default search action
Robert M. Gower
Person information
- affiliation: Simons Foundation, Flatiron Institute, New York, NY, USA
- affiliation: Télécom Paris, Institut Polytechnique de Paris, France
- affiliation (PhD 2016): University of Edinburgh, School of Mathematics, Edinburgh, UK
- affiliation: State University of Campinas, Department of Applied Mathematics, Campinas, Brazil
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j16]Robert M. Gower, Dirk A. Lorenz, Maximilian Winkler:
A Bregman-Kaczmarz method for nonlinear systems of equations. Comput. Optim. Appl. 87(3): 1059-1098 (2024) - [j15]Robert Mansel Gower, Dirk A. Lorenz, Maximilian Winkler:
Correction: A Bregman-Kaczmarz method for nonlinear systems of equations. Comput. Optim. Appl. 88(3): 999-1000 (2024) - [c21]Bo Zhao, Robert M. Gower, Robin Walters, Rose Yu:
Improving Convergence and Generalization Using Parameter Symmetries. ICLR 2024 - [c20]Diana Cai, Chirag Modi, Loucas Pillaud-Vivien, Charles Margossian, Robert M. Gower, David M. Blei, Lawrence K. Saul:
Batch and match: black-box variational inference with a score-based divergence. ICML 2024 - [c19]Fabian Schaipp, Ruben Ohana, Michael Eickenberg, Aaron Defazio, Robert M. Gower:
MoMo: Momentum Models for Adaptive Learning Rates. ICML 2024 - [i40]Fabian Schaipp, Guillaume Garrigos, Umut Simsekli, Robert M. Gower:
SGD with Clipping is Secretly Estimating the Median Gradient. CoRR abs/2402.12828 (2024) - [i39]Diana Cai, Chirag Modi, Loucas Pillaud-Vivien, Charles C. Margossian, Robert M. Gower, David M. Blei, Lawrence K. Saul:
Batch and match: black-box variational inference with a score-based divergence. CoRR abs/2402.14758 (2024) - [i38]Aaron Mishkin, Alberto Bietti, Robert M. Gower:
Level Set Teleportation: An Optimization Perspective. CoRR abs/2403.03362 (2024) - [i37]Aaron Mishkin, Ahmed Khaled, Yuanhao Wang, Aaron Defazio, Robert M. Gower:
Directional Smoothness and Gradient Methods: Convergence and Adaptivity. CoRR abs/2403.04081 (2024) - [i36]Yunxiang Li, Rui Yuan, Chen Fan, Mark Schmidt, Samuel Horváth, Robert M. Gower, Martin Takác:
Enhancing Policy Gradient with the Polyak Step-Size Adaption. CoRR abs/2404.07525 (2024) - [i35]Diana Cai, Chirag Modi, Charles C. Margossian, Robert M. Gower, David M. Blei, Lawrence K. Saul:
EigenVI: score-based variational inference with orthogonal function expansions. CoRR abs/2410.24054 (2024) - 2023
- [j14]Ahmed Khaled, Othmane Sebbouh, Nicolas Loizou, Robert M. Gower, Peter Richtárik:
Unified Analysis of Stochastic Gradient Methods for Composite Convex and Smooth Optimization. J. Optim. Theory Appl. 199(2): 499-540 (2023) - [j13]Fabian Schaipp, Robert M. Gower, Michael Ulbrich:
A Stochastic Proximal Polyak Step Size. Trans. Mach. Learn. Res. 2023 (2023) - [c18]Shuang Li, William J. Swartworth, Martin Takác, Deanna Needell, Robert M. Gower:
SP2 : A Second Order Stochastic Polyak Method. ICLR 2023 - [c17]Rui Yuan, Simon Shaolei Du, Robert M. Gower, Alessandro Lazaric, Lin Xiao:
Linear Convergence of Natural Policy Gradient Methods with Log-Linear Policies. ICLR 2023 - [c16]Si Yi Meng, Robert M. Gower:
A Model-Based Method for Minimizing CVaR and Beyond. ICML 2023: 24436-24456 - [c15]Justin Domke, Robert M. Gower, Guillaume Garrigos:
Provable convergence guarantees for black-box variational inference. NeurIPS 2023 - [c14]Chirag Modi, Robert M. Gower, Charles Margossian, Yuling Yao, David M. Blei, Lawrence K. Saul:
Variational Inference with Gaussian Score Matching. NeurIPS 2023 - [i34]Fabian Schaipp, Robert M. Gower, Michael Ulbrich:
A Stochastic Proximal Polyak Step Size. CoRR abs/2301.04935 (2023) - [i33]Robert M. Gower, Dirk A. Lorenz, Maximilian Winkler:
A Bregman-Kaczmarz method for nonlinear systems of equations. CoRR abs/2303.08549 (2023) - [i32]Fabian Schaipp, Ruben Ohana, Michael Eickenberg, Aaron Defazio, Robert M. Gower:
MoMo: Momentum Models for Adaptive Learning Rates. CoRR abs/2305.07583 (2023) - [i31]Bo Zhao, Robert M. Gower, Robin Walters, Rose Yu:
Improving Convergence and Generalization Using Parameter Symmetries. CoRR abs/2305.13404 (2023) - [i30]Si Yi Meng, Robert M. Gower:
A Model-Based Method for Minimizing CVaR and Beyond. CoRR abs/2305.17498 (2023) - [i29]Justin Domke, Guillaume Garrigos, Robert M. Gower:
Provable convergence guarantees for black-box variational inference. CoRR abs/2306.03638 (2023) - [i28]Chirag Modi, Charles Margossian, Yuling Yao, Robert M. Gower, David M. Blei, Lawrence K. Saul:
Variational Inference with Gaussian Score Matching. CoRR abs/2307.07849 (2023) - [i27]Guillaume Garrigos, Robert M. Gower, Fabian Schaipp:
Function Value Learning: Adaptive Learning Rates Based on the Polyak Stepsize and Function Splitting in ERM. CoRR abs/2307.14528 (2023) - [i26]Farshed Abdukhakimov, Chulu Xiang, Dmitry Kamzolov, Robert M. Gower, Martin Takác:
SANIA: Polyak-type Optimization Framework Leads to Scale Invariant Stochastic Algorithms. CoRR abs/2312.17369 (2023) - 2022
- [j12]Rui Yuan, Alessandro Lazaric, Robert M. Gower:
Sketched Newton-Raphson. SIAM J. Optim. 32(3): 1555-1583 (2022) - [j11]Nidham Gazagnadou, Mark Ibrahim, Robert M. Gower:
RidgeSketch: A Fast Sketching Based Solver for Large Scale Ridge Regression. SIAM J. Matrix Anal. Appl. 43(3): 1440-1468 (2022) - [j10]Zheng Wang, Robert M. Gower, Yili Xia, Lanxin He, Yongming Huang:
Randomized Iterative Methods for Low-Complexity Large-Scale MIMO Detection. IEEE Trans. Signal Process. 70: 2934-2949 (2022) - [j9]Zheng Wang, Robert M. Gower, Cheng Zhang, Shanxiang Lyu, Yili Xia, Yongming Huang:
A Statistical Linear Precoding Scheme Based on Random Iterative Method for Massive MIMO Systems. IEEE Trans. Wirel. Commun. 21(12): 10115-10129 (2022) - [c13]Jiabin Chen, Rui Yuan, Guillaume Garrigos, Robert M. Gower:
SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums. AISTATS 2022: 279-318 - [c12]Rui Yuan, Robert M. Gower, Alessandro Lazaric:
A general sample complexity analysis of vanilla policy gradient. AISTATS 2022: 3332-3380 - [i25]Robert M. Gower, Mathieu Blondel, Nidham Gazagnadou, Fabian Pedregosa:
Cutting Some Slack for SGD with Adaptive Polyak Stepsizes. CoRR abs/2202.12328 (2022) - [i24]Shuang Li, William J. Swartworth, Martin Takác, Deanna Needell, Robert M. Gower:
SP2: A Second Order Stochastic Polyak Method. CoRR abs/2207.08171 (2022) - [i23]Rui Yuan, Simon S. Du, Robert M. Gower, Alessandro Lazaric, Lin Xiao:
Linear Convergence of Natural Policy Gradient Methods with Log-Linear Policies. CoRR abs/2210.01400 (2022) - 2021
- [j8]Robert M. Gower, Peter Richtárik, Francis R. Bach:
Stochastic quasi-gradient methods: variance reduction via Jacobian sketching. Math. Program. 188(1): 135-192 (2021) - [j7]Robert M. Gower, Denali Molitor, Jacob D. Moorman, Deanna Needell:
On Adaptive Sketch-and-Project for Solving Linear Systems. SIAM J. Matrix Anal. Appl. 42(2): 954-989 (2021) - [c11]Aaron Defazio, Robert M. Gower:
The Power of Factorial Powers: New Parameter settings for (Stochastic) Optimization. ACML 2021: 49-64 - [c10]Robert M. Gower, Othmane Sebbouh, Nicolas Loizou:
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation. AISTATS 2021: 1315-1323 - [c9]Othmane Sebbouh, Robert M. Gower, Aaron Defazio:
Almost sure convergence rates for Stochastic Gradient Descent and Stochastic Heavy Ball. COLT 2021: 3935-3971 - [i22]Jiabin Chen, Rui Yuan, Guillaume Garrigos, Robert M. Gower:
SAN: Stochastic Average Newton Algorithm for Minimizing Finite Sums. CoRR abs/2106.10520 (2021) - [i21]Robert M. Gower, Aaron Defazio, Michael G. Rabbat:
Stochastic Polyak Stepsize with a Moving Target. CoRR abs/2106.11851 (2021) - [i20]Rui Yuan, Robert M. Gower, Alessandro Lazaric:
A general sample complexity analysis of vanilla policy gradient. CoRR abs/2107.11433 (2021) - 2020
- [j6]Robert M. Gower, Mark Schmidt, Francis R. Bach, Peter Richtárik:
Variance-Reduced Methods for Machine Learning. Proc. IEEE 108(11): 1968-1983 (2020) - [i19]Dmitry Kovalev, Robert M. Gower, Peter Richtárik, Alexander Rogozin:
Fast Linear Convergence of Randomized BFGS. CoRR abs/2002.11337 (2020) - [i18]Aaron Defazio, Robert M. Gower:
Factorial Powers for Stochastic Optimization. CoRR abs/2006.01244 (2020) - [i17]Othmane Sebbouh, Robert M. Gower, Aaron Defazio:
On the convergence of the Stochastic Heavy Ball Method. CoRR abs/2006.07867 (2020) - [i16]Robert M. Gower, Othmane Sebbouh, Nicolas Loizou:
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation. CoRR abs/2006.10311 (2020) - [i15]Ahmed Khaled, Othmane Sebbouh, Nicolas Loizou, Robert M. Gower, Peter Richtárik:
Unified Analysis of Stochastic Gradient Methods for Composite Convex and Smooth Optimization. CoRR abs/2006.11573 (2020) - [i14]Rui Yuan, Alessandro Lazaric, Robert M. Gower:
Sketched Newton-Raphson. CoRR abs/2006.12120 (2020) - [i13]Robert M. Gower, Margarida P. Mello:
A new framework for the computation of Hessians. CoRR abs/2007.15040 (2020) - [i12]Robert M. Gower, Mark Schmidt, Francis R. Bach, Peter Richtárik:
Variance-Reduced Methods for Machine Learning. CoRR abs/2010.00892 (2020)
2010 – 2019
- 2019
- [c8]Nidham Gazagnadou, Robert M. Gower, Joseph Salmon:
Optimal Mini-Batch and Step Sizes for SAGA. ICML 2019: 2142-2150 - [c7]Xun Qian, Peter Richtárik, Robert M. Gower, Alibek Sailanbayev, Nicolas Loizou, Egor Shulgin:
SGD with Arbitrary Sampling: General Analysis and Improved Rates. ICML 2019: 5200-5209 - [c6]Robert M. Gower, Dmitry Kovalev, Felix Lieder, Peter Richtárik:
RSN: Randomized Subspace Newton. NeurIPS 2019: 614-623 - [c5]Othmane Sebbouh, Nidham Gazagnadou, Samy Jelassi, Francis R. Bach, Robert M. Gower:
Towards closing the gap between the theory and practice of SVRG. NeurIPS 2019: 646-656 - [i11]Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, Peter Richtárik:
SGD: General Analysis and Improved Rates. CoRR abs/1901.09401 (2019) - [i10]Nidham Gazagnadou, Robert M. Gower, Joseph Salmon:
Optimal mini-batch and step sizes for SAGA. CoRR abs/1902.00071 (2019) - [i9]Othmane Sebbouh, Nidham Gazagnadou, Samy Jelassi, Francis R. Bach, Robert M. Gower:
Towards closing the gap between the theory and practice of SVRG. CoRR abs/1908.02725 (2019) - [i8]Robert M. Gower, Denali Molitor, Jacob D. Moorman, Deanna Needell:
Adaptive Sketch-and-Project Methods for Solving Linear Systems. CoRR abs/1909.03604 (2019) - 2018
- [c4]Robert M. Gower, Nicolas Le Roux, Francis R. Bach:
Tracking the gradients using the Hessian: A new look at variance reducing stochastic methods. AISTATS 2018: 707-715 - [c3]Brahim Khalil Abid, Robert M. Gower:
Stochastic algorithms for entropy-regularized optimal transport problems. AISTATS 2018: 1505-1512 - [c2]Robert M. Gower, Filip Hanzely, Peter Richtárik, Sebastian U. Stich:
Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization. NeurIPS 2018: 1626-1636 - [i7]Robert M. Gower, Filip Hanzely, Peter Richtárik, Sebastian U. Stich:
Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization. CoRR abs/1802.04079 (2018) - [i6]Brahim Khalil Abid, Robert M. Gower:
Greedy stochastic algorithms for entropy-regularized optimal transport problems. CoRR abs/1803.01347 (2018) - 2017
- [j5]Robert M. Gower, Peter Richtárik:
Randomized Quasi-Newton Updates Are Linearly Convergent Matrix Inversion Algorithms. SIAM J. Matrix Anal. Appl. 38(4): 1380-1409 (2017) - [i5]Robert M. Gower, Nicolas Le Roux, Francis R. Bach:
Tracking the gradients using the Hessian: A new look at variance reducing stochastic methods. CoRR abs/1710.07462 (2017) - 2016
- [j4]Robert Mansel Gower, Artur L. Gower:
Higher-order reverse automatic differentiation with emphasis on the third-order. Math. Program. 155(1-2): 81-103 (2016) - [c1]Robert M. Gower, Donald Goldfarb, Peter Richtárik:
Stochastic Block BFGS: Squeezing More Curvature out of Data. ICML 2016: 1869-1878 - [i4]Robert M. Gower, Peter Richtárik:
Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms. CoRR abs/1602.01768 (2016) - 2015
- [j3]Robert Mansel Gower, Peter Richtárik:
Randomized Iterative Methods for Linear Systems. SIAM J. Matrix Anal. Appl. 36(4): 1660-1690 (2015) - [i3]Robert Mansel Gower, Peter Richtárik:
Stochastic Dual Ascent for Solving Linear Systems. CoRR abs/1512.06890 (2015) - 2014
- [j2]Robert Mansel Gower, Margarida Pinheiro Mello:
Computing the sparsity pattern of Hessians using automatic differentiation. ACM Trans. Math. Softw. 40(2): 10:1-10:15 (2014) - [i2]Robert Mansel Gower, Jacek Gondzio:
Action constrained quasi-Newton methods. CoRR abs/1412.8045 (2014) - 2013
- [i1]Robert Mansel Gower, Artur L. Gower:
Higher-order Reverse Automatic Differentiation with emphasis on the third-order. CoRR abs/1309.5479 (2013) - 2012
- [j1]Robert M. Gower, Margarida P. Mello:
A new framework for the computation of Hessians. Optim. Methods Softw. 27(2): 251-273 (2012)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 00:14 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint