshold Networks. CoRR abs/2106.07724 (2021) - [i58]Javid Dadashkarimi, Amin Karbasi, Dustin Scheinost:
Data-driven mapping between functional connectomes using optimal transport. CoRR abs/2107.01303 (2021) - 2020
- [j15]Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization. J. Mach. Learn. Res. 21: 105:1-105:49 (2020) - [j14]Mehraveh Salehi, Amin Karbasi, Daniel S. Barron, Dustin Scheinost, R. Todd Constable:
Individualized functional networks reconfigure with cognitive state. NeuroImage 206 (2020) - [j13]Mehraveh Salehi, Abigail S. Greene, Amin Karbasi, Xilin Shen, Dustin Scheinost, R. Todd Constable:
There is no single functional atlas even for a single individual: Functional parcel definitions change with task. NeuroImage 208: 116366 (2020) - [j12]Hamed Hassani, Amin Karbasi, Aryan Mokhtari, Zebang Shen:
Stochastic Conditional Gradient++: (Non)Convex Minimization and Continuous Submodular Maximization. SIAM J. Optim. 30(4): 3315-3344 (2020) - [j11]Ehsan Tohidi, Rouhollah Amiri, Mario Coutino, David Gesbert, Geert Leus, Amin Karbasi:
Submodularity in Action: From Machine Learning to Signal Processing Applications. IEEE Signal Process. Mag. 37(5): 120-133 (2020) - [c73]Lin Chen, Mingrui Zhang, Hamed Hassani, Amin Karbasi:
Black Box Submodular Maximization: Discrete and Continuous Settings. AISTATS 2020: 1058-1070 - [c72]Mingrui Zhang, Lin Chen, Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
Quantized Frank-Wolfe: Faster Optimization, Lower Communication, and Projection Free. AISTATS 2020: 3696-3706 - [c71]Mingrui Zhang, Zebang Shen, Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
One Sample Stochastic Frank-Wolfe. AISTATS 2020: 4012-4023 - [c70]Lin Chen, Yifei Min, Mingrui Zhang, Amin Karbasi:
More Data Can Expand The Generalization Gap Between Adversarially Robust and Standard Models. ICML 2020: 1670-1680 - [c69]Ran Haba, Ehsan Kazemi, Moran Feldman, Amin Karbasi:
Streaming Submodular Maximization under a k-Set System Constraint. ICML 2020: 3939-3949 - [c68]Ashwinkumar Badanidiyuru, Amin Karbasi, Ehsan Kazemi, Jan Vondrák:
Submodular Maximization Through Barrier Functions. NeurIPS 2020 - [c67]Aditya Bhaskara, Amin Karbasi, Silvio Lattanzi, Morteza Zadimoghaddam:
Online MAP Inference of Determinantal Point Processes. NeurIPS 2020 - [c66]Lin Chen, Qian Yu, Hannah Lawrence, Amin Karbasi:
Minimax Regret of Switching-Constrained Online Convex Optimization: No Phase Transition. NeurIPS 2020 - [c65]Moran Feldman, Amin Karbasi:
Continuous Submodular Maximization: Beyond DR-Submodularity. NeurIPS 2020 - [i57]Ran Haba, Ehsan Kazemi, Moran Feldman, Amin Karbasi:
Streaming Submodular Maximization under a k-Set System Constraint. CoRR abs/2002.03352 (2020) - [i56]Ehsan Kazemi, Shervin Minaee, Moran Feldman, Amin Karbasi:
Regularized Submodular Maximization at Scale. CoRR abs/2002.03503 (2020) - [i55]Ashwinkumar Badanidiyuru, Amin Karbasi, Ehsan Kazemi, Jan Vondrák:
Submodular Maximization Through Barrier Functions. CoRR abs/2002.03523 (2020) - [i54]Lin Chen, Yifei Min, Mingrui Zhang, Amin Karbasi:
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models. CoRR abs/2002.04725 (2020) - [i53]Yifei Min, Lin Chen, Amin Karbasi:
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization. CoRR abs/2002.11080 (2020) - [i52]Ruitu Xu, Lin Chen, Amin Karbasi:
Meta Learning in the Continuous Time Limit. CoRR abs/2006.10921 (2020) - [i51]Moran Feldman, Amin Karbasi:
Continuous Submodular Maximization: Beyond DR-Submodularity. CoRR abs/2006.11726 (2020) - [i50]Mohammad Fereydounian, Zebang Shen, Aryan Mokhtari, Amin Karbasi, Hamed Hassani:
Safe Learning under Uncertain Objectives and Constraints. CoRR abs/2006.13326 (2020) - [i49]Lin Chen, Yifei Min, Mikhail Belkin, Amin Karbasi:
Multiple Descent: Design Your Own Generalization Curve. CoRR abs/2008.01036 (2020) - [i48]Moran Feldman, Christopher Harshaw, Amin Karbasi:
Simultaneous Greedys: A Swiss Army Knife for Constrained Submodular Maximization. CoRR abs/2009.13998 (2020)
2010 – 2019
- 2019
- [c64]Soheil Ghili, Ehsan Kazemi, Amin Karbasi:
Eliminating Latent Discrimination: Train Then Mask. AAAI 2019: 3672-3680 - [c63]Lin Chen, Mingrui Zhang, Amin Karbasi:
Projection-Free Bandit Convex Optimization. AISTATS 2019: 2047-2056 - [c62]Chris Harshaw, Moran Feldman, Justin Ward, Amin Karbasi:
Submodular Maximization beyond Non-negativity: Guarantees, Fast Algorithms, and Applications. ICML 2019: 2634-2643 - [c61]Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, Amin Karbasi:
Submodular Streaming in All Its Glory: Tight Approximation, Minimum Memory and Low Adaptive Complexity. ICML 2019: 3311-3320 - [c60]Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, Amin Karbasi:
Adaptive Sequence Submodularity. NeurIPS 2019: 5353-5364 - [c59]Mingrui Zhang, Lin Chen, Hamed Hassani, Amin Karbasi:
Online Continuous Submodular Maximization: From Full-Information to Bandit Feedback. NeurIPS 2019: 9206-9217 - [c58]Amin Karbasi, Hamed Hassani, Aryan Mokhtari, Zebang Shen:
Stochastic Continuous Greedy ++: When Upper and Lower Bounds Match. NeurIPS 2019: 13066-13076 - [c57]Lin Chen, Moran Feldman, Amin Karbasi:
Unconstrained submodular maximization with constant adaptive complexity. STOC 2019: 102-113 - [i47]Lin Chen, Mingrui Zhang, Hamed Hassani, Amin Karbasi:
Black Box Submodular Maximization: Discrete and Continuous Settings. CoRR abs/1901.09515 (2019) - [i46]Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, Amin Karbasi:
Adaptive Sequence Submodularity. CoRR abs/1902.05981 (2019) - [i45]Mingrui Zhang, Lin Chen, Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
Quantized Frank-Wolfe: Communication-Efficient Distributed Optimization. CoRR abs/1902.06332 (2019) - [i44]Hamed Hassani, Amin Karbasi, Aryan Mokhtari, Zebang Shen:
Stochastic Conditional Gradient++. CoRR abs/1902.06992 (2019) - [i43]Christopher Harshaw, Moran Feldman, Justin Ward, Amin Karbasi:
Submodular Maximization Beyond Non-negativity: Guarantees, Fast Algorithms, and Applications. CoRR abs/1904.09354 (2019) - [i42]Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, Amin Karbasi:
Submodular Streaming in All its Glory: Tight Approximation, Minimum Memory and Low Adaptive Complexity. CoRR abs/1905.00948 (2019) - [i41]Mingrui Zhang, Zebang Shen, Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
One Sample Stochastic Frank-Wolfe. CoRR abs/1910.04322 (2019) - [i40]Hossein Esfandiari, Amin Karbasi, Abbas Mehrabian, Vahab S. Mirrokni:
Batched Multi-Armed Bandits with Optimal Regret. CoRR abs/1910.04959 (2019) - [i39]Lin Chen, Qian Yu, Hannah Lawrence, Amin Karbasi:
Minimax Regret of Switching-Constrained Online Convex Optimization: No Phase Transition. CoRR abs/1910.10873 (2019) - [i38]Mingrui Zhang, Lin Chen, Hamed Hassani, Amin Karbasi:
Online Continuous Submodular Maximization: From Full-Information to Bandit Feedback. CoRR abs/1910.12424 (2019) - [i37]Hossein Esfandiari, Amin Karbasi, Vahab S. Mirrokni:
Adaptivity in Adaptive Submodularity. CoRR abs/1911.03620 (2019) - 2018
- [j10]Amin Karbasi, Amir Hesam Salavati, Martin Vetterli:
Learning neural connectivity from firing activity: efficient algorithms with provable guarantees on topology. J. Comput. Neurosci. 44(2): 253-272 (2018) - [j9]Mehraveh Salehi, Amin Karbasi, Xilin Shen, Dustin Scheinost, R. Todd Constable:
An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks. NeuroImage 170: 54-67 (2018) - [c56]Marko Mitrovic, Moran Feldman, Andreas Krause, Amin Karbasi:
Submodularity on Hypergraphs: From Sets to Sequences. AISTATS 2018: 1177-1184 - [c55]Ehsan Kazemi, Lin Chen, Sanjoy Dasgupta, Amin Karbasi:
Comparison Based Learning from Weak Oracles. AISTATS 2018: 1849-1858 - [c54]Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap. AISTATS 2018: 1886-1895 - [c53]Lin Chen, Hamed Hassani, Amin Karbasi:
Online Continuous Submodular Maximization. AISTATS 2018: 1896-1905 - [c52]Lin Chen, Moran Feldman, Amin Karbasi:
Weakly Submodular Maximization Beyond Cardinality Constraints: Does Randomization Help Greedy? ICML 2018: 803-812 - [c51]Lin Chen, Christopher Harshaw, Hamed Hassani, Amin Karbasi:
Projection-Free Online Optimization with Stochastic Gradient: From Convexity to Submodularity. ICML 2018: 813-822 - [c50]Ehsan Kazemi, Morteza Zadimoghaddam, Amin Karbasi:
Scalable Deletion-Robust Submodular Maximization: Data Summarization with Privacy and Fairness Constraints. ICML 2018: 2549-2558 - [c49]Marko Mitrovic, Ehsan Kazemi, Morteza Zadimoghaddam, Amin Karbasi:
Data Summarization at Scale: A Two-Stage Submodular Approach. ICML 2018: 3593-3602 - [c48]Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
Decentralized Submodular Maximization: Bridging Discrete and Continuous Settings. ICML 2018: 3613-3622 - [c47]Moran Feldman, Amin Karbasi, Ehsan Kazemi:
Do Less, Get More: Streaming Submodular Maximization with Subsampling. NeurIPS 2018: 730-740 - [i36]Lin Chen, Hamed Hassani, Amin Karbasi:
Online Continuous Submodular Maximization. CoRR abs/1802.06052 (2018) - [i35]Ehsan Kazemi, Lin Chen, Sanjoy Dasgupta, Amin Karbasi:
Comparison Based Learning from Weak Oracles. CoRR abs/1802.06942 (2018) - [i34]Moran Feldman, Amin Karbasi, Ehsan Kazemi:
Do Less, Get More: Streaming Submodular Maximization with Subsampling. CoRR abs/1802.07098 (2018) - [i33]Marko Mitrovic, Moran Feldman, Andreas Krause, Amin Karbasi:
Submodularity on Hypergraphs: From Sets to Sequences. CoRR abs/1802.09110 (2018) - [i32]Aryan Mokhtari, Hamed Hassani, Amin Karbasi:
Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization. CoRR abs/1804.09554 (2018) - [i31]Lin Chen, Mingrui Zhang, Amin Karbasi:
Projection-Free Bandit Convex Optimization. CoRR abs/1805.07474 (2018) - [i30]Marko Mitrovic, Ehsan Kazemi, Morteza Zadimoghaddam, Amin Karbasi:
Data Summarization at Scale: A Two-Stage Submodular Approach. CoRR abs/1806.02815 (2018) - [i29]Soheil Ghili, Ehsan Kazemi, Amin Karbasi:
Eliminating Latent Discrimination: Train Then Mask. CoRR abs/1811.04973 (2018) - [i28]Lin Chen, Moran Feldman, Amin Karbasi:
Unconstrained Submodular Maximization with Constant Adaptive Complexity. CoRR abs/1811.06603 (2018) - 2017
- [c46]Lin Chen, Seyed Hamed Hassani, Amin Karbasi:
Near-Optimal Active Learning of Halfspaces via Query Synthesis in the Noisy Setting. AAAI 2017: 1798-1804 - [c45]Moran Feldman, Christopher Harshaw, Amin Karbasi:
Greed Is Good: Near-Optimal Submodular Maximization via Greedy Optimization. COLT 2017: 758-784 - [c44]Baharan Mirzasoleiman, Amin Karbasi, Andreas Krause:
Deletion-Robust Submodular Maximization: Data Summarization with "the Right to be Forgotten". ICML 2017: 2449-2458 - [c43]Marko Mitrovic, Mark Bun, Andreas Krause, Amin Karbasi:
Differentially Private Submodular Maximization: Data Summarization in Disguise. ICML 2017: 2478-2487 - [c42]Serban Stan, Morteza Zadimoghaddam, Andreas Krause, Amin Karbasi:
Probabilistic Submodular Maximization in Sub-Linear Time. ICML 2017: 3241-3250 - [c41]Mehraveh Salehi, Amin Karbasi, Dustin Scheinost, R. Todd Constable:
A Submodular Approach to Create Individualized Parcellations of the Human Brain. MICCAI (1) 2017: 478-485 - [c40]Lin Chen, Andreas Krause, Amin Karbasi:
Interactive Submodular Bandit. NIPS 2017: 141-152 - [c39]Ethan R. Elenberg, Alexandros G. Dimakis, Moran Feldman, Amin Karbasi:
Streaming Weak Submodularity: Interpreting Neural Networks on the Fly. NIPS 2017: 4044-4054 - [c38]S. Hamed Hassani, Mahdi Soltanolkotabi, Amin Karbasi:
Gradient Methods for Submodular Maximization. NIPS 2017: 5841-5851 - [c37]Lin Chen, Forrest W. Crawford, Amin Karbasi:
Submodular Variational Inference for Network Reconstruction. UAI 2017 - [i27]Ethan R. Elenberg, Alexandros G. Dimakis, Moran Feldman, Amin Karbasi:
Streaming Weak Submodularity: Interpreting Neural Networks on the Fly. CoRR abs/1703.02647 (2017) - [i26]Moran Feldman, Christopher Harshaw, Amin Karbasi:
Greed is Good: Near-Optimal Submodular Maximization via Greedy Optimization. CoRR abs/1704.01652 (2017) - [i25]Lin Chen, Moran Feldman, Amin Karbasi:
Weakly Submodular Maximization Beyond Cardinality Constraints: Does Randomization Help Greedy? CoRR abs/1707.04347 (2017) - [i24]S. Hamed Hassani, Mahdi Soltanolkotabi, Amin Karbasi:
Gradient Methods for Submodular Maximization. CoRR abs/1708.03949 (2017) - [i23]Aryan Mokhtari, S. Hamed Hassani, Amin Karbasi:
Conditional Gradient Method for Stochastic Submodular Maximization: Closing the Gap. CoRR abs/1711.01660 (2017) - [i22]Ehsan Kazemi, Morteza Zadimoghaddam, Amin Karbasi:
Deletion-Robust Submodular Maximization at Scale. CoRR abs/1711.07112 (2017) - 2016
- [j8]Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, Andreas Krause:
Distributed Submodular Maximization. J. Mach. Learn. Res. 17: 238:1-238:44 (2016) - [c36]Lin Chen, Forrest W. Crawford, Amin Karbasi:
Seeing the Unseen Network: Inferring Hidden Social Ties from Respondent-Driven Sampling. AAAI 2016: 1174-1180 - [c35]Amin Karbasi, Amir Hesam Salavati, Martin Vetterli:
Learning network structures from firing patterns. ICASSP 2016: 699-703 - [c34]Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi:
Fast Constrained Submodular Maximization: Personalized Data Summarization. ICML 2016: 1358-1367 - [c33]Lin Chen, Amin Karbasi, Forrest W. Crawford:
Estimating the Size of a Large Network and its Communities from a Random Sample. NIPS 2016: 3072-3080 - [c32]Baharan Mirzasoleiman, Morteza Zadimoghaddam, Amin Karbasi:
Fast Distributed Submodular Cover: Public-Private Data Summarization. NIPS 2016: 3594-3602 - [i21]Lin Chen, S. Hamed Hassani, Amin Karbasi:
Dimension Coupling: Optimal Active Learning of Halfspaces via Query Synthesis. CoRR abs/1603.03515 (2016) - [i20]Lin Chen, Amin Karbasi, Forrest W. Crawford:
Submodular Variational Inference for Network Reconstruction. CoRR abs/1603.08616 (2016) - [i19]Mario Lucic, Mesrob I. Ohannessian, Amin Karbasi, Andreas Krause:
Tradeoffs for Space, Time, Data and Risk in Unsupervised Learning. CoRR abs/1605.00529 (2016) - [i18]Lin Chen, Amin Karbasi, Forrest W. Crawford:
Estimating the Size of a Large Network and its Communities from a Random Sample. CoRR abs/1610.08473 (2016) - 2015
- [j7]Amin Karbasi, Stratis Ioannidis, Laurent Massoulié:
From Small-World Networks to Comparison-Based Search. IEEE Trans. Inf. Theory 61(6): 3056-3074 (2015) - [c31]Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, Andreas Krause:
Lazier Than Lazy Greedy. AAAI 2015: 1812-1818 - [c30]Yuxin Chen, Shervin Javdani, Amin Karbasi, J. Andrew Bagnell, Siddhartha S. Srinivasa, Andreas Krause:
Submodular Surrogates for Value of Information. AAAI 2015: 3511-3518 - [c29]Mario Lucic, Mesrob I. Ohannessian, Amin Karbasi, Andreas Krause:
Tradeoffs for Space, Time, Data and Risk in Unsupervised Learning. AISTATS 2015 - [c28]Yuxin Chen, S. Hamed Hassani, Amin Karbasi, Andreas Krause:
Sequential Information Maximization: When is Greedy Near-optimal? COLT 2015: 338-363 - [c27]Patrick Rebeschini, Amin Karbasi:
Fast Mixing for Discrete Point Processes. COLT 2015: 1480-1500 - [c26]Amin Karbasi, Johannes Lengler, Angelika Steger:
Normalization Phenomena in Asynchronous Networks. ICALP (2) 2015: 688-700 - [c25]Alkis Gotovos, Amin Karbasi, Andreas Krause:
Non-Monotone Adaptive Submodular Maximization. IJCAI 2015: 1996-2003 - [c24]Saeid Haghighatshoar, Amin Karbasi, Amir Hesam Salavati:
Asynchronous decoding of LDPC codes over BEC. ISIT 2015: 2678-2682 - [c23]Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, Andreas Krause:
Distributed Submodular Cover: Succinctly Summarizing Massive Data. NIPS 2015: 2881-2889 - [i17]Lin Chen, Forrest W. Crawford, Amin Karbasi:
Seeing the Unseen Network: Inferring Hidden Social Ties from Respondent-Driven Sampling. CoRR abs/1511.04137 (2015) - 2014
- [j6]Amin Karbasi, Amir Hesam Salavati, Amin Shokrollahi, Lav R. Varshney:
Noise Facilitation in Associative Memories of Exponential Capacity. Neural Comput. 26(11): 2493-2526 (2014) - [c22]Shervin Javdani, Yuxin Chen, Amin Karbasi, Andreas Krause, Drew Bagnell, Siddhartha S. Srinivasa:
Near Optimal Bayesian Active Learning for Decision Making. AISTATS 2014: 430-438 - [c21]Adish Singla, Ilija Bogunovic, Gábor Bartók, Amin Karbasi, Andreas Krause:
Near-Optimally Teaching the Crowd to Classify. ICML 2014: 154-162 - [c20]Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, Andreas Krause:
Streaming submodular maximization: massive data summarization on the fly. KDD 2014: 671-680 - [i16]Adish Singla, Ilija Bogunovic, Gábor Bartók, Amin Karbasi, Andreas Krause:
Near-Optimally Teaching the Crowd to Classify. CoRR abs/1402.2092 (2014) - [i15]Shervin Javdani, Yuxin Chen, Amin Karbasi, Andreas Krause, J. Andrew Bagnell, Siddhartha S. Srinivasa:
Near Optimal Bayesian Active Learning for Decision Making. CoRR abs/1402.5886 (2014) - [i14]Amin Karbasi, Amir Hesam Salavati, Amin Shokrollahi, Lav R. Varshney:
Noise Facilitation in Associative Memories of Exponential Capacity. CoRR abs/1403.3305 (2014) - [i13]Amin Karbasi, Amir Hesam Salavati, Amin Shokrollahi:
Convolutional Neural Associative Memories: Massive Capacity with Noise Tolerance. CoRR abs/1407.6513 (2014) - [i12]Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, Andreas Krause:
Lazier Than Lazy Greedy. CoRR abs/1409.7938 (2014) - [i11]Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, Andreas Krause:
Distributed Submodular Maximization. CoRR abs/1411.0541 (2014) - 2013
- [j5]Amin Karbasi, Sewoong Oh:
Robust Localization From Incomplete Local Information. IEEE/ACM Trans. Netw. 21(4): 1131-1144 (2013) - [j4]Reza Parhizkar, Amin Karbasi, Sewoong Oh, Martin Vetterli:
Calibration Using Matrix Completion With Application to Ultrasound Tomography. IEEE Trans. Signal Process. 61(20): 4923-4933 (2013) - [c19]Amin Karbasi, Amir Hesam Salavati, Amin Shokrollahi:
Iterative Learning and Denoising in Convolutional Neural Associative Memories. ICML (1) 2013: 445-453 - [c18]Amin Karbasi, Amir Hesam Salavati, Amin Shokrollahi:
Coupled neural associative memories. ITW 2013: 1-5 - [c17]Amin Karbasi, Amir Hesam Salavati, Amin Shokrollahi, Lav R. Varshney:
Noise-Enhanced Associative Memories. NIPS 2013: 1682-1690 - [c16]Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, Andreas Krause:
Distributed Submodular Maximization: Identifying Representative Elements in Massive Data. NIPS 2013: 2049-2057 - [c15]Amin Karbasi, Morteza Zadimoghaddam:
Constrained Binary Identification Problem. STACS 2013: 550-561 - [i10]Amin Karbasi, Amir Hesam Salavati, Amin Shokrollahi:
Coupled Neural Associative Memories. CoRR abs/1301.1555 (2013) - 2012
- [b1]Amin Karbasi:
Graph-Based Information Processing - Scaling Laws and Applications. EPFL, Switzerland, 2012 - [j3]Mahdi Cheraghchi, Amin Karbasi, Soheil Mohajer, Venkatesh Saligrama:
Graph-Constrained Group Testing. IEEE Trans. Inf. Theory 58(1): 248-262 (2012) - [j2]Arash Amini, Amin Karbasi, Farokh Marvasti:
Low-Rank Matrix Approximation Using Point-Wise Operators. IEEE Trans. Inf. Theory 58(1): 302-310 (2012) - [c14]Amin Karbasi, Stratis Ioannidis, Laurent Massoulié:
Comparison-Based Learning with Rank Nets. ICML 2012 - [c13]Amir Hesam Salavati, Amin Karbasi:
Multi-level error-resilient neural networks. ISIT 2012: 1064-1068 - [c12]Amin Karbasi, Stratis Ioannidis, Laurent Massoulié:
Hot or not: Interactive content search using comparisons. ITA 2012: 291-297 - [c11]Amin Karbasi, Morteza Zadimoghaddam:
Sequential group testing with graph constraints. ITW 2012: 292-296 - [i9]Amir Hesam Salavati, Amin Karbasi:
Multi-Level Error-Resilient Neural Networks with Learning. CoRR abs/1202.2770 (2012) - [i8]Amin Karbasi, Stratis Ioannidis, Laurent Massoulié:
Comparison-Based Learning with Rank Nets. CoRR abs/1206.4674 (2012) - 2011
- [j1]Mahdi Cheraghchi, Ali Hormati, Amin Karbasi, Martin Vetterli:
Group Testing With Probabilistic Tests: Theory, Design and Application. IEEE Trans. Inf. Theory 57(10): 7057-7067 (2011) - [c10]Amin Karbasi, Stratis Ioannidis, Laurent Massoulié:
Content Search through Comparisons. ICALP (2) 2011: 601-612 - [c9]Reza Parhizkar, Amin Karbasi, Martin Vetterli:
Calibration in circular ultrasound tomography devices. ICASSP 2011: 549-552 - [c8]Amin Karbasi, Morteza Zadimoghaddam:
Compression with graphical constraints: An interactive browser. ISIT 2011: 953-957 - [i7]Amin Karbasi, Stratis Ioannidis, Laurent Massoulié:
Adaptive Content Search Through Comparisons. CoRR abs/1107.3059 (2011) - [i6]Amin Karbasi, Sewoong Oh:
Robust Localization from Incomplete Local Information. CoRR abs/1110.3018 (2011) - 2010
- [c7]Mahdi Cheraghchi, Amin Karbasi, Soheil Mohajer, Venkatesh Saligrama:
Graph-constrained group testing. ISIT 2010: 1913-1917 - [c6]Amin Karbasi:
From centralized to distributed sensor localization. S3@MobiCom 2010: 5-8 - [c5]Amin Karbasi, Sewoong Oh:
Distributed sensor network localization from local connectivity: performance analysis for the HOP-TERRAIN algorithm. SIGMETRICS 2010: 61-70 - [i5]Mahdi Cheraghchi, Amin Karbasi, Soheil Mohajer, Venkatesh Saligrama:
Graph-Constrained Group Testing. CoRR abs/1001.1445 (2010) - [i4]Mahdi Cheraghchi, Ali Hormati, Amin Karbasi, Martin Vetterli:
Group Testing with Probabilistic Tests: Theory, Design and Application. CoRR abs/1009.3186 (2010) - [i3]Reza Parhizkar, Amin Karbasi, Sewoong Oh, Martin Vetterli:
Calibration for Ultrasound Breast Tomography Using Matrix Completion. CoRR abs/1012.4928 (2010)
2000 – 2009
- 2009
- [c4]Mahdi Cheraghchi, Ali Hormati, Amin Karbasi, Martin Vetterli:
Compressed sensing with probabilistic measurements: A group testing solution. Allerton 2009: 30-35 - [c3]Amin Karbasi, Ali Hormati, Soheil Mohajer, Martin Vetterli:
Support recovery in compressed sensing: An estimation theoretic approach. ISIT 2009: 679-683 - [i2]Mahdi Cheraghchi, Ali Hormati, Amin Karbasi, Martin Vetterli:
Compressed Sensing with Probabilistic Measurements: A Group Testing Solution. CoRR abs/0909.3508 (2009) - [i1]Ali Hormati, Amin Karbasi, Soheil Mohajer, Martin Vetterli:
An Estimation Theoretic Approach for Sparsity Pattern Recovery in the Noisy Setting. CoRR abs/0911.4880 (2009) - 2007
- [c2]Amin Karbasi, Akihiko Sugiyama:
A new DOA estimation method using a circular microphone array. EUSIPCO 2007: 778-782 - 2006
- [c1]Amin Karbasi, Akihiko Sugiyama:
A DOA estimation method for an arbitrary triangular microphone arrangement. EUSIPCO 2006: 1-5
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-08 20:28 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint