default search action
Paolo Cremonesi
Person information
- affiliation: Politecnico di Milano, Italy
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c147]Andrea Pasin, Maurizio Ferrari Dacrema, Paolo Cremonesi, Nicola Ferro:
Overview of QuantumCLEF 2024: The Quantum Computing Challenge for Information Retrieval and Recommender Systems at CLEF. CLEF (2) 2024: 260-282 - [c146]Andrea Pasin, Maurizio Ferrari Dacrema, Paolo Cremonesi, Nicola Ferro:
QuantumCLEF 2024: Overview of the Quantum Computing Challenge for Information Retrieval and Recommender Systems at CLEF. CLEF (Working Notes) 2024: 3032-3053 - [c145]Maurizio Ferrari Dacrema, Andrea Pasin, Paolo Cremonesi, Nicola Ferro:
Quantum Computing for Information Retrieval and Recommender Systems. ECIR (5) 2024: 358-362 - [c144]Andrea Pasin, Maurizio Ferrari Dacrema, Paolo Cremonesi, Nicola Ferro:
QuantumCLEF - Quantum Computing at CLEF. ECIR (5) 2024: 482-489 - [c143]Nicola Cecere, Andrea Pisani, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Leveraging Semantic Embeddings of User Reviews with Off-the-Shelf LLMs for Recommender Systems. IIR 2024: 87-90 - [c142]Andrea Pisani, Nicola Cecere, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Pre-Trained LLM Embeddings of Product Reviews for Recommendation. IIR 2024: 91-94 - [c141]Maurizio Ferrari Dacrema, Andrea Pasin, Paolo Cremonesi, Nicola Ferro:
Using and Evaluating Quantum Computing for Information Retrieval and Recommender Systems. SIGIR 2024: 3017-3020 - [i30]Costantino Carugno, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Adaptive Learning for Quantum Linear Regression. CoRR abs/2408.02833 (2024) - [i29]Simone Foderà, Gloria Turati, Riccardo Nembrini, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Reinforcement Learning for Variational Quantum Circuits Design. CoRR abs/2409.05475 (2024) - 2023
- [j34]Luca Benedetto, Paolo Cremonesi, Andrew Caines, Paula Buttery, Andrea Cappelli, Andrea Giussani, Roberto Turrin:
A Survey on Recent Approaches to Question Difficulty Estimation from Text. ACM Comput. Surv. 55(9): 178:1-178:37 (2023) - [j33]Maurizio Ferrari Dacrema, Pablo Castells, Justin Basilico, Paolo Cremonesi:
Report on the Workshop on Learning and Evaluating Recommendations with Impressions (LERI) at RecSys 2023. SIGIR Forum 57(2): 19:1-19:8 (2023) - [c140]Andrea Pasin, Maurizio Ferrari Dacrema, Paolo Cremonesi, Nicola Ferro:
qCLEF: A Proposal to Evaluate Quantum Annealing for Information Retrieval and Recommender Systems. CLEF 2023: 97-108 - [c139]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Pablo Castells, Paolo Cremonesi:
Impressions in Recommender Systems: Present and Future. IIR 2023: 97-104 - [c138]Riccardo Pellini, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Towards Improved QUBO Formulations of IR Tasks for Quantum Annealers. IIR 2023: 137-142 - [c137]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Pablo Castells, Paolo Cremonesi:
Characterizing Impression-Aware Recommender Systems. LERI@RecSys 2023: 22-33 - [c136]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Pablo Castells, Paolo Cremonesi:
Incorporating Impressions to Graph-Based Recommenders. LERI@RecSys 2023: 62-67 - [c135]Gloria Turati, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Benchmarking Adaptative Variational Quantum Algorithms on QUBO Instances. QCE 2023: 407-413 - [c134]Maurizio Ferrari Dacrema, Pablo Castells, Justin Basilico, Paolo Cremonesi:
Workshop on Learning and Evaluating Recommendations with Impressions (LERI). RecSys 2023: 1248-1251 - [c133]Alessandro Barenghi, Paolo Cremonesi, Gerardo Pelosi:
Quantum Computing Research Lines in the Italian Center for Supercomputing. SAMOS 2023: 423-434 - [e4]Maurizio Ferrari Dacrema, Pablo Castells, Justin Basilico, Paolo Cremonesi:
Proceedings of the Workshop on Learning and Evaluating Recommendations with Impressions co-located with the 17th ACM Conference on Recommender Systems (RecSys 2023), Singapore, September 19th, 2023. CEUR Workshop Proceedings 3590, CEUR-WS.org 2023 [contents] - [i28]Gloria Turati, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Benchmarking Adaptative Variational Quantum Algorithms on QUBO Instances. CoRR abs/2308.01789 (2023) - [i27]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Pablo Castells, Paolo Cremonesi:
Impression-Aware Recommender Systems. CoRR abs/2308.07857 (2023) - 2022
- [j32]Cesare Bernardis, Maurizio Ferrari Dacrema, Fernando Benjamín Pérez Maurera, Massimo Quadrana, Mario Scriminaci, Paolo Cremonesi:
From Data Analysis to Intent-Based Recommendation: An Industrial Case Study in the Video Domain. IEEE Access 10: 14779-14796 (2022) - [j31]Maurizio Ferrari Dacrema, Nicolò Felicioni, Paolo Cremonesi:
Offline Evaluation of Recommender Systems in a User Interface With Multiple Carousels. Frontiers Big Data 5: 910030 (2022) - [j30]Edoardo D'Amico, Giovanni Gabbolini, Cesare Bernardis, Paolo Cremonesi:
Analyzing and improving stability of matrix factorization for recommender systems. J. Intell. Inf. Syst. 58(2): 255-285 (2022) - [j29]João Vinagre, Alípio Mário Jorge, Marie Al-Ghossein, Albert Bifet, Paolo Cremonesi:
Preface to the special issue on dynamic recommender systems and user models. User Model. User Adapt. Interact. 32(4): 503-507 (2022) - [j28]Cesare Bernardis, Paolo Cremonesi:
NFC: a deep and hybrid item-based model for item cold-start recommendation. User Model. User Adapt. Interact. 32(4): 747-780 (2022) - [c132]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
An Evaluation Study of Generative Adversarial Networks for Collaborative Filtering. ECIR (1) 2022: 671-685 - [c131]Maurizio Ferrari Dacrema, Nicolò Felicioni, Paolo Cremonesi:
Evaluating Recommendations in a User Interface With Multiple Carousels. IIR 2022 - [c130]Maurizio Ferrari Dacrema, Fabio Moroni, Riccardo Nembrini, Nicola Ferro, Guglielmo Faggioli, Paolo Cremonesi:
Feature Selection via Quantum Annealers for Ranking and Classification Tasks. IIR 2022 - [c129]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Replication of Collaborative Filtering Generative Adversarial Networks on Recommender Systems. IIR 2022 - [c128]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Replication of Recommender Systems with Impressions. IIR 2022 - [c127]Nicolò Felicioni, Maurizio Ferrari Dacrema, Marcello Restelli, Paolo Cremonesi:
Off-Policy Evaluation with Deficient Support Using Side Information. NeurIPS 2022 - [c126]Pietro Chiavassa, Andrea Marchesin, Ignazio Pedone, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Virtual Network Function Embedding with Quantum Annealing. QCE 2022: 282-291 - [c125]Gloria Turati, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Feature Selection for Classification with QAOA. QCE 2022: 782-785 - [c124]Riccardo Nembrini, Costantino Carugno, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Towards Recommender Systems with Community Detection and Quantum Computing. RecSys 2022: 579-585 - [c123]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Towards the Evaluation of Recommender Systems with Impressions. RecSys 2022: 610-615 - [c122]Ervin Dervishaj, Paolo Cremonesi:
GAN-based matrix factorization for recommender systems. SAC 2022: 1373-1381 - [c121]Matteo Montanari, Cesare Bernardis, Paolo Cremonesi:
On the impact of data sampling on hyper-parameter optimisation of recommendation algorithms. SAC 2022: 1399-1402 - [c120]Maurizio Ferrari Dacrema, Fabio Moroni, Riccardo Nembrini, Nicola Ferro, Guglielmo Faggioli, Paolo Cremonesi:
Towards Feature Selection for Ranking and Classification Exploiting Quantum Annealers. SIGIR 2022: 2814-2824 - [c119]Federico Rios, Paolo Rizzo, Francesco Puddu, Federico Romeo, Andrea Lentini, Giuseppe Asaro, Filippo Rescalli, Cristiana Bolchini, Paolo Cremonesi:
Recommending Relevant Papers to Conference Participants: a Deep Learning Driven Content-based Approach. UMAP (Adjunct Publication) 2022: 52-57 - [e3]Gabriella Pasi, Paolo Cremonesi, Salvatore Orlando, Markus Zanker, David Massimo, Gloria Turati:
Proceedings of the 12th Italian Information Retrieval Workshop 2022, Milan, Italy, June 29-30, 2022. CEUR Workshop Proceedings 3177, CEUR-WS.org 2022 [contents] - [r3]Dietmar Jannach, Massimo Quadrana, Paolo Cremonesi:
Session-Based Recommender Systems. Recommender Systems Handbook 2022: 301-334 - [r2]Maurizio Ferrari Dacrema, Iván Cantador, Ignacio Fernández-Tobías, Shlomo Berkovsky, Paolo Cremonesi:
Design and Evaluation of Cross-Domain Recommender Systems. Recommender Systems Handbook 2022: 485-516 - [d2]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
An Evaluation of Generative Adversarial Networks for Collaborative Filtering - Supplemental Material. Version v1.0.1-ecir-2022-camera-ready-prep. Zenodo, 2022 [all versions] - [d1]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
An Evaluation Study of Generative Adversarial Networks for Collaborative Filtering - Supplemental Material. Version v1.1.1-ecir-2022-camera-ready. Zenodo, 2022 [all versions] - [i26]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi:
An Evaluation Study of Generative Adversarial Networks for Collaborative Filtering. CoRR abs/2201.01815 (2022) - [i25]Ervin Dervishaj, Paolo Cremonesi:
GAN-based Matrix Factorization for Recommender Systems. CoRR abs/2201.08042 (2022) - [i24]Maurizio Ferrari Dacrema, Fabio Moroni, Riccardo Nembrini, Nicola Ferro, Guglielmo Faggioli, Paolo Cremonesi:
Towards Feature Selection for Ranking and Classification Exploiting Quantum Annealers. CoRR abs/2205.04346 (2022) - [i23]Gloria Turati, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Feature Selection for Classification with QAOA. CoRR abs/2211.02861 (2022) - 2021
- [j27]Paolo Cremonesi, Dietmar Jannach:
Progress in Recommender Systems Research: Crisis? What Crisis? AI Mag. 42(3): 43-54 (2021) - [j26]Yashar Deldjoo, Markus Schedl, Paolo Cremonesi, Gabriella Pasi:
Recommender Systems Leveraging Multimedia Content. ACM Comput. Surv. 53(5): 106:1-106:38 (2021) - [j25]Riccardo Nembrini, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Feature Selection for Recommender Systems with Quantum Computing. Entropy 23(8): 970 (2021) - [j24]Stefano Cereda, Stefano Valladares, Paolo Cremonesi, Stefano Doni:
CGPTuner: a Contextual Gaussian Process Bandit Approach for the Automatic Tuning of IT Configurations Under Varying Workload Conditions. Proc. VLDB Endow. 14(8): 1401-1413 (2021) - [j23]Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, Dietmar Jannach:
A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research. ACM Trans. Inf. Syst. 39(2): 20:1-20:49 (2021) - [c118]Luca Benedetto, Giovanni Aradelli, Paolo Cremonesi, Andrea Cappelli, Andrea Giussani, Roberto Turrin:
On the application of Transformers for estimating the difficulty of Multiple-Choice Questions from text. BEA@EACL 2021: 147-157 - [c117]Nicolò Felicioni, Maurizio Ferrari Dacrema, Fernando Benjamín Pérez Maurera, Paolo Cremonesi:
Measuring the Ranking Quality of Recommendations in a Two-Dimensional Carousel Setting. IIR 2021 - [c116]Ekaterina Loginova, Luca Benedetto, Dries F. Benoit, Paolo Cremonesi:
Towards the Application of Calibrated Transformers to the Unsupervised Estimation of Question Difficulty from Text. RANLP 2021: 846-855 - [c115]Cesare Bernardis, Paolo Cremonesi:
Eigenvalue Perturbation for Item-based Recommender Systems. RecSys 2021: 656-660 - [c114]Maurizio Ferrari Dacrema, Nicolò Felicioni, Paolo Cremonesi:
Optimizing the Selection of Recommendation Carousels with Quantum Computing. RecSys 2021: 691-696 - [c113]Giovanni Gabbolini, Edoardo D'Amico, Cesare Bernardis, Paolo Cremonesi:
On the instability of embeddings for recommender systems: the case of matrix factorization. SAC 2021: 1363-1370 - [c112]Nicolò Felicioni, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Measuring the User Satisfaction in a Recommendation Interface with Multiple Carousels. IMX 2021: 212-217 - [c111]Nicolò Felicioni, Maurizio Ferrari Dacrema, Paolo Cremonesi:
A Methodology for the Offline Evaluation of Recommender Systems in a User Interface with Multiple Carousels. UMAP (Adjunct Publication) 2021: 10-15 - [i22]Giovanni Gabbolini, Edoardo D'Amico, Cesare Bernardis, Paolo Cremonesi:
On the instability of embeddings for recommender systems: the case of Matrix Factorization. CoRR abs/2104.05796 (2021) - [i21]Nicolò Felicioni, Maurizio Ferrari Dacrema, Paolo Cremonesi:
A Methodology for the Offline Evaluation of Recommender Systems in a User Interface with Multiple Carousels. CoRR abs/2105.06275 (2021) - [i20]Nicolò Felicioni, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Measuring the User Satisfaction in a Recommendation Interface with Multiple Carousels. CoRR abs/2105.07062 (2021) - [i19]Riccardo Nembrini, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Feature Selection for Recommender Systems with Quantum Computing. CoRR abs/2110.05089 (2021) - 2020
- [c110]Luca Benedetto, Andrea Cappelli, Roberto Turrin, Paolo Cremonesi:
Introducing a Framework to Assess Newly Created Questions with Natural Language Processing. AIED (1) 2020: 43-54 - [c109]Gabriele Prato, Federico Sallemi, Paolo Cremonesi, Mario Scriminaci, Stefan Gudmundsson, Silvio Palumbo:
Outfit Completion and Clothes Recommendation. CHI Extended Abstracts 2020: 1-7 - [c108]Maurizio Ferrari Dacrema, Federico Parroni, Paolo Cremonesi, Dietmar Jannach:
Critically Examining the Claimed Value of Convolutions over User-Item Embedding Maps for Recommender Systems. CIKM 2020: 355-363 - [c107]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Lorenzo Saule, Mario Scriminaci, Paolo Cremonesi:
ContentWise Impressions: An Industrial Dataset with Impressions Included. CIKM 2020: 3093-3100 - [c106]Maurizio Ferrari Dacrema, Paolo Cremonesi, Dietmar Jannach:
Methodological Issues in Recommender Systems Research (Extended Abstract). IJCAI 2020: 4706-4710 - [c105]Luca Benedetto, Andrea Cappelli, Roberto Turrin, Paolo Cremonesi:
R2DE: a NLP approach to estimating IRT parameters of newly generated questions. LAK 2020: 412-421 - [c104]Stefano Cereda, Gianluca Palermo, Paolo Cremonesi, Stefano Doni:
A Collaborative Filtering Approach for the Automatic Tuning of Compiler Optimisations. LCTES 2020: 15-25 - [i18]Luca Benedetto, Andrea Cappelli, Roberto Turrin, Paolo Cremonesi:
R2DE: a NLP approach to estimating IRT parameters of newly generated questions. CoRR abs/2001.07569 (2020) - [i17]Luca Benedetto, Andrea Cappelli, Roberto Turrin, Paolo Cremonesi:
Introducing a framework to assess newly created questions with Natural Language Processing. CoRR abs/2004.13530 (2020) - [i16]Stefano Cereda, Gianluca Palermo, Paolo Cremonesi, Stefano Doni:
A Collaborative Filtering Approach for the Automatic Tuning of Compiler Optimisations. CoRR abs/2005.04092 (2020) - [i15]Maurizio Ferrari Dacrema, Federico Parroni, Paolo Cremonesi, Dietmar Jannach:
Critically Examining the Claimed Value of Convolutions over User-Item Embedding Maps for Recommender Systems. CoRR abs/2007.11893 (2020) - [i14]Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Lorenzo Saule, Mario Scriminaci, Paolo Cremonesi:
ContentWise Impressions: An industrial dataset with impressions included. CoRR abs/2008.01212 (2020)
2010 – 2019
- 2019
- [j22]Yashar Deldjoo, Maurizio Ferrari Dacrema, Mihai Gabriel Constantin, Hamid Eghbal-zadeh, Stefano Cereda, Markus Schedl, Bogdan Ionescu, Paolo Cremonesi:
Movie genome: alleviating new item cold start in movie recommendation. User Model. User Adapt. Interact. 29(2): 291-343 (2019) - [c103]Luca Benedetto, Paolo Cremonesi:
Rexy, A Configurable Application for Building Virtual Teaching Assistants. INTERACT (2) 2019: 233-241 - [c102]Paolo Cremonesi:
A pragmatic and industry-aware approach toward the design of on-line recommender systems. ORSUM@RecSys 2019: 1 - [c101]Luca Luciano Costanzo, Yashar Deldjoo, Maurizio Ferrari Dacrema, Markus Schedl, Paolo Cremonesi:
Towards Evaluating User Profiling Methods Based on Explicit Ratings on Item Features. IntRS@RecSys 2019: 72-76 - [c100]Maurizio Ferrari Dacrema, Paolo Cremonesi, Dietmar Jannach:
Are we really making much progress? A worrying analysis of recent neural recommendation approaches. RecSys 2019: 101-109 - [c99]Cesare Bernardis, Maurizio Ferrari Dacrema, Paolo Cremonesi:
Estimating Confidence of Individual User Predictions in Item-based Recommender Systems. UMAP 2019: 149-156 - [c98]Massimo Quadrana, Dietmar Jannach, Paolo Cremonesi:
Tutorial: Sequence-Aware Recommender Systems. WWW (Companion Volume) 2019: 1316 - [i13]Luca Benedetto, Paolo Cremonesi, Manuel Parenti:
A Virtual Teaching Assistant for Personalized Learning. CoRR abs/1902.09289 (2019) - [i12]Maurizio Ferrari Dacrema, Paolo Cremonesi, Dietmar Jannach:
Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches. CoRR abs/1907.06902 (2019) - [i11]Luca Luciano Costanzo, Yashar Deldjoo, Maurizio Ferrari Dacrema, Markus Schedl, Paolo Cremonesi:
Towards Evaluating User Profiling Methods Based on Explicit Ratings on Item Features. CoRR abs/1908.11055 (2019) - [i10]Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, Dietmar Jannach:
A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research. CoRR abs/1911.07698 (2019) - 2018
- [j21]Massimo Quadrana, Paolo Cremonesi, Dietmar Jannach:
Sequence-Aware Recommender Systems. ACM Comput. Surv. 51(4): 66:1-66:36 (2018) - [j20]Yashar Deldjoo, Mehdi Elahi, Massimo Quadrana, Paolo Cremonesi:
Using visual features based on MPEG-7 and deep learning for movie recommendation. Int. J. Multim. Inf. Retr. 7(4): 207-219 (2018) - [c97]Luca Benedetto, Paolo Cremonesi, Manuel Parenti:
A Virtual Teaching Assistant for Personalized Learning. CIKM Workshops 2018 - [c96]Yashar Deldjoo, Markus Schedl, Paolo Cremonesi, Gabriella Pasi:
Content-Based Multimedia Recommendation Systems: Definition and Application Domains. IIR 2018 - [c95]Yashar Deldjoo, Mihai Gabriel Constantin, Bogdan Ionescu, Markus Schedl, Paolo Cremonesi:
MMTF-14K: a multifaceted movie trailer feature dataset for recommendation and retrieval. MMSys 2018: 450-455 - [c94]Maurizio Ferrari Dacrema, Alberto Gasparin, Paolo Cremonesi:
Deriving Item Features Relevance from Collaborative Domain Knowledge. KaRS@RecSys 2018: 1-4 - [c93]Yashar Deldjoo, Mihai Gabriel Constantin, Hamid Eghbal-Zadeh, Bogdan Ionescu, Markus Schedl, Paolo Cremonesi:
Audio-visual encoding of multimedia content for enhancing movie recommendations. RecSys 2018: 455-459 - [c92]Massimo Quadrana, Paolo Cremonesi:
Sequence-aware recommendation. RecSys 2018: 539-540 - [c91]Massimo Quadrana, Paolo Cremonesi, Dietmar Jannach:
Sequence-aware Recommender Systems. UMAP 2018: 373-374 - [p4]Paolo Cremonesi, Franca Garzotto, Maurizio Ferrari Dacrema:
User Preference Sources: Explicit vs. Implicit Feedback. Collaborative Recommendations 2018: 233-252 - [i9]Paolo Cremonesi, Chiara Francalanci, Alessandro Poli, Roberto Pagano, Luca Mazzoni, Alberto Maggioni, Mehdi Elahi:
Social Network based Short-Term Stock Trading System. CoRR abs/1801.05295 (2018) - [i8]Massimo Quadrana, Paolo Cremonesi, Dietmar Jannach:
Sequence-Aware Recommender Systems. CoRR abs/1802.08452 (2018) - [i7]Cesare Bernardis, Maurizio Ferrari Dacrema, Paolo Cremonesi:
A novel graph-based model for hybrid recommendations in cold-start scenarios. CoRR abs/1808.10664 (2018) - [i6]Maurizio Ferrari Dacrema, Paolo Cremonesi:
Eigenvalue analogy for confidence estimation in item-based recommender systems. CoRR abs/1809.02052 (2018) - [i5]Maurizio Ferrari Dacrema, Alberto Gasparin, Paolo Cremonesi:
Deriving item features relevance from collaborative domain knowledge. CoRR abs/1811.01905 (2018) - 2017
- [j19]Paolo Cremonesi, Mehdi Elahi, Franca Garzotto:
User interface patterns in recommendation-empowered content intensive multimedia applications. Multim. Tools Appl. 76(4): 5275-5309 (2017) - [c90]Yashar Deldjoo, Paolo Cremonesi, Markus Schedl, Massimo Quadrana:
The effect of different video summarization models on the quality of video recommendation based on low-level visual features. CBMI 2017: 20:1-20:6 - [c89]Yashar Deldjoo, Cristina Frà, Massimo Valla, Paolo Cremonesi:
Letting Users Assist What to Watch: An Interactive Query-by-Example Movie Recommendation System. IIR 2017: 63-66 - [c88]Stefano Cereda, Leonardo Cella, Paolo Cremonesi:
Estimate Features Relevance for Groups of Users. IIR 2017: 80-83 - [c87]Leonardo Cella, Romaric Gaudel, Paolo Cremonesi:
Kernalized Collaborative Contextual Bandits. RecSys Posters 2017 - [c86]Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, Paolo Cremonesi:
Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks. RecSys 2017: 130-137 - [c85]Mehdi Elahi, Yashar Deldjoo, Farshad Bakhshandegan Moghaddam, Leonardo Cella, Stefano Cereda, Paolo Cremonesi:
Exploring the Semantic Gap for Movie Recommendations. RecSys 2017: 326-330 - [c84]Andreu Vall, Massimo Quadrana, Markus Schedl, Gerhard Widmer, Paolo Cremonesi:
The Importance of Song Context in Music Playlists. RecSys Posters 2017 - [c83]Leonardo Cella, Stefano Cereda, Massimo Quadrana, Paolo Cremonesi:
Deriving Item Features Relevance from Past User Interactions. UMAP 2017: 275-279 - [e2]Paolo Cremonesi, Francesco Ricci, Shlomo Berkovsky, Alexander Tuzhilin:
Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys 2017, Como, Italy, August 27-31, 2017. ACM 2017, ISBN 978-1-4503-4652-8 [contents] - [i4]Roberto Pagano, Massimo Quadrana, Mehdi Elahi, Paolo Cremonesi:
Toward Active Learning in Cross-domain Recommender Systems. CoRR abs/1701.02021 (2017) - [i3]Yashar Deldjoo, Massimo Quadrana, Mehdi Elahi, Paolo Cremonesi:
Using Mise-En-Scène Visual Features based on MPEG-7 and Deep Learning for Movie Recommendation. CoRR abs/1704.06109 (2017) - [i2]Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, Paolo Cremonesi:
Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks. CoRR abs/1706.04148 (2017) - 2016
- [j18]Giuliano Casale, Andrea Sansottera, Paolo Cremonesi:
Compact Markov-modulated models for multiclass trace fitting. Eur. J. Oper. Res. 255(3): 822-833 (2016) - [j17]Yashar Deldjoo, Mehdi Elahi, Paolo Cremonesi, Franca Garzotto, Pietro Piazzolla, Massimo Quadrana:
Content-Based Video Recommendation System Based on Stylistic Visual Features. J. Data Semant. 5(2): 99-113 (2016) - [j16]Paolo Cremonesi, Alan Said, Domonkos Tikk, Michelle X. Zhou:
Introduction to the Special Issue on Recommender System Benchmarking. ACM Trans. Intell. Syst. Technol. 7(3): 38:1-38:4 (2016) - [c82]Paolo Cremonesi, Antonella Di Rienzo, Franca Garzotto, Luigi Oliveto, Pietro Piazzolla:
Smart Lighting for Fashion Store Windows. AVI 2016: 13-20 - [c81]Antonella Di Rienzo, Paolo Tagliaferri, Francesco Arenella, Franca Garzotto, Cristina Frà, Paolo Cremonesi, Massimo Valla:
Bridging Physical Space and Digital Landscape to Drive Retail Innovation. AVI 2016: 356-357 - [c80]Yashar Deldjoo, Mehdi Elahi, Paolo Cremonesi, Franca Garzotto, Pietro Piazzolla:
Recommending Movies Based on Mise-en-Scene Design. CHI Extended Abstracts 2016: 1540-1547 - [c79]Paolo Cremonesi, Antonella Di Rienzo, Franca Garzotto, Luigi Oliveto, Pietro Piazzolla:
Dynamic and Interactive Lighting for Fashion Store Windows. CHI Extended Abstracts 2016: 2257-2263 - [c78]Paolo Cremonesi, Franca Garzotto, Marco Gribaudo, Pietro Piazzolla, Mauro Iacono:
vMannequin: A Fashion Store Concept Design Tool. ECMS 2016: 527-533 - [c77]Yashar Deldjoo, Mehdi Elahi, Paolo Cremonesi, Farshad Bakhshandegan Moghaddam, Andrea Luigi Edoardo Caielli:
How to Combine Visual Features with Tags to Improve Movie Recommendation Accuracy? EC-Web 2016: 34-45 - [c76]Mattia Brusamento, Roberto Pagano, Martha A. Larson, Paolo Cremonesi:
Explicit Elimination of Similarity Blocking for Session-based Recommendation. RecSys Posters 2016 - [c75]Tommaso Carpi, Marco Edemanti, Ervin Kamberoski, Elena Sacchi, Paolo Cremonesi, Roberto Pagano, Massimo Quadrana:
Multi-stack ensemble for job recommendation. RecSys Challenge 2016: 8:1-8:4 - [c74]Yashar Deldjoo, Mehdi Elahi, Paolo Cremonesi:
Using Visual Features and Latent Factors for Movie Recommendation. CBRecSys@RecSys 2016: 15-18 - [c73]Tamas Motajcsek, Jean-Yves Le Moine, Martha A. Larson, Daniel Kohlsdorf, Andreas Lommatzsch, Domonkos Tikk, Omar Alonso, Paolo Cremonesi, Andrew M. Demetriou, Kristaps Dobrajs, Franca Garzotto, Ayse Göker, Frank Hopfgartner, Davide Malagoli, Thuy Ngoc Nguyen, Jasminko Novak, Francesco Ricci, Mario Scriminaci, Marko Tkalcic, Anna Zacchi:
Algorithms Aside: Recommendation As The Lens Of Life. RecSys 2016: 215-219 - [c72]Roberto Pagano, Paolo Cremonesi, Martha A. Larson, Balázs Hidasi, Domonkos Tikk, Alexandros Karatzoglou, Massimo Quadrana:
The Contextual Turn: from Context-Aware to Context-Driven Recommender Systems. RecSys 2016: 249-252 - [i1]Yashar Deldjoo, Shengping Zhang, Bahman Zanj, Paolo Cremonesi, Matteo Matteucci:
Sparse vs. Non-sparse: Which One Is Better for Practical Visual Tracking? CoRR abs/1608.00168 (2016) - 2015
- [c71]Paolo Cremonesi, Mehdi Elahi, Franca Garzotto:
Interaction Design Patterns in Recommender Systems. CHItaly 2015: 66-73 - [c70]Yashar Deldjoo, Mehdi Elahi, Massimo Quadrana, Paolo Cremonesi, Franca Garzotto:
Toward Effective Movie Recommendations Based on Mise-en-Scène Film Styles. CHItaly 2015: 162-165 - [c69]Paolo Cremonesi, Franca Garzotto, Matteo Guarnerio, Francesco Gusmeroli, Roberto Pagano:
Decision Making through Polarized Summarization of User Reviews. DMRS 2015: 37-40 - [c68]Mona Naseri, Mehdi Elahi, Paolo Cremonesi:
Investigating the Decision Making Process of Users based on the PoliMovie Dataset. DMRS 2015: 41-44 - [c67]Yashar Deldjoo, Mehdi Elahi, Massimo Quadrana, Paolo Cremonesi:
Toward Building a Content-Based Video Recommendation System Based on Low-Level Features. EC-Web 2015: 45-56 - [c66]Paolo Cremonesi, Primo Modica, Roberto Pagano, Emanuele Rabosio, Letizia Tanca:
Personalized and Context-Aware TV Program Recommendations Based on Implicit Feedback. EC-Web 2015: 57-68 - [c65]Antonella Di Rienzo, Franca Garzotto, Paolo Cremonesi, Cristina Frà, Massimo Valla:
Towards a smart retail environment. UbiComp/ISWC Adjunct 2015: 779-782 - [c64]Antonella Di Rienzo, Franca Garzotto, Paolo Cremonesi, Cristina Frà, Massimo Valla:
Integrated Interaction with Large and Small Devices. FutureMobileUI@MobiSys 2015: 9-11 - [c63]Roberto Turrin, Massimo Quadrana, Andrea Condorelli, Roberto Pagano, Paolo Cremonesi:
30Music Listening and Playlists Dataset. RecSys Posters 2015 - [c62]Franca Garzotto, Antonella Di Rienzo, Ayse Naciye Çelebi Yilmaz, Luigi Oliveto, Paolo Cremonesi, Cristina Frà, Massimo Valla:
Making Fashion More Trendy through Touchless Interactive Displays Integrated with Mobile Devices. ITS 2015: 429-432 - [r1]Iván Cantador, Ignacio Fernández-Tobías, Shlomo Berkovsky, Paolo Cremonesi:
Cross-Domain Recommender Systems. Recommender Systems Handbook 2015: 919-959 - 2014
- [j15]Paolo Cremonesi, Andrea Sansottera:
Indirect estimation of service demands in the presence of structural changes. Perform. Evaluation 73: 18-40 (2014) - [c61]Paolo Cremonesi, Antonella Di Rienzo, Cristina Frà, Franca Garzotto, Luigi Oliveto, Massimo Valla:
Personalized interaction on large displays: the StreetSmart project approach. AVI 2014: 353-354 - [c60]Paolo Cremonesi, Raffaele Facendola, Franca Garzotto, Matteo Guarnerio, Mattia Natali, Roberto Pagano:
Polarized review summarization as decision making tool. AVI 2014: 355-356 - [c59]Alessandro Bozzon, Lora Aroyo, Paolo Cremonesi:
First International Workshop on User Interfaces for Crowdsourcing and Human Computation. AVI 2014: 398-400 - [c58]Paolo Cremonesi, Massimo Quadrana:
Cross-domain recommendations without overlapping data: myth or reality? RecSys 2014: 297-300 - [c57]Martha A. Larson, Paolo Cremonesi, Alexandros Karatzoglou:
Overview of ACM RecSys CrowdRec 2014 workshop: crowdsourcing and human computation for recommender systems. RecSys 2014: 381-382 - [c56]Panagiotis Adamopoulos, Alejandro Bellogín, Pablo Castells, Paolo Cremonesi, Harald Steck:
REDD 2014 - international workshop on recommender systems evaluation: dimensions and design. RecSys 2014: 393-394 - [c55]Iván Cantador, Paolo Cremonesi:
Tutorial on cross-domain recommender systems. RecSys 2014: 401-402 - [c54]Alan Said, Martha A. Larson, Domonkos Tikk, Paolo Cremonesi, Alexandros Karatzoglou, Frank Hopfgartner, Roberto Turrin, Joost Geurts:
User-Item Reciprocity in Recommender Systems: Incentivizing the Crowd. UMAP Workshops 2014 - [c53]Paolo Cremonesi, Franca Garzotto, Roberto Pagano, Massimo Quadrana:
Recommending without short head. WWW (Companion Volume) 2014: 245-246 - [p3]Alan Said, Domonkos Tikk, Paolo Cremonesi:
Benchmarking - A Methodology for Ensuring the Relative Quality of Recommendation Systems in Software Engineering. Recommendation Systems in Software Engineering 2014: 275-300 - 2013
- [j14]Eugenio Capra, Paolo Cremonesi, Chiara Francalanci, Francesco Merlo, Nicola Parolini:
EnergIT: A Methodology for the Incremental Green Design of Data Centers. Int. J. Green Comput. 4(1): 83-111 (2013) - [c52]Andrea Sansottera, Giuliano Casale, Paolo Cremonesi:
Fitting second-order acyclic Marked Markovian Arrival Processes. DSN 2013: 1-12 - [c51]Paolo Cremonesi, Franca Garzotto:
Smoothly Extending e-Tourism Services with Personalized Recommendations: A Case Study. EC-Web 2013: 174-181 - [c50]Paolo Cremonesi, Roberto Pagano, Stefano Pasquali, Roberto Turrin:
TV program detection in tweets. EuroITV 2013: 45-54 - [c49]Paolo Cremonesi, Franca Garzotto, Roberto Turrin:
User-Centric vs. System-Centric Evaluation of Recommender Systems. INTERACT (3) 2013: 334-351 - [c48]Paolo Cremonesi, Franca Garzotto, Massimo Quadrana:
Evaluating top-n recommendations "when the best are gone". RecSys 2013: 339-342 - [c47]Andrea Sansottera, Paolo Cremonesi:
Optimal virtual machine scheduling with anvik. VALUETOOLS 2013: 290-293 - [p2]Borzou Rostami, Paolo Cremonesi, Federico Malucelli:
A Graph Optimization Approach to Item-Based Collaborative Filtering. Recent Advances in Computational Optimization 2013: 15-30 - [e1]Paolo Paolini, Paolo Cremonesi, George Lekakos:
11th European Conference on Interactive TV and Video, EuroITV '13, Como, Italy, June 24-26, 2013. ACM 2013, ISBN 978-1-4503-1951-5 [contents] - 2012
- [j13]Paolo Cremonesi, Andrea Sansottera:
Modeling response times in the Google ROADEF/EURO challenge. SIGMETRICS Perform. Evaluation Rev. 40(3): 80-82 (2012) - [j12]Paolo Cremonesi, Franca Garzotto, Roberto Turrin:
Investigating the Persuasion Potential of Recommender Systems from a Quality Perspective: An Empirical Study. ACM Trans. Interact. Intell. Syst. 2(2): 11:1-11:41 (2012) - [c46]Paolo Cremonesi, Francesco Epifania, Franca Garzotto:
User profiling vs. accuracy in recommender system user experience. AVI 2012: 717-720 - [c45]Francesco Epifania, Paolo Cremonesi:
User-Centered Evaluation of Recommender Systems with Comparison between Short and Long Profile. CISIS 2012: 204-211 - [c44]Federico Malucelli, Paolo Cremonesi, Borzou Rostami:
An Application of Bicriterion Shortest Paths to Collaborative Filtering. FedCSIS 2012: 423-429 - [c43]Paolo Cremonesi, Matteo Picozzi, Maristella Matera:
A comparison of recommender systems for mashup composition. RSSE@ICSE 2012: 54-58 - [c42]Andrea Sansottera, Davide Zoni, Paolo Cremonesi, William Fornaciari:
Consolidation of multi-tier workloads with performance and reliability constraints. HPCS 2012: 74-83 - [c41]Paolo Cremonesi, Andrea Sansottera:
Indirect Estimation of Service Demands in the Presence of Structural Changes. QEST 2012: 249-259 - [c40]Paolo Cremonesi, Antonio Donatacci, Franca Garzotto, Roberto Turrin:
Decision-Making in Recommender Systems: The Role of User's Goals and Bounded Resources. Decisions@RecSys 2012: 1-7 - [c39]Alan Said, Domonkos Tikk, Klara Stumpf, Yue Shi, Martha A. Larson, Paolo Cremonesi:
Recommender Systems Evaluation: A 3D Benchmark. RUE@RecSys 2012: 21-23 - [c38]Paolo Cremonesi, Franca Garzotto, Roberto Turrin:
User effort vs. accuracy in rating-based elicitation. RecSys 2012: 27-34 - 2011
- [j11]Andrea Sansottera, Paolo Cremonesi:
Cooling-aware workload placement with performance constraints. Perform. Evaluation 68(11): 1232-1246 (2011) - [c37]Paolo Cremonesi, Andrea Sansottera, Stefano Gualandi:
On the Cooling-Aware Workload Placement Problem. AI for Data Center Management and Cloud Computing 2011 - [c36]Paolo Cremonesi, Franca Garzotto, Sara Negro, Alessandro Vittorio Papadopoulos, Roberto Turrin:
Comparative evaluation of recommender system quality. CHI Extended Abstracts 2011: 1927-1932 - [c35]Paolo Cremonesi, Andrea Sansottera, Stefano Gualandi:
Optimizing cooling and server power consumption. ICCP 2011: 455-462 - [c34]Paolo Cremonesi, Antonio Tripodi, Roberto Turrin:
Cross-Domain Recommender Systems. ICDM Workshops 2011: 496-503 - [c33]Paolo Cremonesi, Franca Garzotto, Sara Negro, Alessandro Vittorio Papadopoulos, Roberto Turrin:
Looking for "Good" Recommendations: A Comparative Evaluation of Recommender Systems. INTERACT (3) 2011: 152-168 - [c32]Paolo Cremonesi, Roberto Turrin, Fabio Airoldi:
Hybrid algorithms for recommending new items. HetRec@RecSys 2011: 33-40 - [p1]Riccardo Bambini, Paolo Cremonesi, Roberto Turrin:
A Recommender System for an IPTV Service Provider: a Real Large-Scale Production Environment. Recommender Systems Handbook 2011: 299-331 - 2010
- [j10]Jonatha Anselmi, Paolo Cremonesi:
A unified framework for the bottleneck analysis of multiclass queueing networks. Perform. Evaluation 67(4): 218-234 (2010) - [c31]Paolo Cremonesi, Kanika Dhyani, Andrea Sansottera:
Service Time Estimation with a Refinement Enhanced Hybrid Clustering Algorithm. ASMTA 2010: 291-305 - [c30]Kanika Dhyani, Stefano Gualandi, Paolo Cremonesi:
A Constraint Programming Approach for the Service Consolidation Problem. CPAIOR 2010: 97-101 - [c29]Paolo Cremonesi, Roberto Turrin:
Time-evolution of IPTV recommender systems. EuroITV 2010: 105-114 - [c28]Paolo Cremonesi, Roberto Turrin:
Controlling Consistency in Top-N Recommender Systems. ICDM Workshops 2010: 919-926 - [c27]Paolo Cremonesi, Yehuda Koren, Roberto Turrin:
Performance of recommender algorithms on top-n recommendation tasks. RecSys 2010: 39-46
2000 – 2009
- 2009
- [j9]Paolo Cremonesi, Roberto Turrin, Vassil N. Alexandrov:
Modeling the Effects of Node Heterogeneity on the Performance of Grid Applications. J. Networks 4(9): 837-854 (2009) - [c26]Elica Campochiaro, Riccardo Casatta, Paolo Cremonesi, Roberto Turrin:
Do Metrics Make Recommender Algorithms?. AINA Workshops 2009: 648-653 - [c25]Paolo Cremonesi, Marco Bertoli:
Predicting SPEC Benchmarks Values for Untested Systems. Int. CMG Conference 2009 - [c24]Paolo Cremonesi, Giuseppe Nardiello:
How to Integrate Load Testing with Capacity Planning. Int. CMG Conference 2009 - [c23]Paolo Cremonesi, Giovanni Versaci:
Estimating Server Power Consumption. Int. CMG Conference 2009 - [c22]Jonatha Anselmi, Paolo Cremonesi, Edoardo Amaldi:
On the Consolidation of Data-Centers with Performance Constraints. QoSA 2009: 163-176 - [c21]Paolo Cremonesi, Roberto Turrin:
Analysis of cold-start recommendations in IPTV systems. RecSys 2009: 233-236 - 2008
- [c20]Jonatha Anselmi, Paolo Cremonesi:
Exact Asymptotic Analysis of Closed BCMP Networks with a Common Bottleneck. ASMTA 2008: 206-220 - [c19]Jonatha Anselmi, Paolo Cremonesi:
Bounding the Performance of BCMP Networks with Load-Dependent Stations. MASCOTS 2008: 171-178 - [c18]Giuliano Casale, Paolo Cremonesi, Roberto Turrin:
Robust Workload Estimation in Queueing Network Performance Models. PDP 2008: 183-187 - [c17]Jonatha Anselmi, Edoardo Amaldi, Paolo Cremonesi:
Service Consolidation with End-to-End Response Time Constraints. EUROMICRO-SEAA 2008: 345-352 - 2007
- [c16]Paolo Cremonesi, Giuliano Casale:
How to Select Significant Workloads in Performance Models. Int. CMG Conference 2007: 183-192 - [c15]Jonatha Anselmi, Danilo Ardagna, Paolo Cremonesi:
A QoS-based selection approach of autonomic grid services. SOCP@HPDC 2007: 1-8 - [c14]Jonatha Anselmi, Giuliano Casale, Paolo Cremonesi:
Approximate Solution of Multiclass Queuing Networks with Region Constraints. MASCOTS 2007: 225-230 - 2006
- [j8]Paolo Cremonesi:
Parallel, distributed and network-based processing. J. Syst. Archit. 52(2): 71-72 (2006) - [c13]Paolo Cremonesi, Giuliano Casale, Stefano Visconti:
Identifying network failures and evaluating link MTBF from utilization logs. Int. CMG Conference 2006: 703-710 - [c12]Paolo Cremonesi, Roberto Turrin:
Performance models for hierarchical grid architectures. GRID 2006: 278-285 - 2005
- [c11]Giuliano Casale, Paolo Cremonesi, Giuseppe Serazzi, Stefano Zanero:
Performance Issues in Video Streaming Environments. FIRB-Perf 2005: 3-14 - 2004
- [c10]Paolo Cremonesi, Lorenzo Muttoni, Giuseppe Serazzi:
A Characterization Methodology for Parallel Systems Benchmarks. PDCS 2004: 178-185 - 2002
- [j7]Paolo Cremonesi, Paul J. Schweitzer, Giuseppe Serazzi:
A Unifying Framework for the Approximate Solution of Closed Multiclass Queuing Networks. IEEE Trans. Computers 51(12): 1423-1434 (2002) - [j6]Paolo Cremonesi, Claudio Gennaro:
Integrated Performance Models for SPMD Applications and MIMD Architectures. IEEE Trans. Parallel Distributed Syst. 13(7): 745-757 (2002) - [j5]Paolo Cremonesi, Claudio Gennaro:
Integrated Performance Models for SPMD Applications and MIMD Architectures. IEEE Trans. Parallel Distributed Syst. 13(12): 1320-1332 (2002) - [c9]Paolo Cremonesi, Giuseppe Serazzi:
End-to-End Performance of Web Services. Performance 2002: 158-178 - 2001
- [j4]Giuseppe Passoni, Paolo Cremonesi, Giancarlo Alfonsi:
Analysis and implementation of a parallelization strategy on a Navier-Stokes solver for shear flow simulations. Parallel Comput. 27(13): 1665-1685 (2001) - 2000
- [c8]Paolo Cremonesi, Emilia Rosti, Giuseppe Serazzi:
Xaba: Exact, Approximate, and Asymptotic Solvers for Multi-class Closed Queueing Networks. Computer Performance Evaluation / TOOLS 2000: 71-85
1990 – 1999
- 1999
- [j3]Paolo Cremonesi, Emilia Rosti, Giuseppe Serazzi, Evgenia Smirni:
Performance evaluation of parallel systems. Parallel Comput. 25(13-14): 1677-1698 (1999) - [j2]Pietro Manzoni, Paolo Cremonesi, Giuseppe Serazzi:
Workload models of VBR video traffic and their use in resource allocation policies. IEEE/ACM Trans. Netw. 7(3): 387-397 (1999) - 1998
- [c7]Paolo Cremonesi, Claudio Gennaro, Roberto Marega:
I/O Performance in Hybrid MIMD+SIMD Machines. HPCN Europe 1998: 688-697 - 1997
- [c6]Paolo Cremonesi, Matteo Pugassi:
Performance Characterization of Quadrics Machines Based on HighLevel Languages. EUROMICRO 1997: 283-290 - 1995
- [c5]Paolo Cremonesi:
Kohonen neural networks: a parallel algorithm for automatic signal reconstruction. HPCN Europe 1995: 933-934 - [c4]Paolo Cremonesi, Domenico G. Sorrenti:
A control architecture for managing instructions among partitions of a data parallel structure. PDP 1995: 262-271 - 1994
- [c3]Lilla Böröczky, Paolo Cremonesi, Nello Scarabottolo:
Texture analysis for image processing on general-purpose parallel machines. ISPAN 1994: 17-24 - [c2]Paolo Cremonesi, Nello Scarabottolo, Domenico G. Sorrenti:
Image Processing on Parallel Machines: A Protocol For Managing Global Objects. PDP 1994: 14-21 - 1993
- [j1]Paolo Cremonesi, Roberto Pellizzoni, Arnaldo Spalvieri, Ezio Biglieri:
An Adjustable-Rate Multilevel Coded Modulation System: Analysis and Implementation. Eur. Trans. Telecommun. 4(3): 277-283 (1993) - [c1]Paolo Cremonesi, M. Ferrari, Aldo Frezzotti, Raffaella Pavani:
Parallel algorithms applied to direct simulation methods. PDP 1993: 239-246
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-13 01:00 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint