default search action
Stylianos I. Venieris
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j12]Stefanos Laskaridis, Stylianos I. Venieris, Alexandros Kouris, Rui Li, Nicholas D. Lane:
The Future of Consumer Edge-AI Computing. IEEE Pervasive Comput. 23(3): 21-30 (2024) - [j11]Ioannis Panopoulos, Stylianos I. Venieris, Iakovos S. Venieris:
CARIn: Constraint-Aware and Responsive Inference on Heterogeneous Devices for Single- and Multi-DNN Workloads. ACM Trans. Embed. Comput. Syst. 23(4): 60:1-60:32 (2024) - [j10]Stylianos I. Venieris, Mário Almeida, Royson Lee, Nicholas D. Lane:
NAWQ-SR: A Hybrid-Precision NPU Engine for Efficient On-Device Super-Resolution. IEEE Trans. Mob. Comput. 23(3): 2367-2381 (2024) - [c33]Young D. Kwon, Rui Li, Stylianos I. Venieris, Jagmohan Chauhan, Nicholas Donald Lane, Cecilia Mascolo:
TinyTrain: Resource-Aware Task-Adaptive Sparse Training of DNNs at the Data-Scarce Edge. ICML 2024 - [c32]Royson Lee, Rui Li, Stylianos I. Venieris, Timothy M. Hospedales, Ferenc Huszár, Nicholas D. Lane:
Meta-Learned Kernel For Blind Super-Resolution Kernel Estimation. WACV 2024: 1485-1494 - [i40]Hao Mark Chen, Wayne Luk, Ka Fai Cedric Yiu, Rui Li, Konstantin Mishchenko, Stylianos I. Venieris, Hongxiang Fan:
Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference. CoRR abs/2405.18628 (2024) - [i39]Ioannis Panopoulos, Stylianos I. Venieris, Iakovos S. Venieris:
CARIn: Constraint-Aware and Responsive Inference on Heterogeneous Devices for Single- and Multi-DNN Workloads. CoRR abs/2409.01089 (2024) - [i38]Hao Mark Chen, Fuwen Tan, Alexandros Kouris, Royson Lee, Hongxiang Fan, Stylianos I. Venieris:
Progressive Mixed-Precision Decoding for Efficient LLM Inference. CoRR abs/2410.13461 (2024) - 2023
- [j9]Stylianos I. Venieris, Christos-Savvas Bouganis, Nicholas D. Lane:
Multiple-Deep Neural Network Accelerators for Next-Generation Artificial Intelligence Systems. Computer 56(3): 70-79 (2023) - [j8]Stylianos I. Venieris, Javier Fernández-Marqués, Nicholas D. Lane:
Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation. ACM Trans. Design Autom. Electr. Syst. 28(6): 92:1-92:31 (2023) - [c31]Ioannis Panopoulos, Sokratis Nikolaidis, Stylianos I. Venieris, Iakovos S. Venieris:
Exploring the Performance and Efficiency of Transformer Models for NLP on Mobile Devices. ISCC 2023: 1-4 - [c30]Sokratis Nikolaidis, Stylianos I. Venieris, Iakovos S. Venieris:
MultiTASC: A Multi-Tenancy-Aware Scheduler for Cascaded DNN Inference at the Consumer Edge. ISCC 2023: 411-416 - [c29]Hongxiang Fan, Stylianos I. Venieris, Alexandros Kouris, Nicholas D. Lane:
Sparse-DySta: Sparsity-Aware Dynamic and Static Scheduling for Sparse Multi-DNN Workloads. MICRO 2023: 353-366 - [c28]Young D. Kwon, Jagmohan Chauhan, Hong Jia, Stylianos I. Venieris, Cecilia Mascolo:
LifeLearner: Hardware-Aware Meta Continual Learning System for Embedded Computing Platforms. SenSys 2023: 138-151 - [i37]Ioannis Panopoulos, Sokratis Nikolaidis, Stylianos I. Venieris, Iakovos S. Venieris:
Exploring the Performance and Efficiency of Transformer Models for NLP on Mobile Devices. CoRR abs/2306.11426 (2023) - [i36]Sokratis Nikolaidis, Stylianos I. Venieris, Iakovos S. Venieris:
MultiTASC: A Multi-Tenancy-Aware Scheduler for Cascaded DNN Inference at the Consumer Edge. CoRR abs/2306.12830 (2023) - [i35]Young D. Kwon, Rui Li, Stylianos I. Venieris, Jagmohan Chauhan, Nicholas D. Lane, Cecilia Mascolo:
TinyTrain: Deep Neural Network Training at the Extreme Edge. CoRR abs/2307.09988 (2023) - [i34]Stylianos I. Venieris, Javier Fernández-Marqués, Nicholas D. Lane:
Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation. CoRR abs/2307.13412 (2023) - [i33]Hongxiang Fan, Stylianos I. Venieris, Alexandros Kouris, Nicholas D. Lane:
Sparse-DySta: Sparsity-Aware Dynamic and Static Scheduling for Sparse Multi-DNN Workloads. CoRR abs/2310.11096 (2023) - [i32]Young D. Kwon, Jagmohan Chauhan, Hong Jia, Stylianos I. Venieris, Cecilia Mascolo:
LifeLearner: Hardware-Aware Meta Continual Learning System for Embedded Computing Platforms. CoRR abs/2311.11420 (2023) - 2022
- [j7]Royson Lee, Stylianos I. Venieris, Nicholas D. Lane:
Deep Neural Network-based Enhancement for Image and Video Streaming Systems: A Survey and Future Directions. ACM Comput. Surv. 54(8): 169:1-169:30 (2022) - [j6]Bo Han, Jiasi Chen, Tian Guo, Sung-Ju Lee, Viswanathan Swaminathan, Stylianos I. Venieris:
Guest Editorial: Bridging the Gap Between Industry and Academia for Networking Research. IEEE Netw. 36(1): 8-9 (2022) - [j5]Mário Almeida, Stefanos Laskaridis, Stylianos I. Venieris, Ilias Leontiadis, Nicholas D. Lane:
DynO: Dynamic Onloading of Deep Neural Networks from Cloud to Device. ACM Trans. Embed. Comput. Syst. 21(6): 71:1-71:24 (2022) - [c27]Alexandros Kouris, Stylianos I. Venieris, Stefanos Laskaridis, Nicholas D. Lane:
Multi-Exit Semantic Segmentation Networks. ECCV (21) 2022: 330-349 - [c26]Hongxiang Fan, Thomas Chau, Stylianos I. Venieris, Royson Lee, Alexandros Kouris, Wayne Luk, Nicholas D. Lane, Mohamed S. Abdelfattah:
Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and Algorithm Co-design. MICRO 2022: 599-615 - [c25]Alexandros Kouris, Stylianos I. Venieris, Stefanos Laskaridis, Nicholas D. Lane:
Adaptable mobile vision systems through multi-exit neural networks. MobiSys 2022: 575-576 - [i31]Stylianos I. Venieris, Christos-Savvas Bouganis, Nicholas D. Lane:
Multi-DNN Accelerators for Next-Generation AI Systems. CoRR abs/2205.09376 (2022) - [i30]Hongxiang Fan, Thomas Chun-Pong Chau, Stylianos I. Venieris, Royson Lee, Alexandros Kouris, Wayne Luk, Nicholas D. Lane, Mohamed S. Abdelfattah:
Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and Algorithm Co-design. CoRR abs/2209.09570 (2022) - [i29]Alexandros Kouris, Stylianos I. Venieris, Stefanos Laskaridis, Nicholas D. Lane:
Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural Networks on Edge NPUs. CoRR abs/2209.13443 (2022) - [i28]Stefanos Laskaridis, Stylianos I. Venieris, Alexandros Kouris, Rui Li, Nicholas D. Lane:
The Future of Consumer Edge-AI Computing. CoRR abs/2210.10514 (2022) - [i27]Royson Lee, Rui Li, Stylianos I. Venieris, Timothy M. Hospedales, Ferenc Huszár, Nicholas D. Lane:
Meta-Learned Kernel For Blind Super-Resolution Kernel Estimation. CoRR abs/2212.07886 (2022) - [i26]Stylianos I. Venieris, Mário Almeida, Royson Lee, Nicholas D. Lane:
NAWQ-SR: A Hybrid-Precision NPU Engine for Efficient On-Device Super-Resolution. CoRR abs/2212.09501 (2022) - 2021
- [c24]Stylianos I. Venieris, Ioannis Panopoulos, Ilias Leontiadis, Iakovos S. Venieris:
How to Reach Real-Time AI on Consumer Devices? Solutions for Programmable and Custom Architectures. ASAP 2021: 93-100 - [c23]Stylianos I. Venieris, Javier Fernández-Marqués, Nicholas D. Lane:
unzipFPGA: Enhancing FPGA-based CNN Engines with On-the-Fly Weights Generation. FCCM 2021: 165-175 - [c22]Samuel Horváth, Stefanos Laskaridis, Mário Almeida, Ilias Leontiadis, Stylianos I. Venieris, Nicholas D. Lane:
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout. NeurIPS 2021: 12876-12889 - [c21]Stylianos I. Venieris, Ioannis Panopoulos, Iakovos S. Venieris:
OODIn: An Optimised On-Device Inference Framework for Heterogeneous Mobile Devices. SMARTCOMP 2021: 1-8 - [c20]Ilias Leontiadis, Stefanos Laskaridis, Stylianos I. Venieris, Nicholas D. Lane:
It's always personal: Using Early Exits for Efficient On-Device CNN Personalisation. HotMobile 2021: 15-21 - [i25]Ilias Leontiadis, Stefanos Laskaridis, Stylianos I. Venieris, Nicholas D. Lane:
It's always personal: Using Early Exits for Efficient On-Device CNN Personalisation. CoRR abs/2102.01393 (2021) - [i24]Samuel Horváth, Stefanos Laskaridis, Mário Almeida, Ilias Leontiadis, Stylianos I. Venieris, Nicholas D. Lane:
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout. CoRR abs/2102.13451 (2021) - [i23]Stylianos I. Venieris, Javier Fernández-Marqués, Nicholas D. Lane:
unzipFPGA: Enhancing FPGA-based CNN Engines with On-the-Fly Weights Generation. CoRR abs/2103.05600 (2021) - [i22]Mário Almeida, Stefanos Laskaridis, Stylianos I. Venieris, Ilias Leontiadis, Nicholas D. Lane:
DynO: Dynamic Onloading of Deep Neural Networks from Cloud to Device. CoRR abs/2104.09949 (2021) - [i21]Alexandros Kouris, Stylianos I. Venieris, Stefanos Laskaridis, Nicholas D. Lane:
Multi-Exit Semantic Segmentation Networks. CoRR abs/2106.03527 (2021) - [i20]Royson Lee, Stylianos I. Venieris, Nicholas D. Lane:
Deep Neural Network-based Enhancement for Image and Video Streaming Systems: A Survey and Future Directions. CoRR abs/2106.03727 (2021) - [i19]Stylianos I. Venieris, Ioannis Panopoulos, Iakovos S. Venieris:
OODIn: An Optimised On-Device Inference Framework for Heterogeneous Mobile Devices. CoRR abs/2106.04723 (2021) - [i18]Stylianos I. Venieris, Ioannis Panopoulos, Ilias Leontiadis, Iakovos S. Venieris:
How to Reach Real-Time AI on Consumer Devices? Solutions for Programmable and Custom Architectures. CoRR abs/2106.15021 (2021) - 2020
- [j4]Alexandros Kouris, Stylianos I. Venieris, Michail Rizakis, Christos-Savvas Bouganis:
Approximate LSTMs for Time-Constrained Inference: Enabling Fast Reaction in Self-Driving Cars. IEEE Consumer Electron. Mag. 9(4): 11-26 (2020) - [j3]Sourav Bhattacharya, Dionysis Manousakas, Alberto Gil C. P. Ramos, Stylianos I. Venieris, Nicholas D. Lane, Cecilia Mascolo:
Countering Acoustic Adversarial Attacks in Microphone-equipped Smart Home Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4(2): 73:1-73:24 (2020) - [c19]Royson Lee, Stylianos I. Venieris, Nicholas D. Lane:
Neural Enhancement in Content Delivery Systems: The State-of-the-Art and Future Directions. DistributedML@CoNEXT 2020: 34-41 - [c18]Alexandros Kouris, Stylianos I. Venieris, Christos-Savvas Bouganis:
A Throughput-Latency Co-Optimised Cascade of Convolutional Neural Network Classifiers. DATE 2020: 1656-1661 - [c17]Royson Lee, Lukasz Dudziak, Mohamed S. Abdelfattah, Stylianos I. Venieris, Hyeji Kim, Hongkai Wen, Nicholas D. Lane:
Journey Towards Tiny Perceptual Super-Resolution. ECCV (26) 2020: 85-102 - [c16]Diederik Adriaan Vink, Aditya Rajagopal, Stylianos I. Venieris, Christos-Savvas Bouganis:
Caffe Barista: Brewing Caffe with FPGAs in the Training Loop. FPL 2020: 317-322 - [c15]Stefanos Laskaridis, Stylianos I. Venieris, Hyeji Kim, Nicholas D. Lane:
HAPI: Hardware-Aware Progressive Inference. ICCAD 2020: 91:1-91:9 - [c14]Aditya Rajagopal, Diederik Adriaan Vink, Stylianos I. Venieris, Christos-Savvas Bouganis:
Multi-Precision Policy Enforced Training (MuPPET) : A Precision-Switching Strategy for Quantised Fixed-Point Training of CNNs. ICML 2020: 7943-7952 - [c13]Stefanos Laskaridis, Stylianos I. Venieris, Mário Almeida, Ilias Leontiadis, Nicholas D. Lane:
SPINN: synergistic progressive inference of neural networks over device and cloud. MobiCom 2020: 37:1-37:15 - [i17]Aditya Rajagopal, Diederik Adriaan Vink, Stylianos I. Venieris, Christos-Savvas Bouganis:
Multi-Precision Policy Enforced Training (MuPPET): A precision-switching strategy for quantised fixed-point training of CNNs. CoRR abs/2006.09049 (2020) - [i16]Diederik Adriaan Vink, Aditya Rajagopal, Stylianos I. Venieris, Christos-Savvas Bouganis:
Caffe Barista: Brewing Caffe with FPGAs in the Training Loop. CoRR abs/2006.13829 (2020) - [i15]Royson Lee, Lukasz Dudziak, Mohamed S. Abdelfattah, Stylianos I. Venieris, Hyeji Kim, Hongkai Wen, Nicholas D. Lane:
Journey Towards Tiny Perceptual Super-Resolution. CoRR abs/2007.04356 (2020) - [i14]Stefanos Laskaridis, Stylianos I. Venieris, Hyeji Kim, Nicholas D. Lane:
HAPI: Hardware-Aware Progressive Inference. CoRR abs/2008.03997 (2020) - [i13]Stefanos Laskaridis, Stylianos I. Venieris, Mário Almeida, Ilias Leontiadis, Nicholas D. Lane:
SPINN: Synergistic Progressive Inference of Neural Networks over Device and Cloud. CoRR abs/2008.06402 (2020) - [i12]Royson Lee, Stylianos I. Venieris, Nicholas D. Lane:
Neural Enhancement in Content Delivery Systems: The State-of-the-Art and Future Directions. CoRR abs/2010.05838 (2020)
2010 – 2019
- 2019
- [b1]Stylianos I. Venieris:
Automated methodologies for mapping convolutional neural networks on reconfigurable hardware. Imperial College London, UK, 2019 - [j2]Stylianos I. Venieris, Christos-Savvas Bouganis:
fpgaConvNet: Mapping Regular and Irregular Convolutional Neural Networks on FPGAs. IEEE Trans. Neural Networks Learn. Syst. 30(2): 326-342 (2019) - [c12]Alexander Montgomerie-Corcoran, Stylianos I. Venieris, Christos-Savvas Bouganis:
Power-Aware FPGA Mapping of Convolutional Neural Networks. FPT 2019: 327-330 - [c11]Alexandros Kouris, Stylianos I. Venieris, Christos-Savvas Bouganis:
Towards Efficient On-Board Deployment of DNNs on Intelligent Autonomous Systems. ISVLSI 2019: 568-573 - [c10]Royson Lee, Stylianos I. Venieris, Lukasz Dudziak, Sourav Bhattacharya, Nicholas D. Lane:
MobiSR: Efficient On-Device Super-Resolution through Heterogeneous Mobile Processors. MobiCom 2019: 54:1-54:16 - [c9]Royson Lee, Stylianos I. Venieris, Lukasz Dudziak, Sourav Bhattacharya, Nicholas D. Lane:
Poster: MobiSR - Efficient On-Device Super-Resolution through Heterogeneous Mobile Processors. MobiCom 2019: 90:1-90:3 - [i11]Alexandros Kouris, Stylianos I. Venieris, Michail Rizakis, Christos-Savvas Bouganis:
Approximate LSTMs for Time-Constrained Inference: Enabling Fast Reaction in Self-Driving Cars. CoRR abs/1905.00689 (2019) - [i10]Mário Almeida, Stefanos Laskaridis, Ilias Leontiadis, Stylianos I. Venieris, Nicholas D. Lane:
EmBench: Quantifying Performance Variations of Deep Neural Networks across Modern Commodity Devices. CoRR abs/1905.07346 (2019) - [i9]Royson Lee, Stylianos I. Venieris, Lukasz Dudziak, Sourav Bhattacharya, Nicholas D. Lane:
MobiSR: Efficient On-Device Super-Resolution through Heterogeneous Mobile Processors. CoRR abs/1908.07985 (2019) - 2018
- [j1]Stylianos I. Venieris, Alexandros Kouris, Christos-Savvas Bouganis:
Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions. ACM Comput. Surv. 51(3): 56:1-56:39 (2018) - [c8]Michalis Rizakis, Stylianos I. Venieris, Alexandros Kouris, Christos-Savvas Bouganis:
Approximate FPGA-Based LSTMs Under Computation Time Constraints. ARC 2018: 3-15 - [c7]Christos Kyrkou, George Plastiras, Theocharis Theocharides, Stylianos I. Venieris, Christos-Savvas Bouganis:
DroNet: Efficient convolutional neural network detector for real-time UAV applications. DATE 2018: 967-972 - [c6]Alexandros Kouris, Stylianos I. Venieris, Christos-Savvas Bouganis:
Cascade^CNN: Pushing the Performance Limits of Quantisation in Convolutional Neural Networks. FPL 2018: 155-162 - [c5]Stylianos I. Venieris, Christos-Savvas Bouganis:
f-CNNx: A Toolflow for Mapping Multiple Convolutional Neural Networks on FPGAs. FPL 2018: 381-388 - [i8]Michalis Rizakis, Stylianos I. Venieris, Alexandros Kouris, Christos-Savvas Bouganis:
Approximate FPGA-based LSTMs under Computation Time Constraints. CoRR abs/1801.02190 (2018) - [i7]Stylianos I. Venieris, Alexandros Kouris, Christos-Savvas Bouganis:
Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions. CoRR abs/1803.05900 (2018) - [i6]Alexandros Kouris, Stylianos I. Venieris, Christos-Savvas Bouganis:
CascadeCNN: Pushing the performance limits of quantisation. CoRR abs/1805.08743 (2018) - [i5]Stylianos I. Venieris, Christos-Savvas Bouganis:
f-CNNx: A Toolflow for Mapping Multiple Convolutional Neural Networks on FPGAs. CoRR abs/1805.10174 (2018) - [i4]Stylianos I. Venieris, Alexandros Kouris, Christos-Savvas Bouganis:
Deploying Deep Neural Networks in the Embedded Space. CoRR abs/1806.08616 (2018) - [i3]Alexandros Kouris, Stylianos I. Venieris, Christos-Savvas Bouganis:
CascadeCNN: Pushing the Performance Limits of Quantisation in Convolutional Neural Networks. CoRR abs/1807.05053 (2018) - [i2]Christos Kyrkou, George Plastiras, Stylianos I. Venieris, Theocharis Theocharides, Christos-Savvas Bouganis:
DroNet: Efficient convolutional neural network detector for real-time UAV applications. CoRR abs/1807.06789 (2018) - 2017
- [c4]Stylianos I. Venieris, Christos-Savvas Bouganis:
fpgaConvNet: Automated Mapping of Convolutional Neural Networks on FPGAs (Abstract Only). FPGA 2017: 291-292 - [c3]Stylianos I. Venieris, Christos-Savvas Bouganis:
Latency-driven design for FPGA-based convolutional neural networks. FPL 2017: 1-8 - [i1]Stylianos I. Venieris, Christos-Savvas Bouganis:
fpgaConvNet: A Toolflow for Mapping Diverse Convolutional Neural Networks on Embedded FPGAs. CoRR abs/1711.08740 (2017) - 2016
- [c2]Stylianos I. Venieris, Christos-Savvas Bouganis:
fpgaConvNet: A Framework for Mapping Convolutional Neural Networks on FPGAs. FCCM 2016: 40-47 - 2015
- [c1]Stylianos I. Venieris, Grigorios Mingas, Christos-Savvas Bouganis:
Towards heterogeneous solvers for large-scale linear systems. FPL 2015: 1-8
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-05 20:42 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint