default search action
Haim Avron
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j29]Elizabeth Newman, Lior Horesh, Haim Avron, Misha E. Kilmer:
Stable tensor neural networks for efficient deep learning. Frontiers Big Data 7 (2024) - [j28]Shany Shmueli, Petros Drineas, Haim Avron:
Low-rank updates of matrix square roots. Numer. Linear Algebra Appl. 31(1) (2024) - [i42]Vassilis Kalantzis, Mark S. Squillante, Shashanka Ubaru, Tayfun Gokmen, Chai Wah Wu, Anshul Gupta, Haim Avron, Tomasz Nowicki, Malte J. Rasch, O. Murat Onen, Vanessa López-Marrero, Effendi Leobandung, Yasuteru Kohda, Wilfried Haensch, Lior Horesh:
Multi-Function Multi-Way Analog Technology for Sustainable Machine Intelligence Computation. CoRR abs/2401.13754 (2024) - [i41]Oria Gruber, Haim Avron:
On the Role of Initialization on the Implicit Bias in Deep Linear Networks. CoRR abs/2402.02454 (2024) - [i40]Liron Mor-Yosef, Shashanka Ubaru, Lior Horesh, Haim Avron:
Multivariate trace estimation using quantum state space linear algebra. CoRR abs/2405.01098 (2024) - 2023
- [j27]Boris Shustin, Haim Avron:
Riemannian optimization with a preconditioning scheme on the generalized Stiefel manifold. J. Comput. Appl. Math. 423: 114953 (2023) - [j26]Uria Mor, Boris Shustin, Haim Avron:
Solving trust region subproblems using Riemannian optimization. Numerische Mathematik 154(1-2): 1-33 (2023) - [j25]Neta Shoham, Haim Avron:
Experimental Design for Overparameterized Learning With Application to Single Shot Deep Active Learning. IEEE Trans. Pattern Anal. Mach. Intell. 45(10): 11766-11777 (2023) - [c24]Amir Zandieh, Insu Han, Haim Avron:
Near Optimal Reconstruction of Spherical Harmonic Expansions. NeurIPS 2023 - [i39]Raphael A. Meyer, Haim Avron:
Hutchinson's Estimator is Bad at Kronecker-Trace-Estimation. CoRR abs/2309.04952 (2023) - 2022
- [j24]Ron Levie, Haim Avron:
Randomized continuous frames in time-frequency analysis. Adv. Comput. Math. 48(3): 25 (2022) - [j23]Paz Fink Shustin, Haim Avron:
Gauss-Legendre Features for Gaussian Process Regression. J. Mach. Learn. Res. 23: 92:1-92:47 (2022) - [j22]Agniva Chowdhury, Gregory Dexter, Palma London, Haim Avron, Petros Drineas:
Faster Randomized Interior Point Methods for Tall/Wide Linear Programs. J. Mach. Learn. Res. 23: 336:1-336:48 (2022) - [j21]Uria Mor, Yotam Cohen, Rafael Valdes-Mas, Denise Kviatcovsky, Eran Elinav, Haim Avron:
Dimensionality reduction of longitudinal 'omics data using modern tensor factorizations. PLoS Comput. Biol. 18(7) (2022) - [j20]Paz Fink Shustin, Haim Avron:
Semi-Infinite Linear Regression and Its Applications. SIAM J. Matrix Anal. Appl. 43(1): 479-511 (2022) - [c23]Gregory Dexter, Agniva Chowdhury, Haim Avron, Petros Drineas:
On the Convergence of Inexact Predictor-Corrector Methods for Linear Programming. ICML 2022: 5007-5038 - [c22]Insu Han, Amir Zandieh, Haim Avron:
Random Gegenbauer Features for Scalable Kernel Methods. ICML 2022: 8330-8358 - [i38]Shany Shumeli, Petros Drineas, Haim Avron:
Low-Rank Updates of Matrix Square Roots. CoRR abs/2201.13156 (2022) - [i37]Insu Han, Amir Zandieh, Haim Avron:
Random Gegenbauer Features for Scalable Kernel Methods. CoRR abs/2202.03474 (2022) - [i36]Paz Fink Shustin, Shashanka Ubaru, Vasileios Kalantzis, Lior Horesh, Haim Avron:
PCENet: High Dimensional Surrogate Modeling for Learning Uncertainty. CoRR abs/2202.05063 (2022) - [i35]Amir Zandieh, Insu Han, Haim Avron:
Near Optimal Reconstruction of Spherical Harmonic Expansions. CoRR abs/2202.12995 (2022) - [i34]Boris Shustin, Haim Avron, Barak Sober:
Manifold Free Riemannian Optimization. CoRR abs/2209.03269 (2022) - [i33]Agniva Chowdhury, Gregory Dexter, Palma London, Haim Avron, Petros Drineas:
Faster Randomized Interior Point Methods for Tall/Wide Linear Programs. CoRR abs/2209.08722 (2022) - 2021
- [c21]Vasileios Kalantzis, Anshul Gupta, Lior Horesh, Tomasz Nowicki, Mark S. Squillante, Chai Wah Wu, Tayfun Gokmen, Haim Avron:
Solving sparse linear systems with approximate inverse preconditioners on analog devices. HPEC 2021: 1-7 - [c20]Amir Zandieh, Insu Han, Haim Avron, Neta Shoham, Chaewon Kim, Jinwoo Shin:
Scaling Neural Tangent Kernels via Sketching and Random Features. NeurIPS 2021: 1062-1073 - [c19]Osman Asif Malik, Shashanka Ubaru, Lior Horesh, Misha E. Kilmer, Haim Avron:
Dynamic Graph Convolutional Networks Using the Tensor M-Product. SDM 2021: 729-737 - [i32]Paz Fink Shustin, Haim Avron:
Gauss-Legendre Features for Gaussian Process Regression. CoRR abs/2101.01137 (2021) - [i31]Insu Han, Haim Avron, Neta Shoham, Chaewon Kim, Jinwoo Shin:
Random Features for the Neural Tangent Kernel. CoRR abs/2104.01351 (2021) - [i30]Paz Fink Shustin, Haim Avron:
Semi-Infinite Linear Regression and Its Applications. CoRR abs/2104.05687 (2021) - [i29]Amir Zandieh, Insu Han, Haim Avron, Neta Shoham, Chaewon Kim, Jinwoo Shin:
Scaling Neural Tangent Kernels via Sketching and Random Features. CoRR abs/2106.07880 (2021) - [i28]Boris Shustin, Haim Avron:
Faster Randomized Methods for Orthogonality Constrained Problems. CoRR abs/2106.12060 (2021) - [i27]Uria Mor, Yotam Cohen, Rafael Valdes-Mas, Denise Kviatcovsky, Eran Elinav, Haim Avron:
Dimensionality Reduction of Longitudinal 'Omics Data using Modern Tensor Factorization. CoRR abs/2111.14159 (2021) - 2020
- [c18]Insu Han, Haim Avron, Jinwoo Shin:
Polynomial Tensor Sketch for Element-wise Function of Low-Rank Matrix. ICML 2020: 3984-3993 - [c17]Agniva Chowdhury, Palma London, Haim Avron, Petros Drineas:
Faster Randomized Infeasible Interior Point Methods for Tall/Wide Linear Programs. NeurIPS 2020 - [i26]Misha E. Kilmer, Lior Horesh, Haim Avron, Elizabeth Newman:
Tensor-Tensor Products for Optimal Representation and Compression. CoRR abs/2001.00046 (2020) - [i25]Agniva Chowdhury, Palma London, Haim Avron, Petros Drineas:
Speeding up Linear Programming using Randomized Linear Algebra. CoRR abs/2003.08072 (2020) - [i24]Ron Levie, Haim Avron:
Randomized Continuous Frames in Time-Frequency Analysis. CoRR abs/2009.10525 (2020) - [i23]Neta Shoham, Haim Avron:
Experimental Design for Overparameterized Learning with Application to Single Shot Deep Active Learning. CoRR abs/2009.12820 (2020) - [i22]Uria Mor, Haim Avron:
Solving Trust Region Subproblems Using Riemannian Optimization. CoRR abs/2010.07547 (2020) - [i21]Ron Levie, Haim Avron, Gitta Kutyniok:
Quasi Monte Carlo Time-Frequency Analysis. CoRR abs/2011.02025 (2020)
2010 – 2019
- 2019
- [j19]Chander Iyer, Haim Avron, Georgios Kollias, Yves Ineichen, Christopher D. Carothers, Petros Drineas:
A randomized least squares solver for terabyte-sized dense overdetermined systems. J. Comput. Sci. 36 (2019) - [j18]Haim Avron, Alex Druinsky, Sivan Toledo:
Spectral condition-number estimation of large sparse matrices. Numer. Linear Algebra Appl. 26(3) (2019) - [j17]Liron Mor-Yosef, Haim Avron:
Sketching for Principal Component Regression. SIAM J. Matrix Anal. Appl. 40(2): 454-485 (2019) - [c16]Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, Amir Zandieh:
A universal sampling method for reconstructing signals with simple Fourier transforms. STOC 2019: 1051-1063 - [i20]Boris Shustin, Haim Avron:
Randomized Riemannian Preconditioning for Quadratically Constrained Problems. CoRR abs/1902.01635 (2019) - [i19]Insu Han, Haim Avron, Jinwoo Shin:
Polynomial Tensor Sketch for Element-wise Function of Low-Rank Matrix. CoRR abs/1905.11616 (2019) - [i18]Osman Asif Malik, Shashanka Ubaru, Lior Horesh, Misha E. Kilmer, Haim Avron:
Tensor Graph Convolutional Networks for Prediction on Dynamic Graphs. CoRR abs/1910.07643 (2019) - 2018
- [j16]Gal Shulkind, Lior Horesh, Haim Avron:
Experimental Design for Nonparametric Correction of Misspecified Dynamical Models. SIAM/ASA J. Uncertain. Quantification 6(2): 880-906 (2018) - [c15]Insu Han, Haim Avron, Jinwoo Shin:
Stochastic Chebyshev Gradient Descent for Spectral Optimization. NeurIPS 2018: 7397-7407 - [i17]Insu Han, Haim Avron, Jinwoo Shin:
Optimizing Spectral Sums using Randomized Chebyshev Expansions. CoRR abs/1802.06355 (2018) - [i16]Liron Mor-Yosef, Haim Avron:
Sketching for Principal Component Regression. CoRR abs/1803.02661 (2018) - [i15]Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, Amir Zandieh:
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees. CoRR abs/1804.09893 (2018) - [i14]Elizabeth Newman, Lior Horesh, Haim Avron, Misha E. Kilmer:
Stable Tensor Neural Networks for Rapid Deep Learning. CoRR abs/1811.06569 (2018) - [i13]Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, Amir Zandieh:
A Universal Sampling Method for Reconstructing Signals with Simple Fourier Transforms. CoRR abs/1812.08723 (2018) - 2017
- [j15]Jie Chen, Haim Avron, Vikas Sindhwani:
Hierarchically Compositional Kernels for Scalable Nonparametric Learning. J. Mach. Learn. Res. 18: 66:1-66:42 (2017) - [j14]Haim Avron, Kenneth L. Clarkson, David P. Woodruff:
Faster Kernel Ridge Regression Using Sketching and Preconditioning. SIAM J. Matrix Anal. Appl. 38(4): 1116-1138 (2017) - [j13]Insu Han, Dmitry Malioutov, Haim Avron, Jinwoo Shin:
Approximating Spectral Sums of Large-Scale Matrices using Stochastic Chebyshev Approximations. SIAM J. Sci. Comput. 39(4) (2017) - [c14]Haim Avron, Kenneth L. Clarkson, David P. Woodruff:
Sharper Bounds for Regularized Data Fitting. APPROX-RANDOM 2017: 27:1-27:22 - [c13]Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, Amir Zandieh:
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees. ICML 2017: 253-262 - 2016
- [j12]Haim Avron, Vikas Sindhwani, Jiyan Yang, Michael W. Mahoney:
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels. J. Mach. Learn. Res. 17: 120:1-120:38 (2016) - [j11]Haim Avron, Vikas Sindhwani:
High-Performance Kernel Machines With Implicit Distributed Optimization and Randomization. Technometrics 58(3): 341-349 (2016) - [i12]Insu Han, Dmitry Malioutov, Haim Avron, Jinwoo Shin:
Approximating the Spectral Sums of Large-scale Matrices using Chebyshev Approximations. CoRR abs/1606.00942 (2016) - [i11]Jie Chen, Haim Avron, Vikas Sindhwani:
Hierarchically Compositional Kernels for Scalable Nonparametric Learning. CoRR abs/1608.00860 (2016) - [i10]Haim Avron, Kenneth L. Clarkson, David P. Woodruff:
Faster Kernel Ridge Regression Using Sketching and Preconditioning. CoRR abs/1611.03220 (2016) - [i9]Haim Avron, Kenneth L. Clarkson, David P. Woodruff:
Sharper Bounds for Regression and Low-Rank Approximation with Regularization. CoRR abs/1611.03225 (2016) - 2015
- [j10]Haim Avron, Alex Druinsky, Anshul Gupta:
Revisiting Asynchronous Linear Solvers: Provable Convergence Rate through Randomization. J. ACM 62(6): 51:1-51:27 (2015) - [c12]Haim Avron, Lior Horesh:
Community Detection Using Time-Dependent Personalized PageRank. ICML 2015: 1795-1803 - [c11]Chander Iyer, Haim Avron, Georgios Kollias, Yves Ineichen, Christopher D. Carothers, Petros Drineas:
A scalable randomized least squares solver for dense overdetermined systems. ScalA@SC 2015: 3:1-3:8 - 2014
- [j9]Haim Avron, Christos Boutsidis, Sivan Toledo, Anastasios Zouzias:
Efficient Dimensionality Reduction for Canonical Correlation Analysis. SIAM J. Sci. Comput. 36(5) (2014) - [c10]Jiyan Yang, Vikas Sindhwani, Quanfu Fan, Haim Avron, Michael W. Mahoney:
Random Laplace Feature Maps for Semigroup Kernels on Histograms. CVPR 2014: 971-978 - [c9]Po-Sen Huang, Haim Avron, Tara N. Sainath, Vikas Sindhwani, Bhuvana Ramabhadran:
Kernel methods match Deep Neural Networks on TIMIT. ICASSP 2014: 205-209 - [c8]Jiyan Yang, Vikas Sindhwani, Haim Avron, Michael W. Mahoney:
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels. ICML 2014: 485-493 - [c7]Haim Avron, Alex Druinsky, Anshul Gupta:
Revisiting Asynchronous Linear Solvers: Provable Convergence Rate through Randomization. IPDPS 2014: 198-207 - [c6]Haim Avron, Huy L. Nguyen, David P. Woodruff:
Subspace Embeddings for the Polynomial Kernel. NIPS 2014: 2258-2266 - [i8]Vikas Sindhwani, Haim Avron:
High-performance Kernel Machines with Implicit Distributed Optimization and Randomization. CoRR abs/1409.0940 (2014) - [i7]Jiyan Yang, Vikas Sindhwani, Haim Avron, Michael W. Mahoney:
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels. CoRR abs/1412.8293 (2014) - 2013
- [j8]Haim Avron, Anshul Gupta, Sivan Toledo:
Solving Hermitian positive definite systems using indefinite incomplete factorizations. J. Comput. Appl. Math. 243: 126-138 (2013) - [j7]Haim Avron, Christos Boutsidis:
Faster Subset Selection for Matrices and Applications. SIAM J. Matrix Anal. Appl. 34(4): 1464-1499 (2013) - [c5]Haim Avron, Christos Boutsidis, Sivan Toledo, Anastasios Zouzias:
Efficient Dimensionality Reduction for Canonical Correlation Analysis. ICML (1) 2013: 347-355 - [c4]Haim Avron, Vikas Sindhwani, David P. Woodruff:
Sketching Structured Matrices for Faster Nonlinear Regression. NIPS 2013: 2994-3002 - [i6]Haim Avron, Alex Druinsky, Sivan Toledo:
Reliable Iterative Condition-Number Estimation. CoRR abs/1301.1107 (2013) - [i5]Haim Avron, Alex Druinsky, Anshul Gupta:
A Randomized Asynchronous Linear Solver with Provable Convergence Rate. CoRR abs/1304.6475 (2013) - 2012
- [c3]Haim Avron, Satyen Kale, Shiva Prasad Kasiviswanathan, Vikas Sindhwani:
Efficient and Practical Stochastic Subgradient Descent for Nuclear Norm Regularization. ICML 2012 - [c2]Haim Avron, Anshul Gupta:
Managing data-movement for effective shared-memory parallelization of out-of-core sparse solvers. SC 2012: 102 - [i4]Haim Avron, Christos Boutsidis:
Faster Subset Selection for Matrices and Applications. CoRR abs/1201.0127 (2012) - [i3]Haim Avron, Christos Boutsidis, Sivan Toledo, Anastasios Zouzias:
Efficient Dimensionality Reduction for Canonical Correlation Analysis. CoRR abs/1209.2185 (2012) - 2011
- [j6]Haim Avron, Sivan Toledo:
Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix. J. ACM 58(2): 8:1-8:34 (2011) - [i2]Haim Avron, Sivan Toledo:
Effective Stiffness: Generalizing Effective Resistance Sampling to Finite Element Matrices. CoRR abs/1110.4437 (2011) - 2010
- [b1]Haim Avron:
Advanced algorithmic techniques in numerical linear algebra: hybridization and randomization. Tel Aviv University, Israel, 2010 - [j5]Haim Avron, Petar Maymounkov, Sivan Toledo:
Blendenpik: Supercharging LAPACK's Least-Squares Solver. SIAM J. Sci. Comput. 32(3): 1217-1236 (2010) - [j4]Haim Avron, Andrei Sharf, Chen Greif, Daniel Cohen-Or:
l1-Sparse reconstruction of sharp point set surfaces. ACM Trans. Graph. 29(5): 135:1-135:12 (2010)
2000 – 2009
- 2009
- [j3]Haim Avron, Esmond Ng, Sivan Toledo:
Using Perturbed QR Factorizations to Solve Linear Least-Squares Problems. SIAM J. Matrix Anal. Appl. 31(2): 674-693 (2009) - [j2]Haim Avron, Doron Chen, Gil Shklarski, Sivan Toledo:
Combinatorial Preconditioners for Scalar Elliptic Finite-Element Problems. SIAM J. Matrix Anal. Appl. 31(2): 694-720 (2009) - [c1]Prabhanjan Kambadur, Anshul Gupta, Amol Ghoting, Haim Avron, Andrew Lumsdaine:
PFunc: modern task parallelism for modern high performance computing. SC 2009 - [i1]Haim Avron, Gil Shklarski, Sivan Toledo:
On Element SDD Approximability. CoRR abs/0911.0547 (2009) - 2008
- [j1]Haim Avron, Gil Shklarski, Sivan Toledo:
Parallel unsymmetric-pattern multifrontal sparse LU with column preordering. ACM Trans. Math. Softw. 34(2): 8:1-8:31 (2008)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 23:01 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint