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Abstract Large geomorphic changes to barrier islands may occur during inundation, when storm surge
exceeds island elevation. Inundation occurs episodically and under energetic conditions that make
quantitative observations difficult. We measured water levels on both sides of a barrier island in the northern
Chandeleur Islands during inundation by Hurricane Isaac. Wind patterns caused the water levels to slope
from the bay side to the ocean side for much of the storm. Modeled geomorphic changes during the storm
were very sensitive to the cross-island slopes imposed by water-level boundary conditions. Simulations
with equal or landward sloping water levels produced the characteristic barrier island storm response of
overwash deposits or displaced berms with smoother final topography. Simulations using the observed
seaward sloping water levels produced cross-barrier channels and deposits of sand on the ocean side, consistent
with poststorm observations. This sensitivity indicates that accurate water-level boundary conditions must be
applied on both sides of a barrier to correctly represent the geomorphic response to inundation events. More
broadly, the consequence of seaward transport is that it alters the relationship between storm intensity and
volume of landward transport. Sand transported to the ocean side may move downdrift, or aid poststorm recovery
by moving onto the beach face or closing recent breaches, but it does not contribute to island transgression or
appear as an overwash deposit in the back-barrier stratigraphic record. The high vulnerability of the Chandeleur
Islands allowed us to observe processes that are infrequent but may be important at other barrier islands.

1. Introduction

Transport of sand to the back (bay) side of barrier islands by overwash or through storm-induced breaches
allows islands to migrate landward (or roll over) as sea level rises [Leatherman, 1979, 1981, 1983; Donnelly
et al., 2006a]. Landward overwash flux (defined to include both of these processes) is a main component of
long-term coastal evolution models [e.g., Cowell et al., 1995; Jiménez and Sdnchez-Arcilla, 2004; Stolper et al.,
2005; Ashton and Ortiz, 2011; Lorenzo-Trueba and Ashton, 2014]. Other mechanisms of migration and
maintenance of barriers include alongshore transport and spit formation, aeolian transport, transport
through tidal inlets, biogenic sediment formation in marshes, and fluvial sediment delivery, but these
processes are not as tightly associated with rapid changes by storms. Conceptual understanding of the
behavior and evolution of barrier islands is closely linked to their origins and their geological and
oceanographic settings [McBride et al., 2013]. Barrier systems have been classified on the basis of tidal range
and wave height [Hayes, 1979], morphological response characteristics [McBride et al., 1995], and coastal
setting [Inman and Nordstrom, 1971; Pilkey, 2003]. The relative importance attributed to different
morphodynamic processes varies among classifications. Sufficient rates of overwash and cross-barrier
transport in temporary breaches are especially important to allow narrow barriers to keep pace with sea-level rise
[Leatherman, 1979]. In addition, an ample supply of sediment from the shoreface is required [Lorenzo-Trueba and
Ashton, 2014]. The morphologic response to storms, including overwash processes, is increasingly critical to
coastal communities as sea levels rise. Initiatives to make coastlines more resilient range from traditional beach
nourishment and dune restoration projects, to construction of artificial berms along the Louisiana coast, to
much more ambitious proposals to build an entirely new, artificial barrier system along the East Coast of the U.S.
(http://www.rebuildbydesign.org/project/wxywest-8-final-proposal/). Successful design and a full understanding
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of the implications of these projects require a quantitative understanding of the processes that control the
evolution of barrier island systems.

1.1. Swash, Collision, Overwash, and Inundation

The geomorphic impact of storms on barrier island evolution is expected to increase as the elevation of water
levels compared to dune heights increases, according to Sallenger [2000] and Stockdon et al. [2007, 2012].
Four impact regimes are classified as follows: swash, collision, overwash, and inundation. Relatively minor
geomorphic changes and rapid recovery times are associated with the swash regime, where sand may be
eroded or even deposited on the beach. During the collision regime, dunes may be eroded, and sand may be
moved seaward. Greater magnitudes of beach erosion, shoreline retreat, and geomorphic change occur
during overwash and inundation regimes. Sallenger [2000, p. 894] stated “limited observations suggest that
massive net onshore transport occurs with landward migration of sand bodies on the order of 1 km"” during
inundation. The implication is that the highest water levels are inextricably linked with maximum
geomorphic change and shoreward transport of sand.

However, there is evidence that morphologic response does not always increase monotonically with impact
regime. Long et al. [2014] studied the relationship between storm regime and change in prestorm dune crest
elevations. Long et al. [2014] reported that dune height changes during the collision regime were constrained
to about 10% of the initial dune height and that changes during the overwash regime were much more
variable, ranging from 0 to 100%. Interestingly, they noted that although the inundation regime produced
the only cases with breaches, the morphologic response to inundation did not always increase with higher
levels of inundation. Thus, it is also possible that landward transport does not increase monotonically with the
level of inundation, and there is some reason to think that the rate of net landward transport might be highest at
some intermediate level when waves can move sediment across the island crest without any seaward return flow
over the dune. Once water levels on both sides of the barrier exceed the crest elevations, gradients may exist that
drive a mean flow seaward if the bay water levels are elevated. Under these conditions, inundated low-lying
barriers effectively become submerged bars where wave-driven transport rates decrease with increasing water
depth, and where cross-barrier water-level slopes control the sediment transport rate [Donnelly et al,, 2006a].

1.2. Storm Surge Ebb

Hayes [1967] coined the term “storm surge ebb” for the bay-to-ocean flow that sometimes occurs during the
waning stages of the storm, when offshore winds combine to set up bay water levels and set down ocean water
levels, creating gradients that drive flow out of tidal inlets and newly formed breaches. Hayes [1967] speculated
that these flows were responsible for generating density currents that deposited sand in relatively deep water
(18 m) on the inner Texas shelf after Hurricane Carla (1961), and spread finer sediment even farther offshore. Thieler
and Bush [1991] and Lennon [1991] noted extensive scouring of overwash channels by storm surge ebb in South
Carolina during Hurricane Hugo (1989), which also transported sand offshore to depths of 7 m [Birkemeier et al.,
1991; Gayes, 1991]. Thieler et al. [1989] documented severe erosion on the Yucatan Peninsula caused by storm
surge ebb during Hurricane Gilbert (1988). Channels and small ebb delta lobes on the seaward side of Highland
Beach in western Florida were created by storm surge ebb during Hurricane Andrew (1992) [Tedesco et al,, 1995],
and storm surge ebb produced seaward transport of sediment on the flanks of the Houston Ship Channel during
Hurricane lke (2008) [Goff et al.,, 2010]. Numerical hydrodynamic models of Hurricane Ivan (2004) demonstrated
that large, offshore-sloping gradients in sea surface elevation, which could drive storm surge ebb, can develop
behind Louisiana and Mississippi Gulf Coast islands following hurricane passage [Sheng et al., 2010] but the
geomorphic impacts of these gradients were not explored. Kahn [1986] has described how storm surge ebb has
resulted in subtidal sand deposits on the ocean side of the Chandeleur Islands and argued that the availability of
this sand supply in the nearshore speeds poststorm morphologic recovery.

Seaward sloping water levels and seaward flow have been observed and modeled in other barrier island
settings [Pierce, 1970; Zecchetto et al., 1997; Peng et al., 2004; Rego and Li, 2010]. They can result from several
mechanisms, including freshwater discharge, wave-driven seawater flux into the bay, downwelling-favorable
winds, tidal phase lags, and/or differences in amplitude or timing of water-level response to atmospheric pressure,
winds, surge, or propagation of coastal-trapped waves. Elevated back-barrier water levels caused by freshwater
discharge can generate seasonally ephemeral inlets in the glacier-fed hapua systems of New Zealand [Hart, 2009]
and in river-mouth lagoons of, for example, California [Kraus et al,, 2002], South Africa [Cooper, 2001], and Australia
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[Ranasinghe et al,, 1999; Roy et al,, 2001; Chewen et al.,, 2009]. Groundwater flow can also increase water levels in, for
example, small New England lagoons like Cards Pond, Rhode Island [Cheung et al., 2007]. Wave-induced flow, as
overwash or across shallow inlets, also can elevate lagoon water levels [Laudier et al., 2011; Olabarrieta et al., 2011].
Numerical models of storms in the Gulf of Mexico show that a combination of wind patterns, storm track, and
coastal geometry can result in wind-driven storm surge that is higher behind the barrier islands than in the ocean.
This phenomenon is evident in the hindcasts of Sheng et al. [2010] for Hurricane Ivan (2004) and the SLOSH model
[Jelesnianski et al., 1992; Glahn et al., 2009] forecasts archived for Hurricane Isaac (2012; http://www.nws.noaa.gov/
md|l/psurge/archive.php). Regardless of the mechanism that elevates back-barrier water levels above ocean water
levels, the resulting sea surface slopes can generate seaward flow and sand transport through breaches.

Despite the viable mechanisms for driving seaward flow across barrier islands and the scattered observations
of its geomorphic products, most studies have focused on the attack of waves and storm surge from the
ocean side, so the importance of seaward transport processes in barrier island evolution is difficult to assess
and may be underestimated. Back-barrier conditions that can generate storm surge ebb are not included in
most models of wave overtopping and overwash [for example, Donnelly et al., 2009; Park and Edge, 2010;
Figlus et al., 2011; see Donnelly et al., 2006a, 2006b]. Except for Lindemer et al. [2010], there have been few
attempts to model three-dimensional geomorphic evolution during inundation events and none where the
models have benefited from prestorm and poststorm observations and measurements of physical processes
during the event. Relationships developed between morphologic change and storm intensity rely mostly on
subaerial features, especially overwash deposits [for example, Morton and Sallenger, 2003; Carruthers et al.,
2013], and although the cut and fill signatures of channels appear in barrier island stratigraphy [Buynevich and
Donnelly, 2006], sequences of overwash deposits are the principal stratigraphic proxies used to reconstruct
storm records [for example, Emery, 1969; Donnelly et al., 2001a, 2001b, 2004a, 2004b; Cheung et al., 2007].
Ocean-side deposits produced in a major storm may be ephemeral and have no subaerial expression and are
not recorded in the overwash stratigraphy. Thus, the events that generate seaward transport may be
underrepresented in reconstructed records, conceptual models, numerical models, and field observations.

1.3. Objectives

The objectives of our study were to measure waves and water-level slopes during an overwash/inundation
event and, with the aid of a numerical model, relate those forcing mechanisms with geomorphic changes
determined from photos and topographic measurements made before and after the events. We are not
aware of any measurements of water levels across a barrier island during inundation, so we chose to

make measurements on the Chandeleur Islands during hurricane season, where the combination of low
elevations and the remnants of an artificial berm increased our chances of observing conditions that
produced significant morphological change. We anticipated measuring landward water surface slopes that,
in conjunction with waves, would drive landward transport and form overwash deposits. We were able to
record waves and water levels over the course Hurricane Isaac, a category 1 hurricane, including the initial
overwash and eventual inundation of the barrier island, but our observations and model results, which
showed seaward transport, were unexpected. The objectives of this paper are to present our direct
measurements of waves and water levels, and detailed measurements of barrier island topography

before and after Hurricane Isaac, and to discuss results of model simulations based both on the observed
conditions and on alternative water-level scenarios. The model results demonstrate the profound influence
of cross-barrier water-level variations in determining transport direction and geomorphic response, so our
final objective is to discuss the broader implications of these results for other barrier systems.

2. Observations
2.1. Study Site

The Chandeleur Islands (Figure 1) are a long, low-lying (maximum elevation < 2 m) arc of sandy, partially
vegetated islands perched on the remnants of the abandoned St. Bernard lobe of the Mississippi Delta. They
were formed from deltaic deposits reworked by waves into paired flanking barrier spits [Penland et al., 1985;
Otvos, 1986; Twichell et al., 2009, 2013], but the exact nature of island genesis has been debated [Otvos and
Carter, 2013]. The abandoned lobe is subsiding from soil compaction [Penland and Ramsey, 1990], tectonic
movement [Dokka et al., 2006], and possibly from oil and gas extraction [Morton et al., 2002]. Tropical
cyclones are the primary agents of geomorphic change [Hayes, 1967], but the islands are subject to waves
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Figure 1. (a) Location map of the Chandeleur Islands in the northeastern Gulf of Mexico. (b) U.S. Geological Survey Landsat
5 image of the Chandeleur Islands, 18 February 2010, overlaid with a red line indicating the location of the artificial berm
[Plant and Guy, 2013a, 2013b]. (c) Aerial photo of the study site on the northern Chandeleur Islands 2 months after
Hurricane Isaac showing the locations of the Pelican fishing camp (white dot), the USGS benchmark TMRK (yellow square),
and the water-level wellsites 942 (bay side) and 943 (ocean side, both yellow diamonds). Google Earth image dated 29
October 2012 © 2013 Terrametrics. (d) Map of the numerical model domains. Wave boundary conditions were provided to
the XBeach morphology model by the 250 m SWAN wave model, which in turn was nested into a 1 km SWAN model.
Boundary conditions for the 1 km SWAN were provided by a WAVEWATCHIII® model discussed in the text.

and surges associated with winter cold fronts that can rework the littoral zone. There is no alongshore or
fluvial source for sand in the Chandeleurs, and the littoral sand supply is exchanged between the shoreface,
nearshore, and inner shelf. The Chandeleurs are generally thought to be in the late part of the second stage of
a three-stage sequence of evolution [Penland et al., 1985] from (1) sand spits flanking the remnants of a
reworked distributary lobe to (2) an island chain separated from the retreating mainland to (3) submerged
shelf shoals. Fearnley et al. [2009] have documented ongoing fragmentation of the barrier arc into series of
small islands and submerged bars, with associated loss of supratidal area, and very little transgression of
back-barrier deposits and marsh.
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Our study builds on a long history of observations of geomorphic evolution of the Chandeleurs that began
with U.S. Coast and Geodetic Survey maps in 1855 [McBride et al., 1992] and led to recent oblique aerial
photography, satellite, and lidar surveys conducted along with geophysical surveys and field studies led by
the U.S. Geological Survey (USGS) [Fearnley et al., 2009; Lavoie, 2009]. An artificial berm was constructed on
the Chandeleur Islands beginning in June 2010 as part of the response to the Deepwater Horizon oil spill
[Louisiana Department of Natural Resources, 2010]. Construction continued through April 2011. Because
berms are one of the methods used to nourish beaches on barrier islands, this project on an undeveloped
island with little human activity served as a large-scale experiment in morphologic response to artificial
berms [Lavoie et al., 2010; Plant et al., 2014]. The Chandeleur Islands are a good location for measuring
overwash because of their low elevation. They also provide a good location for testing models of storm-induced
morphological change because island geometry is relatively simple, with uniform sand size, large regions with little
vegetation, no development, and very little human alteration. The artificial berm built on these low-lying islands
was likely to undergo significant geomorphic change and provided an opportunity to observe these processes.
We chose the specific location of our instruments to maximize the probability of observing overwash by placing
them on either side of a low point in the remnants of the artificial berm in a region historically and episodically
occupied by an overwash channel observed in satellite and aerial photographic images.

2.2. The Storm

Hurricane Isaac made the first of two landfalls near Southwest Pass on the southeast Louisiana coast at
0000 UT on 29 August 2012 as a category 1 hurricane with maximum sustained winds of 36 m/s [Berg, 2012].
The center of the storm drifted offshore toward the south and west, and it made a second landfall west of
Port Fourchon, Louisiana, at 0800 UT on 29 August. The slow movement resulted in more than 25 cm of rain,
storm surge of up to 3.4 m in southeastern Louisiana, and inland flooding in southeastern Louisiana and
southern Mississippi and Alabama. The combination of storm surge and wind was sufficient to reverse the
flow of the Mississippi River at Belle Chasse, Louisiana, for more than 13 h on the night of 28-29 August
(http://waterdata.usgs.gov/usa/nwis/uv?07374525). The trajectory and speed of the storm, wind patterns,
and coastal geometry generated water levels that were higher in Chandeleur Sound than they were in the
Gulf of Mexico for an extended portion of the storm. The National Oceanic and Atmospheric Administration
(NOAA) probabilistic storm surge forecast showed a progression of water-level increases and a change in the
water-level slope from onshore sloping (advisory 26, on 27 August 2012), to offshore sloping (advisory 29, 28
August 2012 through advisory 35 on 29 August 2012). The analysis of Keim et al. [2007] suggests that the return
interval for a storm of this intensity is 3-8 years.

There were few wave measurements in the eastern Gulf of Mexico during Isaac, as the closest National Data
Buoy Center buoys were out of service. Buoy 42012, located 80 km southeast of Mobile, Alabama, and 120 km
east of the Chandeleurs, recorded maximum significant wave heights of 5.78 m with dominant periods of
12-13s at 2100 on 28 August. Our estimates from wave models (see below) indicated that wave heights at
the location of buoy 42040 (Figure 1) peaked at 9.6 m 5 h earlier than peak waves at 42012. Closer to the
Chandeleur Islands (at the 8 m contour, where they were used as offshore boundary conditions for the
XBeach geomorphic model discussed below) modeled waves peaked at 3.3 m, with a maximum period of
13 s from the south-southwest.

2.3. In Situ Water-Level Recorders

Water levels were measured on either side of the barrier beach (Figures 2 and 3a) in an inactive overwash
channel. Instantaneous measurements were made every 5 s with autonomously recording temperature-
compensated pressure loggers (RBR Inc. model DR 1060, 10 m operational depth) in two shallow wells
installed 143 m apart on opposite sides of the island. At the time of installation on 10 July 2012, these wells
straddled a low spot in a continuous subaerial island crest trending north-south (Figure 2c). This crest was
the remnant of an artificial sand berm built in the autumn of 2011 [Plant and Guy, 2013a, 2013b]. Although
there was evidence of previous overwash (a broad dry channel with ripple marks leading to an accretionary
lobe on the west side), wrack and small aeolian features suggested that the crest had been dry during recent
high tides. The wells were installed at low tide near the waters’ edge by digging shallow holes (about 0.4 m
deep; these immediately filled with groundwater) and using a battery-powered bilge pump to jet 4.8 cm
(outside diameter) schedule 80 PVC casings to depths of about 1.5 m. The pressure sensors were hung from
threaded well caps at fixed elevations on stainless-steel rods, and the elevations of the well caps were

SHERWOOD ET AL.

©2014. American Geophysical Union. All Rights Reserved. 1502


http://waterdata.usgs.gov/usa/nwis/uv?07374525

@AG U Journal of Geophysical Research: Earth Surface 10.1002/2013JF003069

Elevation (m NADV88)

Modeled Elevation Change (m)

Figure 2. (a) Oblique photo of the instrument deployment area 20 days before and (b) 2 days after Hurricane Isaac.
Approximate instrument locations are indicated by yellow diamonds in all panels. (c) Lidar measured topographic eleva-
tions obtained 8 months before (6 February 2012) and (d) 10 days after Hurricane Isaac (10 September 2012). (e) Simulated
elevation change with blue indicating modeled accretion and red indicating erosion. The solid black line denotes the
prestorm 0 m elevation contour. (f) Simulated poststorm elevations, for comparison with Figure 2d. All elevations are
referenced to North American Vertical Datum of 1988 (NAVDS88).

surveyed with differential GPS. The well casings were permeable with narrow (0.15 mm) slits along most of
their length, and there was a 1.25 cm diameter hole (used for jetting) in the conical well point at the bottom
of each casing. The wells were recovered on 7 September 2012, 8 days after Hurricane Isaac. A second pair
of wells, installed on either side of the barrier approximately 5 km north of the wells described here, was
lost during the storm. Atmospheric pressure measurements were made at 10 min intervals with an Onset
Hobo model U20 mounted about 4 m above water level on a radio tower at the north end of the Chandeleur
Islands, about 13 km from the study site.

We used these measurements to make precise estimates of water levels and water-level slopes at the cross-
island transect. The specified accuracy of the pressure loggers was 0.05% of full operating depth, or about
0.5 cm water depth. Rated resolution was 0.001% of full scale (0.01 cm). Field calibrations in a bucket before
and after the experiment confirmed that the two sensors had not drifted, and agreed within <0.01 dbar
(<1 cm water depth). Atmospheric pressure measurements (linearly interpolated in time) were subtracted
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a) Before Isaac from the well pressure measurements
A p (decibars), which were then

converted to water depth 7 (m)
according to 5 =10%p/(pg), where p is
typical water density (1023 kg/m>), g is
gravitational acceleration (9.81 m/s?),
and the dimensional factor 10* Pa/dbar
is a unit conversion. Water-level time
series 7j(t) were calculated using a
running mean over 5.7 min intervals
(N=241 samples). The 95% confidence
intervals (9,) about 77 were estimated
from the standard deviations of the
means [Bendat and Piersol, 1986, p. 433].
d, varied with wave height and rate of
water-level change, with maximum
values of 2.1 cm at the bay site and

2.3 cm at the ocean site. The time series
of water-level slopes s(t) was calculated

ass = (ﬁocean — ﬁbay) /L, where
L =143.37 m was the distance separating
the wells. Analysis of uncertainties about

b) After Isaac

Figure 3. (a) Nancy DeWitt and Pat Dickhudt getting a GPS fix on the ocean : .
side (Gulf of Mexico, site 943) well after installation on 10 July 2012. The 7 considered m.Strument accuracy

well casing is below beach level and only the orange tag on the cap is (1 cm), surveying error (+0.5 cm),
visible. (b) B.J. Reynolds getting a GPS fix on the same well on 7 August possible movement of the wells

2012 after Hurricane Isaac. The white well casing extended a half meter (maximum 2.4 cm), and time series of J,
above the sand and the GPS data verified that it had not moved, so more  (hich ranged from <0.1 to 2.3 cm). It

than 50 cm of sand was eroded from this site during the storm. . .
did not account for errors associated

with removal of the atmospheric
pressure or conversion from pressure to water depth, because these were small and data from both wells was
affected equally. Propagation of the uncorrelated uncertainties [Taylor, 1997] suggests that our worst case error in
absolute water-level elevations for 5.7 min averages was +3.4 cm. Assuming that J, at each of the wells was
uncorrelated, uncertainties in water-level slopes were +0.0003.

Water levels in shallow wells respond to the water table in the beach, which is controlled by island elevation
and seawater elevations, and modified by rainfall and evaporation [Emery and Foster, 1948; Horn, 2002].
Before the storm, when the gauges were in the intertidal zone, our measurements were consistent with
previous observations [Nielsen, 1990, 1999]: the water table was elevated above the low-tide level and rose
faster than it fell over a tidal cycle, lagging the observed tides. In addition, the water table on the ocean side
was higher than the water table on the bay side, a phenomenon called overheight, caused by wave setup and
infiltration of swash runup [Waddell, 1976; Kang et al., 1994; Li et al., 1997]. There were episodic spikes in water
elevation that we attributed to infiltration of rainwater. However, in this paper we focus on the time during
the storm when the wells were completely submerged, and the only significant difference between our
measurements with pressure sensors buried in sand and those more commonly made by pressure gauges in the
water column was increased damping of the response at higher frequencies. We used the method of
Raubenheimer et al. [1998] to estimate a frequency-dependent correction factor for the overlying sand that varied
with time as water depth and the pressure-sensor burial depth changed. We have measurements of the sensor
burial depth at deployment and recovery, and we assumed it decreased linearly during the storm. The correction
factor ranged from about 1.4 at the highest frequency (0.1 Hz), to about 1.04 at 0.05 Hz (period of 20's), which we
used as the low-frequency limit for incident-wave energy, to close to 1 (no correction) at lower frequencies.

Root-mean-square (RMS) wave heights were calculated from the water-level data as 21/2 times the square
root of the corrected spectral variance of water surface elevations in the incident (f> 0.05 Hz) and infragravity
bands (0.0037 < f <0.05 Hz). These estimates were not sensitive to the attenuation correction factors
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discussed above, or to our uncertainty in water depths, which together caused variations of <6% in our
estimates of RMS wave heights.

2.4. Lidar Topography

Lidar topography was collected on 6 February 2012, 7 months before Hurricane Isaac. The lidar data were
processed to bare-earth classifications to remove influences of vegetation and the elevations were compared
to ground survey data. The data were corrected to the ground survey data, and the resulting, corrected
data had errors (standard deviation) of less than 0.10 m [Guy et al., 2013]. Gridded data (Figure 2c) near our
water-level gages show the remnant of the artificial berm constructed in November 2010. The berm crest
near our site was about 1.4 m NAVD88, with low spots only 0.9 m high. Our field observations suggest that much
of this berm was reworked by the time we deployed our gages on 10 July (Figure 2a). The highest point
anywhere on the northern Chandeleur Islands in the gridded February lidar survey was 1.67 m NAVD88, located
in the marshy island north of our gages. Estimates from the NOAA VDatum tidal model and comparison

with datum from tide gauges on the Mississippi coast indicate that the mean water level at the Chandeleur
Islands is 0.16 m NAVD8S8, so the highest point on the islands was 1.51 m above mean sea level (msl).

A second set of lidar topographic elevations was collected after Hurricane Isaac on 10 September 2012 and
processed in the same manner. These data show a general lowering of island elevations and relocation of
sand, removing any subaerial evidence of the remaining artificial berm (Figure 2¢, http://coastal.er.usgs.gov/
hurricanes/isaac/lidar/). Elevations near the instruments (<200 m away) were reduced to less than 0.2 m
NAVD88, and channels connecting the ocean and bay were incised in numerous locations.

2.5. Sediment Samples

We collected samples of the top 2 cm of sediment at both sites and analyzed those using sieve and sedigraph
methods [Poppe et al,, 2005]. The beach on the ocean side consisted of clean fine sand (median 0.15 mm, <1%
silt + clay). On the bay side we found very fine sand (0.11 mm) with a larger silt component (2% silt + clay).

3. Model Description and Application

Quantitative observations of geomorphic change during dune and barrier island overwash and inundation
do not exist aside from laboratory experiments [e.g., Figlus et al., 2011], but numerical models provide a
mechanism to simulate island evolution driven by these processes. Here we used the hydrodynamic
observations at the two locations across the barrier island to constrain the bay and ocean model boundary
conditions and examine the sensitivity of geomorphic evolution to the magnitude and direction of the
water-level gradients observed during Hurricane Isaac. These gradients are not typically measured on
these spatial or temporal scales during storms, but the observations of breaching and channel deepening
caused by storm surge ebb demonstrate their importance for geomorphic change.

We used XBeach (repository version 2970), a process-based model developed to simulate storm-induced
beach and dune evolution [Roelvink et al., 2009]. XBeach has been used to successfully simulate retreat of
a dune face caused by elevated water levels colliding with the dune [Splinter and Palmsten, 2012] and
overwash-induced lowering and breaching of Santa Rosa Island, Florida, during Hurricane Ivan [McCall et al.,
2010]. The two-dimensional depth-averaged model described in detail by Roelvink et al. [2009] simulates
wave-averaged incident waves, circulation, sediment transport, and morphology evolution. XBeach resolves
infragravity waves, which allows water levels to vary on the shoreface (e.g., infragravity wave runup), where a
dune-avalanching algorithm is employed to model coastal erosion when waves collide with the dune face. During
overwash events, wave groups are responsible for the landward flux of momentum that lowers dune elevations
and transports sediment onshore. Sediment concentration and transport is governed by a depth-averaged
advection-diffusion equation [Galappatti and Vreugdenhil, 1985] where increases or decreases in sediment
concentration within the water column are dictated by an equilibrium sediment concentration [Soulsby, 1997].

We applied XBeach to a 1.5 km central section of the Chandeleur Islands for the time period 27 to 30 August
2012. Model resolution in the alongshore direction was 20 m, and the domain extended east toward the
Gulf of Mexico to a water depth of approximately 8 m with a cross-shore grid resolution that varied from 40 m
offshore to 2.5 m in the surf zone and across the island and about 1 km west to back-bay water depths of
approximately 1.5 m. Most of the domain, except for the seaward portion extending to 8 m depth, is shown in
Figure 2. Various data sets were used to construct the bathymetry for the model grid including data obtained
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from the NOAA National Geophysical Data Center Northern Gulf Coast digital elevation map and USGS
single beam and swath bathymetry measurements collected in 2006, 2010, and 2011. Topographic data
from the February 2012 lidar survey were used to define the island elevations. All of the data were merged
into a single grid using the scale-controlled interpolation method of Plant et al. [2002] with the most
recent data more highly weighted.

Wave boundary conditions on the eastern (ocean) side of the XBeach model were hourly wave spectra with
an assumed Joint North Sea Wave Project (JONSWAP) shape [Hasselmann et al.,, 1973]. Radiation conditions
for waves were applied at the other three boundaries. The JONSWAP spectra were generated from wave
statistics (significant wave height, peak period, and direction) produced by a Simulating Waves Nearshore
(SWAN) wave model [Ris et al., 1999] run on a 250 m grid (Figure 1d). Boundary conditions for this model were
time-varying 2-D wave spectra from a 1 km SWAN model (Figure 1d), which was one-way nested onto a
larger-scale WAVEWATCHIII® (WW3; version 3.14 [Tolman, 2008]) wave model system (not illustrated) with a
sequence of three two-way nested domains. The WW3 domains consisted of a 30’ global grid and a 10a’
western north Atlantic grid, identical to those used by the operational NOAA wave forecasting system (http://
polar.ncep.noaa.gov/waves/index2.shtml). The finest WW3 domain, which provided boundary conditions for
the 1 km SWAN grid, was a 2’ Gulf of Mexico grid derived from the ETOPO1 Global Relief Model (http://www.
ngdc.noaa.gov/mgg/global/global.html). The wave model system was spun up over the period of 1 to 27
August 2012. Wind (and ice) forcing files for all models were derived at 3-hourly resolution from archived
12 km NOAA North American Mesocale model forecasts over its domain and otherwise from the 28 km Global
Forecasting System. Although there were no data for evaluation of the high-resolution (250 m grid) SWAN
wave model at our study site, model-data comparison of significant wave heights at buoy 42012 produced a
correlation of r*=0.984 and bias of 7.4cm.

Water-level boundary conditions for XBeach along the bay and ocean boundaries were derived from the
buried-pressure-sensor measurements. Flow conditions at these boundaries allowed for automatic
adjustment to the water-level forcing, and zero-gradient (Neumann) conditions [Roelvink et al., 2009] were
applied along the lateral (north and south) boundaries. The observed water levels included contributions
from astronomical tides, storm surge, setup induced by wave breaking, and wave runup. XBeach simulated
the latter two components, so they had to be removed from the measurements before using them as
boundary conditions. Wave runup was removed by low-pass filtering the water-level time series with a

cutoff period of 20 min. Wave setup was removed by subtracting elevations that were calculated using a
one-dimensional cross-shore balance between sea surface slope and the gradient of momentum flux (onshore
component of radiation stress) following Thornton and Guza [1983] with Stoker’s [1957] formula for dissipation in a
bore. Wave setup was assumed negligible on the bay side of the island and was not removed from the
observations. Removing wave-induced setup from the ocean-side observations reduced water levels used as
boundary conditions for XBeach by 15-25% during the course of the storm.

4, Results

4.1. Elevation Changes

A significant amount of sand was removed during Hurricane Isaac. When the instruments were installed

on 10 July 2012, the well caps were slightly below grade, covered with 0.02-0.05 m of sand (Figure 3a).
When the instruments were recovered 8 days after Hurricane Isaac, the wells were found standing proud
0.28-0.52 m above the surrounding sand and survey measurements confirmed that the wells had not moved
(Figure 3b). Sand levels decreased by 0.54 m on the ocean side and 0.30 m on the bay side, and the berm crest that
initially separated them was gone, suggesting that a minimum of 60 m/m was removed between our wells.

4.2. Mean Water Levels and Gradients

Water levels fluctuated with tides and winds before Hurricane Isaac, and the water-level recorders measured
groundwater response to these fluctuations (Figure 4). Before Hurricane Isaac, the mean water elevation on
the bay side was 0.26 m NAVD88, and on the ocean side was 0.33 m NAVD88, compared with our long-term
estimated mean water level of 0.16 m NAVD88. These are consistent with observed water levels 65 km away
at Waveland, Mississippi, in late August, which were typically ~0.15 m (ranging from 0.05 to 0.35m) above
predicted tides.
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Figure 4. (a) Time series of water levels from the wells on the ocean

(Gulf of Mexico) and bay (Chandeleur Sound) sides of the Chandeleur crossing the island. The storm
Islands, along with measured water levels at the Bay Waveland Yacht Club  continued to intensify, and RMS wave
on the Mississippi Coast, about 60 km NW of the Chandeleurs, and pre- heights peaked on the seaward side at

dicted tidgs at that location. (b) Sea surface slopes between th.e weIIsi'tes. about 0.37 m around 2300 UT on 28
Measured instantaneous (gray), envelope of + d; around 5.7 min running

mean (brown), and low-pass filtered (black) slopes, and modeled low-pass August. Starting at midnight UT, water

filtered (green) slopes. (c) Root-mean-squared (rms) wave heights esti- levels began to fall slightly with ebb
mated from the water-level spectra at the two wells (solid) and modeled  tide, and the cross-barrier slope began
rms wave heights at the same locations (dashed). to tilt slightly toward the ocean. Wave

heights on the bay side continued to
increase after they had peaked on the ocean side, which indicates that less wave energy was being dissipated
across the island, possibly because the overwash channel was eroding and deepening. Highest waves on the bay
side reached about 0.25 m. The wave height/water depth ratio was consistent with broken waves on the ocean
side, and the waves on the bay side were likely broken bores that propagated across the barrier. The highest
water levels coincided with high tide between 1400 and 1500 on 29 August. Water slopes were tilted slightly
seaward (typically —0.0005 +0.0003, but as much as -0.0009 + 0.0003 m/m) for all day on 29 August.

Maximum instantaneous water levels at the peak of the storm (including waves) were 1.94 and 2.03 m NAVD88 on
the bay and ocean sides, respectively, exceeding the highest point on the island by 0.27-0.36 m. Maximum 5.7 min
running-average water levels were 1.46 and 1.44 m NAVD8S, respectively, highest on the bay side (Figure 4a).

The bottom shear stress 7, associated with observed seaward slopes s(t) of about 0.0005 m/m were estimated
as 7, =pghs, where h(t) is time-varying water depth. Reverse calculations indicate that water depth of
about 0.32 m is required for these slopes to mobilize 0.15 mm sand, assuming a critical shear stress of 1.6 Pa
(based on Soulsby [1997]). Even without channelization, these depths were exceeded for most of the storm,
and with addition of wave-induced stresses, these slopes should have generated significant sediment
transport, as described in section 4.3.

4.3. Model Results

4.3.1. Hydrodynamics

The modeled water levels were output every 5 s, compared to observed water levels, and used to calculate
the sea surface slopes (Figure 4b). Modeled water-level elevations closely matched observations
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Figure 5. Simulated morphology change during Hurricane Isaac. (a) Instantaneous (yellow) and 20 min filtered (black)
slope of the modeled cross-island water levels computed at the instrument locations. Landward slopes are positive and
seaward slopes are negative. (b) Timestack of hourly elevation change at the cross-shore model transect closest to the
instrument wells. Times are indicated in Figure 5a. Red and blue denote erosion and deposition, respectively. The dotted
line is the time-varying cross-shore position of the island crest (maximum elevation) and the solid lines show the 0 m
contours on the bay (left) and ocean (right) sides of the island. (c) Elevation profile used to initialize the model simulation
before Hurricane Isaac. (d) Final simulated elevation profile after Hurricane Isaac.

(maximum 10 cm difference) after an initial period when the modeled waves (and therefore setup) ramped
up later than observations.

Magnitudes of the modeled RMS wave heights were comparable to the observed heights, although the
temporal variations were not identical (Figure 4c). The maximum wave height at the eastern instrument
(ocean) was well represented, but the model overpredicted waves at the western (bay) instrument. The
difference in wave heights on the two sides of the island was larger in the observations than in the model
results, indicating the model may not have been dissipating enough wave energy when water levels were
high and the island was completely inundated. Dissipation generated by depth-induced wave breaking
would be underpredicted if the model was overpredicting erosion. However, there is uncertainty in the wave
height observations, because they were determined, in part, by estimating the water depth.

4.3.2. Morphology

Modeled erosion during the ramp up of the storm was minor and confined mainly to the beach face, with
deposition in the nearshore. When water levels on the Gulf side approached 1 m (1100 UT on 28 August)
overwash began at low points in the artificial berm, causing erosion of the berm crest and landward sediment
transport. As water levels continued to increase, landward sediment transport rates increased and a lowering of
the entire berm was modeled until 1500 UT on 28 August, when erosion of the island continued, but the transport
direction reversed. The modeled sediment was deposited in the nearshore despite large wave action on the ocean
side. The model did not produce the landward oriented overwash fans usually associated with overwash and
inundation events; instead, the model predicted a significant amount of sediment deposition on the ocean side of
the island during times when the water-level gradient across the island was directed seaward.

Observed poststorm morphology showed that multiple channels connecting the ocean and bay had
fragmented the island (Figure 2f). The modeled poststorm channelization occurred in the same areas
(compare Figures 2d and 2f), but modeled elevations for the remaining subaerial island elevations were
slightly lower than observed due to excessive smoothing by the model. The smooth results were caused, in
part, by initializing the model with a homogeneous sand size and erodibility that neglected the presence of
marsh vegetation and spatial variation in sediment types, including grain size and organic content. Although
the channels appear deeper in the model results, a bathymetry survey was not conducted following the
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Figure 6. (a) Lidar topography observed September 2012 and (b) elevation change between February 2012 and
September 2012. The thick black lines denote the prestorm 0 m topographic contour. Blue colors indicate accretion and
red colors erosion. (c) Simulated poststorm island elevations for the base case with observed water levels (wl) minus runup
and setup. (d) Simulated elevation change for the same simulation. (e) Simulated poststorm island elevations for sensitivity
run 1 when model was initialized with offshore storm surge increased by 0.25 m. (f) Simulated elevation change for the
same simulation.(g) Simulated poststorm island elevations for sensitivity run 2 when model was initialized on the bay and
ocean with the same water levels. (h) Simulated elevation change for the same simulation. All elevations are referenced to
North American Vertical Datum of 1988 (NAVDS8S).

storm and the lidar was incapable of measuring underwater features, so the interpolation of the lidar data
results in approximately 0 m elevation across the channels.

Modeled results indicated that the mean offshore-directed cross-shore flows over the berm crest peaked at about
35 cm/s when the seaward water-level slope was at its maximum. On average, the mean cross-shore flows during
the time when bay water levels exceeded the ocean water surface elevation were approximately 20 cm/s.
Modeled elevation change (Figure 2e) suggested that sediment was transported in the seaward direction and
deposited in the active littoral zone. This is counter to traditional barrier rollover where overwash fans develop on
the low-energy back barrier system. The prestorm 0 cm elevation contour is shown in Figure 2e for reference. The
transition from landward transport to deposition of sand on the ocean side can be seen in the timestack of
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elevation change at the model transect closest to the instruments (Figure 5). At the beginning of the storm only
mild change occurred, caused by waves colliding with the front of the island. Water levels were higher on the
ocean side, but it was not until approximately 1200 UT on 28 August that modeled overwash began, causing
erosion of the berm and landward deposition of sediment. This lasted only a few hours before the island was
inundated and the connected water surface slope reversed, and transport was again directed seaward, causing
erosion on the island and shoreface and deposition offshore between the 2 and 5 m isobaths.

4.4. Sensitivity to Water Levels

Two additional simulations were performed to investigate the sensitivity of modeled morphologic change to
water levels. These involved changing the water-level boundary conditions (1) to increase the ocean side
storm surge 25 cm higher than observed, thereby imposing landward-directed water-level gradients
throughout the entire storm, and (2) to apply the same water level to both sides so that water-level gradients
would be due only to differences in wave setup and runup. The poststorm morphology and changes resulting
from these two simulations are shown in Figure 6.

The first sensitivity simulation demonstrated that when a water-level gradient existed but was directed
landward, the total amount of island erosion was reduced and the majority of deposition occurred landward
of the original island position (Figures 6a and 6b) as overwash deposits and fans. Channels were still evident
but were much shallower than in the base case, indicating that the model was sensitive to the direction and
magnitude of the water-level gradients. In the second sensitivity simulation, the island responded with
further reduction in erosion and with more alongshore uniform overwash (Figures 6¢ and 6d) and no
channels formed. More sediment was deposited on the landward side of the barrier compared to the other
cases, and there was less deposition in the littoral zone, indicating that the contribution to sand transport by a
mean cross-barrier flow is significant for the geomorphic response of a barrier island to a storm.

5. Discussion

5.1. Observations

Our observations may be relevant to other barrier island settings susceptible to inundation. There are many
locations on the coasts of the Gulf of Mexico and western Atlantic where inundation is possible during
extreme events [Stockdon et al., 2012]. The northern Chandeleur Islands are more susceptible than most
because their threshold for overwash is only about 1.42 m above msl [Rosati and Stone, 2009]. They occupy a
subsiding delta and are experiencing rapid relative sea-level rise (approximately 4.3 mm/yr [Twichell et al.,
2013]), and they have no alongshore supply of sand. The artificial berm installed in 2010 created a modified
topography that was rapidly and substantially altered by natural processes prior to, and during, our study
period. Chandeleur Sound is not a typical lagoon, but rather a broad, shallow bay, open to the north and
south, responsive to wind-driven water-level fluctuations, and perhaps more conducive for development of
seaward directed water-level gradients. Despite, and in some instances because of these defining
characteristics, the northern Chandeleur Islands are a valuable natural laboratory for developing and
evaluating models because they allow us to observe rare, episodic phenomena more frequently than at other
locations. Hence, our measurements provided unique observations of processes that occur on portions of
most barrier beaches but are too infrequent to easily observe.

One shortcoming of our observations was the 7 month time period between the prestorm lidar survey and
landfall of Isaac. We inspected satellite imagery and model predictions of overwash [Plant et al., 2014] and
determined that there were at least two overwash events that modified the topography between the
February survey and August landfall. These events reduced the height of the remnant berm at the location
where the water-level sensors were deployed. This depression was specifically selected for deployment to
maximize overwash likelihood. Although it would be ideal to have immediate prestorm topography to
initiate the model, it is possible that the simulated overwash quickly modified the topography to be
consistent with pre-Isaac conditions (Figure 5) before the bay-to-ocean water-level gradient reversed the flow
and sediment transport.

5.2. Model Results

Our baseline model simulation indicated that during Hurricane Isaac, higher water levels observed on the bay
side resulted in significant sediment transport toward the ocean side, a process counter to traditional barrier
rollover where large storms drive wave runup and overwash fans develop on the low-energy back barrier.
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Two-dimensional simulations of inundated barriers have been compared with poststorm profiles [for
example, Donnelly et al., 2006b; Cariizares and Irish, 2008], but previous models of barrier island response have
not inspected in detail the three-dimensional geomorphic changes associated with seaward flow during
inundation. Sensitivity of XBeach results to water-level variations in two-dimensional simulations of overwash
during Hurricane Ilvan on Santa Rosa Island, Florida, was investigated by McCall et al. [2010]. They found that
the amount of deposition on the back barrier was sensitive to bay water elevations and the timing of bay- and
ocean-side surges and noted that “the assumption of identical offshore and bay surge levels may not be
correct” [McCall et al., 2010, pp. 678-679]. Lindemer et al. [2010] used a process-based numerical model
(XBeach, the model used here) to perform simulations of Hurricane Katrina and found that although the
model produced patterns of erosion and deposition similar to those observed, the amount of erosion was
underpredicted. Their simulations were also hindered by lack of prestorm bathymetry, and they did not
investigate cross-barrier storm-induced water-level variations which, as shown here, are capable of increasing
island erosion due to a mean flow. Hence, Lindemer et al. [2010] could not identify the specific processes that
produced morphologic change in the Chandeleur Islands during Hurricane Katrina.

The XBeach simulations reported here provide some of the first model results of geomorphic response to
seaward flow during inundation. The model reproduced the channel incision observed in previous field
studies and generated deposits in the shallow nearshore region that would not have appeared in poststorm
subaerial topography. The model indicated a different geomorphic response when run without cross-barrier
water-level gradients (an initial condition often applied in numerical models when observational data are
lacking): in these cases, there was a more uniform geomorphic response with no channelization. The
difference in geomorphic response between landward and seaward sloping water levels during storms is
similar to the contrast between flood- and ebb-dominated features on mesotidal and microtidal tidal inlets
[Hayes, 1975; Boothroyd et al., 1985].

5.3. Observational Bias?

Paradigms for the morphological evolution of barrier islands have been developed with a huge amount of
subaerial observational data and relatively little submarine or subsurface data. Aerial photos, satellite images,
and even lidar maps are cheap and plentiful, compared with acoustic bathymetric data, subbottom acoustic
profiles, and ground-penetrating radar (GPR) lines. The nearshore region below low tide to ~10 m depths is
particularly difficult to map, because turbid water limits photography and bathymetric lidar, saline
groundwater inhibits GPR, and shallow depths are problematic for subbottom acoustical systems and
decrease the efficiency of swath bathymetric data collection. Technology is improving our ability to observe
bathymetric changes in the nearshore (for example, time-lapse photos can map bar locations and radar- and
lidar-based measurements of wave heights can be used to infer bathymetry). However, we suggest that most
of the information we have regarding the morphological impacts of severe and infrequent events has
been developed through subaerial observations and that this is an observational bias that may lead to
underestimates of the frequency and magnitude of upper shoreface deposits associated with seaward
cross-barrier transport.

Overwash fans and flood-tidal delta deposits provide irrefutable and photogenic evidence of landward
transport. Comparable evidence for seaward transport to the upper shoreface is less easily acquired,
particularly on wave-dominated coasts. Thus, the role of seaward cross-barrier transport and deposition,
even temporarily, in the nearshore regions may need to be considered in morphologic models. Clearly,
landward transport must prevail for successful transgression. But not all barrier islands are rolling over.

5.4. Broader Implications

Model simulations demonstrated that net onshore transport does not necessarily increase monotonically
with increasing storm surge and inundation depths, as was suggested in previous work [Sallenger, 2000].
We have already discussed the effect of reversing the water-level gradient. Additionally, increasing the
inundation depth reduces the wave-induced bottom stresses, other things being equal. One implication of
our observations is that for barrier island evolution, the largest storms may not be as effective at generating
rollover and sequestering sand in overwash deposits as storms that are just large enough to generate
overwash. Cross-barrier water-level slopes determine the rate and direction of transport, but these slopes
are not necessarily linked to measures of storm intensity such as wave height or storm surge. If the slopes and
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transport are landward, sand is safely sequestered in overwash deposits and (at least temporarily) appears in
the stratigraphic record. But if slopes and transport are seaward, deposits on the ocean side are subject to
immediate reworking after the storm. This mobile sand can aid in the immediate recovery of the beach by
contributing sand to bars that weld onto the shoreface and spits that help close new breaches. Alternatively, it may
be subject to alongshore transport and removal from the local barrier island sand budget. In extreme cases, sand
may be transported seaward far beyond the depth of closure and effectively removed from the system.

6. Conclusions

We recorded time series of precise (+3.7 cm vertical) measurements of waves and water levels on both sides
of an historically active overwash channel on the undeveloped northern Chandeleur Islands during
inundation by Hurricane Isaac (28-30 August 2012). Subaerial island morphology was recorded by airborne
lidar surveys conducted 7 months before and a few days after the storm. We simulated the morphology
changes using the numerical model XBeach, forced with our water-level measurements (corrected for wave
runup and wave-induced setup) and wave fields generated by a regional wave model. The measurements
showed that soon after water levels were high enough to inundate the channel, water levels sloped offshore
for most of the storm. Subaerial lidar data and field observations showed that three channels were eroded by
0.3 to 0.5 m, with no evidence of sediment accumulation on the landward side of the island. XBeach
simulations forced with modeled waves and observed water levels generated net seaward transport and
created erosional channels that dissected the island, depositing sand in the nearshore region on the ocean
side. The model indicated that very little sand was deposited as overwash on the bay side, consistent with the
measured poststorm topography. Numerical experiments found that sediment transport directions and
magnitudes were sensitive to water levels and, in particular, water-level slopes. Specifically, higher ocean
water levels resulted in traditional landward transport and development of overwash fans, and equal water
levels cross-island resulted in a more uniform geomorphic response with no channelization, in contrast to the
observed case of seaward transport resulting from higher bayside water levels. These results highlight the
important influence of cross-barrier water levels on net transport during inundation events.

The northern Chandeleur Islands are unique in many respects, but the observations and model results
described here have broader implications for other sites, as follows:

1. The methods we used to measure water levels in a region with no infrastructure during an extreme event
were successful and could be applied elsewhere to extend our database of physical-forcing measure-
ments during important geomorphic events.

2. The success of the XBeach model with minimal tuning indicated its utility for modeling morphologic response
to events in beach and barrier environments elsewhere, contingent on correct boundary conditions.

3. Observed and modeled storm surge ebb was capable of driving significant seaward cross-barrier trans-
port and producing scour channels, leaving deposits in the shallow nearshore on the ocean side.

4. The model results also showed that the maximum net landward transport did not always occur at the
highest impact regime and that the morphologic changes associated with seaward sloping water levels
were channel formation and deposition in the nearshore. Deposits associated with seaward transport may
be more difficult to observe and are likely to be reworked in the active littoral zone, reducing the likelihood
of their preservation. Hence, significant events may go unrecorded in the stratigraphic record, adding uncer-
tainty in the reconstruction of storm recurrence intervals from sequences of overwash deposits.

5. Sensitivity runs suggest that landward water-level slopes produce a smoother final topography with
either berm-top deposits or overwash deposits.
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