default search action
Aravind Sukumaran-Rajam
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [e1]Gabriel Rodríguez, P. Sadayappan, Aravind Sukumaran-Rajam:
Proceedings of the 33rd ACM SIGPLAN International Conference on Compiler Construction, CC 2024, Edinburgh, United Kingdom, March 2-3, 2024. ACM 2024 [contents] - 2023
- [j5]Dwaipayan Choudhury, Lizhi Xiang, Aravind Sukumaran-Rajam, Anantharaman Kalyanaraman, Partha Pratim Pande:
Accelerating Graph Computations on 3D NoC-Enabled PIM Architectures. ACM Trans. Design Autom. Electr. Syst. 28(3): 30:1-30:16 (2023) - [c40]Süreyya Emre Kurt, Jinghua Yan, Aravind Sukumaran-Rajam, Prashant Pandey, P. Sadayappan:
Communication Optimization for Distributed Execution of Graph Neural Networks. IPDPS 2023: 512-523 - [c39]M. Emin Ozturk, Omid Asudeh, Gerald Sabin, P. Sadayappan, Aravind Sukumaran-Rajam:
A Performance Portability Study Using Tensor Contraction Benchmarks. IPDPS Workshops 2023: 591-600 - [c38]Lizhi Xiang, Miao Yin, Chengming Zhang, Aravind Sukumaran-Rajam, P. Sadayappan, Bo Yuan, Dingwen Tao:
TDC: Towards Extremely Efficient CNNs on GPUs via Hardware-Aware Tucker Decomposition. PPoPP 2023: 260-273 - [c37]Lizhi Xiang, Arif M. Khan, S. M. Ferdous, Aravind Sukumaran-Rajam, Mahantesh Halappanavar:
cuAlign: Scalable Network Alignment on GPU Accelerators. SC Workshops 2023: 747-755 - 2022
- [j4]Dwaipayan Choudhury, Aravind Sukumaran-Rajam, Ananth Kalyanaraman, Partha Pratim Pande:
High-Performance and Energy-Efficient 3D Manycore GPU Architecture for Accelerating Graph Analytics. ACM J. Emerg. Technol. Comput. Syst. 18(1): 18:1-18:19 (2022) - [j3]Dwaipayan Choudhury, Reet Barik, Aravind Sukumaran-Rajam, Ananth Kalyanaraman, Partha Pratim Pande:
Software/Hardware Co-design of 3D NoC-based GPU Architectures for Accelerated Graph Computations. ACM Trans. Design Autom. Electr. Syst. 27(6): 61:1-61:22 (2022) - [c36]Yufan Xu, Qiwei Yuan, Erik Curtis Barton, Rui Li, P. Sadayappan, Aravind Sukumaran-Rajam:
Effective Performance Modeling and Domain-Specific Compiler Optimization of CNNs for GPUs. PACT 2022: 252-264 - [c35]Lizhi Xiang, P. Sadayappan, Aravind Sukumaran-Rajam:
High-Performance Architecture Aware Sparse Convolutional Neural Networks for GPUs. PACT 2022: 265-278 - [c34]Yufan Xu, Saurabh Raje, Atanas Rountev, Gerald Sabin, Aravind Sukumaran-Rajam, P. Sadayappan:
Training of deep learning pipelines on memory-constrained GPUs via segmented fused-tiled execution. CC 2022: 104-116 - [c33]Miheer Vaidya, Aravind Sukumaran-Rajam, Atanas Rountev, P. Sadayappan:
Comprehensive Accelerator-Dataflow Co-design Optimization for Convolutional Neural Networks. CGO 2022: 325-335 - [c32]Süreyya Emre Kurt, Saurabh Raje, Aravind Sukumaran-Rajam, P. Sadayappan:
Sparsity-Aware Tensor Decomposition. IPDPS 2022: 952-962 - [i5]Lizhi Xiang, Miao Yin, Chengming Zhang, Aravind Sukumaran-Rajam, P. Sadayappan, Bo Yuan, Dingwen Tao:
TDC: Towards Extremely Efficient CNNs on GPUs via Hardware-Aware Tucker Decomposition. CoRR abs/2211.03715 (2022) - 2021
- [c31]Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, P. Sadayappan:
Analytical characterization and design space exploration for optimization of CNNs. ASPLOS 2021: 928-942 - [c30]Lizhi Xiang, Arif Khan, Edoardo Serra, Mahantesh Halappanavar, Aravind Sukumaran-Rajam:
cuTS: scaling subgraph isomorphism on distributed multi-GPU systems using trie based data structure. SC 2021: 69 - [c29]Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, P. Sadayappan:
Efficient Distributed Algorithms for Convolutional Neural Networks. SPAA 2021: 439-442 - [i4]Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, P. Sadayappan:
Analytical Characterization and Design Space Exploration for Optimization of CNNs. CoRR abs/2101.09808 (2021) - [i3]Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, P. Sadayappan:
Efficient distributed algorithms for Convolutional Neural Networks. CoRR abs/2105.13480 (2021) - 2020
- [c28]Gordon Euhyun Moon, J. Austin Ellis, Aravind Sukumaran-Rajam, Srinivasan Parthasarathy, P. Sadayappan:
ALO-NMF: Accelerated Locality-Optimized Non-negative Matrix Factorization. KDD 2020: 1758-1767 - [c27]Süreyya Emre Kurt, Aravind Sukumaran-Rajam, Fabrice Rastello, P. Sadayappan:
Efficient tiled sparse matrix multiplication through matrix signatures. SC 2020: 87
2010 – 2019
- 2019
- [c26]Jinsung Kim, Aravind Sukumaran-Rajam, Vineeth Thumma, Sriram Krishnamoorthy, Ajay Panyala, Louis-Noël Pouchet, Atanas Rountev, P. Sadayappan:
A Code Generator for High-Performance Tensor Contractions on GPUs. CGO 2019: 85-95 - [c25]Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard W. Vuduc, P. Sadayappan:
Load-Balanced Sparse MTTKRP on GPUs. IPDPS 2019: 123-133 - [c24]Prashant Singh Rawat, Miheer Vaidya, Aravind Sukumaran-Rajam, Atanas Rountev, Louis-Noël Pouchet, P. Sadayappan:
On Optimizing Complex Stencils on GPUs. IPDPS 2019: 641-652 - [c23]Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, P. Sadayappan:
Adaptive sparse tiling for sparse matrix multiplication. PPoPP 2019: 300-314 - [c22]Gordon Euhyun Moon, Denis Newman-Griffis, Jinsung Kim, Aravind Sukumaran-Rajam, Eric Fosler-Lussier, P. Sadayappan:
Parallel Data-Local Training for Optimizing Word2Vec Embeddings for Word and Graph Embeddings. MLHPC@SC 2019: 44-55 - [c21]Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prashant Singh Rawat, Sriram Krishnamoorthy, P. Sadayappan:
An efficient mixed-mode representation of sparse tensors. SC 2019: 49:1-49:25 - [c20]Rui Li, Aravind Sukumaran-Rajam, Richard Veras, Tze Meng Low, Fabrice Rastello, Atanas Rountev, P. Sadayappan:
Analytical cache modeling and tilesize optimization for tensor contractions. SC 2019: 74:1-74:13 - [i2]Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard W. Vuduc, P. Sadayappan:
Load-Balanced Sparse MTTKRP on GPUs. CoRR abs/1904.03329 (2019) - [i1]Gordon Euhyun Moon, Aravind Sukumaran-Rajam, Srinivasan Parthasarathy, P. Sadayappan:
PL-NMF: Parallel Locality-Optimized Non-negative Matrix Factorization. CoRR abs/1904.07935 (2019) - 2018
- [j2]Prashant Singh Rawat, Miheer Vaidya, Aravind Sukumaran-Rajam, Mahesh Ravishankar, Vinod Grover, Atanas Rountev, Louis-Noël Pouchet, P. Sadayappan:
Domain-Specific Optimization and Generation of High-Performance GPU Code for Stencil Computations. Proc. IEEE 106(11): 1902-1920 (2018) - [c19]Israt Nisa, Aravind Sukumaran-Rajam, Süreyya Emre Kurt, Changwan Hong, P. Sadayappan:
Sampled Dense Matrix Multiplication for High-Performance Machine Learning. HiPC 2018: 32-41 - [c18]Changwan Hong, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay, Jinsung Kim, Süreyya Emre Kurt, Israt Nisa, Shivani Sabhlok, Ümit V. Çatalyürek, Srinivasan Parthasarathy, P. Sadayappan:
Efficient sparse-matrix multi-vector product on GPUs. HPDC 2018: 66-79 - [c17]Gordon Euhyun Moon, Israt Nisa, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay, Srinivasan Parthasarathy, P. Sadayappan:
Parallel Latent Dirichlet Allocation on GPUs. ICCS (2) 2018: 259-272 - [c16]Jinsung Kim, Aravind Sukumaran-Rajam, Changwan Hong, Ajay Panyala, Rohit Kumar Srivastava, Sriram Krishnamoorthy, P. Sadayappan:
Optimizing Tensor Contractions in CCSD(T) for Efficient Execution on GPUs. ICS 2018: 96-106 - [c15]Jyothi Vedurada, Arjun Suresh, Aravind Sukumaran-Rajam, Jinsung Kim, Changwan Hong, Ajay Panyala, Sriram Krishnamoorthy, V. Krishna Nandivada, Rohit Kumar Srivastava, P. Sadayappan:
TTLG - An Efficient Tensor Transposition Library for GPUs. IPDPS 2018: 578-588 - [c14]Israt Nisa, Charles Siegel, Aravind Sukumaran-Rajam, Abhinav Vishnu, P. Sadayappan:
Effective Machine Learning Based Format Selection and Performance Modeling for SpMV on GPUs. IPDPS Workshops 2018: 1056-1065 - [c13]Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, Prashant Singh Rawat, Sriram Krishnamoorthy, Louis-Noël Pouchet, Fabrice Rastello, P. Sadayappan:
GPU code optimization using abstract kernel emulation and sensitivity analysis. PLDI 2018: 736-751 - [c12]Prashant Singh Rawat, Fabrice Rastello, Aravind Sukumaran-Rajam, Louis-Noël Pouchet, Atanas Rountev, P. Sadayappan:
Register optimizations for stencils on GPUs. PPoPP 2018: 168-182 - [c11]Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, Prashant Singh Rawat, Sriram Krishnamoorthy, Louis-Noël Pouchet, Fabrice Rastello, P. Sadayappan:
Performance modeling for GPUs using abstract kernel emulation. PPoPP 2018: 397-398 - [c10]Prashant Singh Rawat, Aravind Sukumaran-Rajam, Atanas Rountev, Fabrice Rastello, Louis-Noël Pouchet, P. Sadayappan:
Associative instruction reordering to alleviate register pressure. SC 2018: 46:1-46:13 - 2017
- [c9]Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, P. Sadayappan:
MultiGraph: Efficient Graph Processing on GPUs. PACT 2017: 27-40 - [c8]Prashant Singh Rawat, Aravind Sukumaran-Rajam, Atanas Rountev, Fabrice Rastello, Louis-Noël Pouchet, P. Sadayappan:
POSTER: Statement Reordering to Alleviate Register Pressure for Stencils on GPUs. PACT 2017: 158-159 - [c7]Gordon Euhyun Moon, Aravind Sukumaran-Rajam, P. Sadayappan:
Parallel LDA with Over-Decomposition. HiPC Workshops 2017: 25-31 - [c6]Süreyya Emre Kurt, Vineeth Thumma, Changwan Hong, Aravind Sukumaran-Rajam, P. Sadayappan:
Characterization of Data Movement Requirements for Sparse Matrix Computations on GPUs. HiPC 2017: 283-293 - [c5]Rakshith Kunchum, Ankur Chaudhry, Aravind Sukumaran-Rajam, Qingpeng Niu, Israt Nisa, P. Sadayappan:
On improving performance of sparse matrix-matrix multiplication on GPUs. ICS 2017: 14:1-14:11 - [c4]Israt Nisa, Aravind Sukumaran-Rajam, Rakshith Kunchum, P. Sadayappan:
Parallel CCD++ on GPU for Matrix Factorization. GPGPU@PPoPP 2017: 73-83 - 2016
- [j1]Aravind Sukumaran-Rajam, Philippe Clauss:
The Polyhedral Model of Nonlinear Loops. ACM Trans. Archit. Code Optim. 12(4): 48:1-48:27 (2016) - 2015
- [b1]Aravind Sukumaran-Rajam:
Beyond the Realm of the Polyhedral Model: Combining Speculative Program Parallelization with Polyhedral Compilation. (Au delà des limites du modèle polyédrique: en combinant la parallélisation spéculative de programmes et la compilation polyédrique). University of Strasbourg, France, 2015 - [c3]Aravind Sukumaran-Rajam, Luis Esteban Campostrini, Juan Manuel Martinez Caamaño, Philippe Clauss:
Speculative Runtime Parallelization of Loop Nests: Towards Greater Scope and Efficiency. IPDPS Workshops 2015: 245-254 - 2014
- [c2]Aravind Sukumaran-Rajam, Juan Manuel Martinez Caamaño, Willy Wolff, Alexandra Jimborean, Philippe Clauss:
Speculative Program Parallelization with Scalable and Decentralized Runtime Verification. RV 2014: 124-139 - 2013
- [c1]Alexandra Jimborean, Philippe Clauss, Juan Manuel Martinez Caamaño, Aravind Sukumaran-Rajam:
Online Dynamic Dependence Analysis for Speculative Polyhedral Parallelization. Euro-Par 2013: 191-202
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-08-05 20:21 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint