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Figure 1: Our method enables coherent rendering of virtual augmentations (a,b) based on illumination estimation from the intensities of sample
points in a face (c) and their radiance transfer functions learned from a dataset comprising of images of faces with known illuminations (d).

ABSTRACT

We present a method for estimating the real-world lighting condi-
tions within a scene in real-time. The estimation is based on the
visual appearance of a human face in the real scene captured in a
single image of a monocular camera. In hardware setups featuring
a user-facing camera, an image of the user’s face can be acquired at
any time. The limited range in variations between different human
faces makes it possible to analyze their appearance offline, and to
apply the results to new faces. Our approach uses radiance trans-
fer functions – learned offline from a dataset of images of faces
under different known illuminations – for particular points on the
human face. Based on these functions, we recover the most plausi-
ble real-world lighting conditions for measured reflections in a face,
represented by a function depending on incident light angle using
Spherical Harmonics.

The pose of the camera relative to the face is determined by
means of optical tracking, and virtual 3D content is rendered and
overlaid onto the real scene with a fixed spatial relationship to the
face. By applying the estimated lighting conditions to the render-
ing of the virtual content, the augmented scene is shaded coherently
with regard to the real and virtual parts of the scene. We show with
different examples under a variety of lighting conditions, that our
approach provides plausible results, which considerably enhance
the visual realism in real-time Augmented Reality applications.

1 INTRODUCTION

The concept of Augmented Reality (AR) is based on a view of the
real-world environment (commonly in form of a live video stream)
which is combined with an overlay of virtual content in a spatial re-
lationship to the real world. For many AR applications, the virtual
content shall seamlessly integrate in the image of the real-world
environment giving the user an immersive AR experience and the
impression that the virtual content is actually placed within the real
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world. The ultimate goal is to combine the real and virtual scene
parts in a photo-realistic way, where the user cannot distinguish
between real and virtual parts. Lighting has a big impact on ap-
pearance and in order to make the augmented view more realistic,
it is important to illuminate the virtual objects with the same light-
ing conditions visible in the real-world environment. Inconsistent
illumination manifests for example in improper coloring as well as
wrong positions of highlights and cast shadows and thereby disrupts
the realistic impression.

Therefore the real-world lighting conditions must be acquired –
preferably in real-time at the time of augmentation – to apply them
to the virtual content. We present an approach to estimate lighting
conditions from a single monocular image of the user’s face in real-
time. Based on the visual appearance of the face we estimate the
incident light that led to the observed appearance. Our approach is
particularly beneficial for use cases where virtual objects are aug-
mented on the user’s face or close to it. Common examples in-
clude virtual try-on of glasses, jewelry, or hats, as in the example
shown in figure 1 (a,b). Different setups comprising a user-facing
camera may take advantage of our method, including AR kiosks,
web-based shopping applications, and handheld devices – such as
smartphones and tablet PCs – for mobile AR experiences.

Our approach falls in the area of supervised machine learning
and regression analysis, as we estimate the illumination based on
known properties learned from training data. Based on a dataset of
images of faces captured under known different illuminations, we
learn in an offline process how different locations (i.e. sample po-
sitions) on the face reflect light towards the camera in relation to
light incident on the face from the illumination in the environment.
Based on this knowledge we can estimate the current lighting con-
ditions in real-time from a single image of a face under arbitrary
illumination. For any new previously unseen image of a face, we
first perform a face detection to determine the coordinate system in
which the sample positions on the face are defined, see figure 1 (c).
We then query the intensities of the new image at those positions
and use them to solve for the unknown illumination. The estimated
lighting conditions are eventually used for coherent rendering of
virtual objects superimposed on the image of the face. Thereby,
we achieve visually plausible AR experiences that adapt to the real-
world illuminations in real-time.



2 RELATED WORK

In one of the pioneer works about common illumination in the con-
text of combining virtual renderings with images of the real world
Nakamae et al. [25] demonstrate how the ratio between the inten-
sity of sun and sky light can be determined from image intensities of
directly illuminated points and points in the shadow. Common illu-
mination between real and virtual objects is simulated by Fournier
et al. [10] by calculating two global radiosity solutions based on a
model of the real world – with and without added virtual content.
The ratio between the two solutions is used to modify the intensity
of the parts of the real world. Furthermore intensities of known light
sources are recovered finding the linear combination of per light
source radiosity solutions best fitting to an image. Debevec [7] uses
the difference between two global illumination solutions (with and
without virtual content) to calculate the interaction of light between
the virtual and real objects. Within this Differential Rendering the
scene is partitioned into three components: the (real) distant scene,
the (real) local scene, and the synthetic objects. Similar to our ap-
proach, the distant scene only emits light, and is not influenced by
the addition of synthetic objects. Local scene and synthetic objects
in contrast influence each other in terms of light interactions and
thus need to be modeled including geometry and material.

Different approaches exist for acquiring real-world illumination.
One is to directly measure the incoming light for example by cap-
turing images of a mirrored ball – a so called light probe – within
the scene at the target position for the virtual content [7]. Sato et
al. [32] instead use fisheye cameras to capture omni-directional im-
ages. Recently Meilland et al. [24] demonstrate dense visual SLAM
based on a low dynamic range RGB-D camera for creating a 3D
map of the scene including high dynamic range (HDR) recovery
to illuminate virtual objects. Methods based on direct measure-
ments of the environment deliver high quality results but always
come with the burden of a separate acquisition process.

An alternative approach for acquiring the incident illumination,
which we pursue in this paper, is to estimate lighting conditions
from the appearance of illuminated parts of the scene within the
view of the camera. This approach is also known as Inverse Light-
ing and was introduced by Marschner and Greenberg [23] to re-
construct lighting from a photograph and a 3D model of the pic-
tured object to modify the image afterwards according to a new
user-specified lighting configuration. This approach models inci-
dent light by uniformly distributed directional basis lights and finds
the linear combination of the corresponding basis images (gener-
ated using the 3D model) that best matches the photograph. The
re-lighting is demonstrated for a diffuse rigid object as well as for
a human face. In contrast to this approach, we do not rely on a 3D
geometry model of a face.

A theoretical framework for the general problem of inverse ren-
dering, that is measuring rendering attributes like lighting and re-
flectance properties from images, is introduced by Ramamoorthi
and Hanrahan [31]. They analyze the mathematical foundation of
the reflected light field and show for a curved convex, homogeneous
surface under distant illumination using Spherical Harmonics (SH)
representations, that the reflected light field can be described as a
convolution of lighting and surface material, so that inverse render-
ing can be seen as deconvolution. They also explain ill-conditioning
in light estimation from a Lambertian surface compared to a mirror-
like surface. Similar insights are also presented by Basri and Ja-
cobs [4]. It is shown, that the set of all reflectance functions for
diffuse objects lies close to a 9D subspace and images of a diffuse
(convex) object under variable lighting can be represented using
only 9 basis functions.

Various methods in the context of Augmented Reality (AR) use
some kind of inverse lighting to recover information of the illumi-
nation. Some rely on known objects with predefined geometry and
reflectance properties that have to be placed additionally within the

scene, such as a ping pong ball or a planar marker rotated in front of
the camera as proposed by Aittala [2]. Arief et al. [3] estimate the
direction of one dominant light source based on the shadow contour
cast by a cuboid shaped 3D AR marker, which is simultaneously
used for tracking. A conventional 2D square marker for tracking is
combined with an attached small black mirror ball by Kanbara and
Yokoya [17]. The reflections of the 8 brightest spots are used to
estimate directions, colors and intensities of the light sources. The
reflections on a planar specular surface have also been exploited
to reconstruct the illumination by Jachnik et al. [15]. Gruber et
al. [14] present an approach of inverse lighting for arbitrary scene
geometry instead of relying on predefined known objects. They use
an RGB-D camera for geometry reconstruction and simultaneous
recovering of the incident directional light distribution. As in this
paper, they represent lighting and radiance transfer functions using
low order SHs. Their calculation of radiance transfer functions is
however based on the depth input from the RGB-D camera com-
bined with the assumption of fully diffuse objects and they do not
recover light colors but assume white light.

An alternative to acquiring the original illumination is to acquire
the resulting shading, e.g. parameterized by surface orientation and
visibility of the hemisphere, and directly apply it during rendering.
Calian et al. [6] employ 3D-printed shading probes, that consist of a
white kernel showing the convolved incident light. The white kernel
is partitioned by black walls into different spherical sections. One
section shows the diffuse shading for light from a particular part of
the hemisphere. All kernel parts of the shading probe must be cap-
tured, requiring the user to rotate the camera around the probe. Yao
et al. [35] acquire diffuse shading depending on surface orientation
represented by SHs focusing like us on a particular body part of the
user, namely the hand, which they capture using a RGB-D camera.

Beyond the area of AR, active research has been done regarding
illumination of the human face, particularly in the field of relight-
ing i.e. rendering of faces under new illumination and/or poses.
Debevec et al. [8] acquire the light reflected from a human face by
capturing images of the same face under dense sampling of incident
illumination directions using a so called Light Stage and construct a
reflectance function in form of an image for each image pixel. From
these functions they can directly create new images of the face in
any form of illumination. The reflectance function corresponds to
the radiance transfer function in here. Fuchs et al. [11] analyze
spatially varying reflectance properties of a particular human face
by taking photos in calibrated environments under different poses
and up to seven point-light conditions. They estimate the geome-
try of the particular face using a 3D Morphable Model [5] and fit
parameters of an analytic BRDF model for different regions in the
face as well as a fine-grained locally varying diffuse term. This al-
lows rendering under new poses and complex lighting conditions.
Additionally based on facial features, they may map the acquired
reflectance properties from one face onto another one. Nishino and
Nayar [27] compute the environment map of the scene from the re-
flections of the surrounding world visible in the image of an eye
and use the result for light estimation, face relighting as well as
for reconstruction of facial geometry. Illumination of faces is also
highly relevant in the area of face recognition, as lighting often has
a big impact on the image of a human face beside characteristics
of a particular face, interfering with the goal to determine the per-
son’s identity. For recognizing a face under variation in lighting
Georghiades et al. [12] build the illumination cone (i.e. the set of
images of an object in a fixed pose, but under all possible illumina-
tion conditions) for a particular face from seven images of the same
face and pose under different lighting directions by reconstructing
shape and albedo. From one image of an unknown face under un-
known illumination Sim and Kanade [33] create new images under
changed illumination for better face recognition using the standard
Lambertian equation. Because this equation does not model shad-



ows and specular reflections they extend the equation by an additive
per pixel error term, capturing the error introduced by the simpli-
fication. They learn a statistical model for the normals as well as
for the error term depending on the location on the face from a set
of images of people under different known illumination directions.
The incident light direction from the image is estimated based on
the difference between the input image and each training image us-
ing a Gaussian weighted sum over the corresponding known light
directions. For the images out of the training set itself, they demon-
strate high accuracy on the recovered light direction. Based on a
collection of 3D face scans Zhang and Samaras [36] create a statis-
tical model for the illumination of the human face. They compute
per pixel means and covariances of Gaussian distributions for the
influence of the different SH basis functions and model illumination
considering only the surface orientations of the 3D scans, thereby
assuming a convex diffuse object. Afterwards based on images of
faces under known lighting an additional error term for the statis-
tical model is estimated, comprising deviations from the diffuse as
well as the convex assumption. Based on this model, SH coeffi-
cients of the unknown illumination for a given face image are esti-
mated using kernel regression. 3D models of faces are also used by
Qing et al. [28] to create a multitude of images showing the influ-
ence of different SH basis functions on the faces, again considering
only the surface orientations of the 3D models. Average images,
obtained by PCA, from the set of the images for the influence of a
particular SH basis function are used to estimate the unknown illu-
mination for a given unknown face image. SH illumination of faces
is also combined with a 3D Morphable Model of the face for face
recognition by Yhang et al. [37]. Lee et al. [21] demonstrate that
basis images for the image variation of human faces under variable
lighting (in terms of a good representation for face recognition) can
be directly generated using real images with a certain set of config-
urations of lighting directions. They compare their results to har-
monic images of the face and to the illumination cone. As opposed
to the above approaches, sparse sampling of intensities in the image
of the face is sufficient for our approach, as we are only interested
in the lighting conditions and not in re-lighting the image of the
face itself. Instead we use the estimated illumination for rendering
virtual objects coherently.

Having acquired the real-world illumination, photo-realistic im-
ages with combined virtual and real content need to be generated
in real-time. Knecht et al. [20] for example present a method for
approximating the global illumination combining differential ren-
dering with instant radiosity by Keller [18]. Also the simulation of
camera effects for the virtual content has an important impact on the
coherent appearance of virtual and real parts, like shown by Klein
and Murray [19], who model artifacts arising during the imaging
process, for example distortions, chromatic aberrations, blur and
noise. Sophisticated rendering methods such as these are out of
the scope of this paper, which focuses on estimating the real-world
lighting conditions.

3 LIGHT ESTIMATION FROM FACES

Throughout this paper, we explicitly focus on the appearance of
the face of the user as illuminated part of the scene for estimating
incident light. Various benefits of this specialization are discussed
in section 3.1. We estimate light incident on the face based on light
reflected from the face towards the camera. A separation of the
reflected light and the incident light is provided in section 3.2. The
correlation between incident light from a particular direction and
the radiance reflected towards the camera can be described with a
radiance transfer function (RTF), which is explained in section 3.3.

Our approach for estimating the distant illumination from an im-
age of a face consists of an offline learning stage and a real-time
light estimation. The offline stage (see section 3.4) uses a set of im-
ages of faces under different known directional illumination from

The Extended Yale Face Database B [12, 21] to learn the average
RTFs over different humans for a set of sample positions on the
face. We model the RTFs as well as the incident light from the
distant environment using real-valued Spherical Harmonics (SH) –
orthonormal basis functions over the domain of directions. In the
online stage (see section 3.5) we receive an image of the face of the
user as input and estimate the unknown illumination based on the
intensity values at the sample positions on the face and the corre-
sponding RTFs identified in the offline learning stage.

3.1 Benefits of the User’s Face for Light Estimation
For AR scenarios, relying on the appearance of the user’s face to
estimate illumination has a number of benefits compared to State-
of-the-Art approaches, which are based on either generic environ-
ments or specific objects that explicitly need to be placed in the
scene. Firstly the user is already part of the scene, so no extra ge-
ometry must be placed and the appearance of the scene is not in-
fluenced. Furthermore, our approach does not require capturing the
environment beforehand but can immediately estimate the illumina-
tion once the face is visible in the camera. This is always the case
when dealing with a user-facing camera (e.g. next to the display)
so that the user does not need to pay attention to keep some special
geometry for light estimation within the camera’s field of view. In
virtual fitting use cases based on kiosk, web or mobile applications,
where the augmented objects are for example glasses, jewelry or
hats, the face of the user is already within the image of the camera
and it is located close to the augmentation, which is another benefit.

The geometry of a human face is also well suited for light esti-
mation, as it contains roughly the whole range of surface orien-
tations facing the camera. Most importantly, human faces have a
limited range of variations between different individuals regarding
for example geometry and reflectance properties. As a result, these
properties can be modeled (manually or automatically from a mul-
titude of different faces) in an offline pre-process, which enables
using optimized algorithms based on valid assumptions and restric-
tions with regard to faces, that run more efficiently than generic
approaches. Light estimation based on arbitrary scenes requires ac-
quisition of their geometry, e.g. using RGB-D cameras [14], and
most importantly, there is no warranty that the scene is suited for
light estimation. A planar table, for example, would reveal only
little information about the illumination.

Another problem with arbitrary and unknown geometry is the
ambiguity between light and material. Acquiring material prop-
erties on the fly under unknown light conditions is quite difficult
and typically hardly possible from a single image. Assumptions
that would be invalid for arbitrary scene surfaces can be applied to
faces, like a specific model for skin reflectance which constrains the
physical problem of ambiguity between surface material and light
intensity and color. Regions of the face particularly suited for esti-
mating the illumination can be pre-learned or pre-defined and dis-
tinguished from other regions. Using faces also allows algorithms
to fit a generic 3D face model [5] using a single image captured
by a standard RGB camera. With the face of the user staying the
same over time, this fitting only has to be done once, compared to
arbitrary parts of the scene geometry which change while the user
is moving through the scene.

3.2 Light Field Separation
The image we perceive from our environment is the light distribu-
tion as equilibrium solution arisen after multiple reflections of light.
The human vision system does not observe the propagation of light
but only the final result. The same is true for standard cameras.

For a particular wavelength at a particular point in time, the 5D
plenoptic function P(x, ~ω) [1] returns radiance within a light field
along a ray specified by its 3D location x ∈ R3 and 2D orientation
defined by a unit vector ~ω ∈ R3.
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Figure 2: Light rays incident on an object have a stronger variation
in direction for near light sources (a) than for distant ones (b). We
model light incident from the distant scene as depending on direction
only (c). Local surface points e.g. on the cheek may be occluded
from incident light by other parts of the local scene e.g. the nose (d).

We assume that light is emitted only from an environment which
is distant in comparison to the dimensions of the local object (e.g.
the face) and we therefore consider two separate parts of the light
field (similarly as in [7]), where the first part corresponds to the
distant scene illuminating the local scene, and the second one cor-
responds to the light reflected from the local scene, which does not
emit any light by itself.

Because the distant part is assumed to be located far from the
local lit and displayed scene part, the parallax effect regarding in-
cident light can be neglected for locations within this considered
range of the local scene. The light incident from the distant scene
thus depends on direction only and not on position. Figure 2 illus-
trates the concept behind. As long as the light source is close to
the face (see figure 2 (a)), the direction of incident light from the
light source varies quite strong between different positions on the
face. With increasing distance (see figure 2 (b)) between the light
and the lit object, this variation diminishes and incident light rays
become more parallel. Light incident from a distant environment
thus can be specified as a 2D function depending on incident direc-
tion only (see figure 2 (c)), which in the following is referred to as
directional distribution of incident light E(~ωi) (see figure 3). Note
that ~ωi refers to the direction where light comes from and not where
it is heading in this case.

The second considered part of the light field R(x, ~ω) represents
light reflected at a surface point x of the local scene into the direc-
tion ~ω and depends on E – the light incident from the distant scene
– as well as on the material and geometry properties of the local
scene. Light incident from the distant environment can be occluded
for a particular point by another part of the local scene (see figure 2
(d)) resulting in cast shadow and light can be reflected from one
local surface point onto another one. In the following we will have
a closer look at the function modeling this correlation between the
light field parts E and R, which we refer to as Radiance Transfer
Function (RTF).

3.3 Radiance Transfer Function
Mathematically the process of propagation of light can be formu-
lated as an integral equation called Rendering Equation [16] :

L(x, ~ω) = Le(x, ~ω)+Lr(x, ~ω) (1)

L(x, ~ω) specifies the light – more precisely radiance – at a sur-
face point x ∈ R3 into direction ~ω , which is composed of two
parts: Le(x, ~ω), radiance emitted at location x into direction ~ω
and Lr(x, ~ω), radiance reflected at location x into direction ~ω . Le
thereby directly corresponds to the light sources, while Lr can be
further disassembled, referred to as Reflection Equation:

Lr(x, ~ω) =
∫

Ω(x)
fr(x, ~ωi, ~ω)Li(x, ~ωi)(~ωi ·~n(x))d~ωi (2)

E(~ωi)

R j,~ωi
x j

Figure 3: Light E(~ωi) coming from the distant scene out of direc-
tion ~ωi incident on the face is transferred into radiance R j,~ωi

leaving
at point x j towards the camera.

Radiance reflected at location x into direction ~ω depends on inci-
dent radiance Li at x, the surface orientation compared to the inci-
dent light and reflectance properties of the surface at x. Note that
this formulation neglects subsurface scattering.

Let ~n(x) ∈ R3,‖~n‖2 = 1 be the outward-pointing normal vector
specifying the surface orientation at x. The integral considers the
incoming light at location x from all possible directions ~ωi ∈Ω(x).
Thereby Ω(x) specifies the upper unit hemisphere with respect to
the surface orientation~n(x) at position x. The amount of incoming
radiance Li(x, ~ωi) from a particular direction ~ωi is scaled by the co-
sine of the angle between the direction and the surface orientation,
thereby accounting only for the effective power incident on the unit
area of the surface. The resulting irradiance is multiplied by the so
called Bidirectional Reflectance Distribution Function (BRDF) [26]
fr(x, ~ωi, ~ω), which specifies the ratio of locally reflected radiance
into outgoing direction ~ω to locally incident irradiance out of di-
rection ~ωi. This function depends on the material properties at the
particular surface location x.

Because radiance along a ray does not change as long as light
propagates through empty space, the radiance infalling at position
x from direction ~ωi can be expressed as outgoing radiance into di-
rection (−~ωi) at the surface point visible from x in direction ~ωi:

Li(x, ~ωi) = L(h(x, ~ωi),−~ωi) (3)

with h(x, ~ωi) ∈ R3 returning the surface point visible from point x
in direction ~ωi. The rendering equation therefore can be written as:

L(x, ~ω) = Le(x, ~ω)+
∫

Ω(x)
fr(x, ~ωi, ~ω)L(h(x, ~ωi),−~ωi)(~ωi ·~n(x))d~ωi

(4)

Note that the unknown function L thereby occurs both inside and
outside of the integral.

By applying the assumption that the light field can be separated
into a distant part E(~ωi) and a local part R(x, ~ω) we need to distin-
guish whether the local scene or the distant environment is visible
from point x in direction ~ωi. Figure 4 shows the division of the
hemisphere Ω(x) into a set of directions where the distant environ-
ment is visible – marked as green – and the set where it is occluded
by the local scene – marked as red.

For a point x on the surface of the local scene, the overall re-
flected light R into direction ~ω then can be specified as:

R(x, ~ω) =
∫

Ω(x)
fr(x, ~ωi, ~ω)V (x, ~ωi) ·E(~ωi) · (~ωi ·~n(x))d~ωi

+
∫

Ω(x)
fr(x, ~ωi, ~ω)(1−V (x, ~ωi)) ·R(h(x, ~ωi),−~ωi)(~ωi ·~n(x))d~ωi

(5)
with

V (x, ~ω) =

{
1 if dist. env. visible at x into direction ~ω
0 if dist. env. occluded at x into direction ~ω

(6)
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Figure 4: For parts of the directions of the hemisphere Ω(x) oriented
along surface orientation ~n(x) at surface point x the distant environ-
ment is occluded (red), for other directions it is visible (green).

The recursion can be rewritten as an infinite series, a Neumann se-
ries with a linear operator B representing light transport by a single
reflection step of light at a surface:

R = B(E +R)

= B(E +B(E +R)) = · · · =
∞

∑
i=1

Bi(E)

= T(E)

(7)

Operator T contains all the light transport – from direct illumination
of the local scene (B(E)), up to an infinite number of interreflec-
tions (B∞(E)) within the local scene – and maps the distant part E
of the light field to the reflected local part R. In function notation,
let T (x, ~ωi, ~ω) be the RTF corresponding to operator T.

In general T is a real function over the domain of directions ~ωi
from which light is incoming from the distant scene, positions x on
the surface of the local scene and the directions ~ω of the reflected
light at x. For a surface point x of the local scene it specifies the ratio
of outgoing radiance into direction ~ω to radiance coming from the
distant scene out of direction ~ωi incident on the whole local scene
(see figure 3). Similar to the BRDF it also contains the material
properties of the local scene, but it models the global light trans-
port. It additionally includes the surface orientation as well as oc-
clusions of parts of the distant environment at the surface location x
by local geometry, and even the geometry and material properties
of the whole local scene by interreflections of light within the local
scene. According to [22], an RTF tabulates the linear response of a
surface point in terms of exit radiance (R) to source lighting (E).

We are interested in the RTF at discrete points x j on the surface
of an object in the local scene, i.e. the face of the user. Considering
a fixed pose (e.g. frontal head pose) in front of the camera, a partic-
ular surface point x j also implicates a fixed direction ~ω j in relation
to the coordinate system of the face from x j towards the camera.
For the image of the face, the brightness of the pixel corresponding
to the projected x j correlates to R j = R(x j, ~ω j), the reflected radi-
ance at the surface point x j into the direction of the camera ~ω j. Let
Tj(~ωi) = T (x j, ~ωi, ~ω j) be the RTF specifying the ratio of reflected
light intensity at position x j into direction ~ω j to light intensity com-
ing from the environment from the particular direction ~ωi.

Assuming that light is coming out of the distant scene from a
single direction ~ωi only (see figure 3), we get the following equation
for the reflected light at x j into direction ~ω j:

R j,~ωi
= Tj(~ωi) ·E(~ωi) (8)

In real environments, light usually does not come from only a sin-
gle direction, but from all directions with varying intensities. The
environment then consists of a dense distribution of light intensities
over the range of directions. The overall reflected light resulting
from light incident from the distant scene from multiple directions
is the sum over the reflected light intensities corresponding to each
single incident light direction. For the continuous range of incident

light directions the sum becomes an integral of the reflected light
for incident light from the distant scene over all directions (speci-
fied as the unit sphere S2). The integrand is the product of the RTF
Tj(~ωi) at the particular location x j and the incoming light inten-
sity E(~ωi) from the distant scene both evaluated for the particular
direction ~ωi.

R j =
∫

S2
Tj(~ωi) ·E(~ωi)d~ωi (9)

3.4 Learning the Impact of Illumination on the Appear-
ance of Faces Offline

In the following we elaborate our training procedure to determine
the RTF for particular points on a human face.

We restrict ourselves to a fixed pose, and without loss of gener-
ality we pick the frontal head pose. As shown in section 3.3 a fixed
viewpoint induces a fixed reflection direction ~ω j towards the cam-
era for a particular point x j on the face. The RTF Tj(~ωi) for point x j
only has the direction of incident light from the environment as in-
dependent variables. Given an RTF, the reflected light R j depends
on the specification of source lighting E only, see equation (9).

We want to support light estimation for arbitrary human faces,
without a separate per person offline learning step. Therefore we
want to determine for each sample position x j the average RTF
Tj(~ωi) to approximate the different RTFs over different faces.

3.4.1 Input Training Data
We determine the RTF for a sample position x j based on intensities
of the corresponding pixel within images of different persons un-
der different known directional illuminations. The images from the
database used as input for the offline learning stage are a set of im-
ages of faces with frontal head pose from 38 human subjects under
64 different illumination conditions[12, 21].

Let F be the set of different faces with f ∈ F specifying a partic-
ular face and K be the set of different directional illuminations with
k∈K specifying a particular distant illumination Ek containing only
incident light from direction ωk.

We define a coordinate system for an image of a face based on
the positions of the eyes. Relative to this coordinate system, we
(sparsely) select a set of sample positions x j uniformly distributed
within regions that are most likely skin regions for all different hu-
mans (like cheeks, forehead and nose). Let J be the set of selected
samples with j ∈ J specifying a particular sample. The same set
J is used for all images. The positions of the eyes in the training
images are labeled manually.

3.4.2 Per Person Albedo Factor
As a first assumption, we assume that for a particular location in the
face – especially within the regions of the selected sample positions
– the RTFs between different persons mainly vary by a uniform per
person albedo term corresponding to the difference in the BRDF of
the persons’ skin. Therefore we first normalize the intensity of all
training images of a person by dividing by the albedo of the respec-
tive person, which we determine by the median over the intensities
of all sample points in the frontal lit image of the particular face.
Simply scaling the RTFs however is a coarse not completely valid
approximation for not fully convex and diffuse objects. Human skin
exhibits a significant amount of glossy reflection and subsurface
scattering. Also the geometry of a human face is not fully convex.
We may want to improve this approximation in future work.

After compensating for the per person albedo factor, we assume
that for a particular position in the face one RTF can be used to
approximate the RTFs for all different persons.

Another similar approximation we make - with our database con-
taining only grayscale images - is reusing the same RTF for differ-
ent light frequencies just by scaling the RTF by an albedo factor
specific to the frequency, i.e. color channel.



3.4.3 Spherical Harmonics Representations
We model all RTFs as well as incident light from the distant envi-
ronment using real-valued Spherical Harmonics (SH) – orthonor-
mal basis functions Yn(~ω) defined over the domain of directions.
We use a linearized single index notation [34] with n = `(`+1)+m
where ` ∈ {0, ...,L} specifies the degree or band of the SH basis
function and m ∈ {−`, ..., `} the order within band `. Please refer
to [13] and [34] for a deeper insight. A real function f (~ω) depend-
ing on direction – like an RTF or a distant illumination – can be
approximated by a linear combination of SH basis functions. The
linear combination is specified by the corresponding coefficients fn
for the SH basis functions Yn(~ω).

f (~ω) =
∞

∑
n=0

fn ·Yn(~ω)≈
(L+1)2−1

∑
n=0

fn ·Yn(~ω) (10)

Our SH expansions will have maximum degree L = 2, which
gives us 9 SH basis functions Yn and corresponding coefficients
fn, that can be written as an SH coefficients vector f̂ ∈ R9 with
f̂ = ( f0, f1, · · · , f8). The coefficients fn can be determined by pro-
jecting the function f (~ω) into the particular basis function Yn(~ω):

fn =
∫

S2
f (~ω) ·Yn(~ω)d~ω (11)

Let T̂j ∈ R9 be the sought SH coefficients vector for the RTF
Tj(~ωi) at location x j. Tj then is approximated by:

Tj(~ωi)≈
8

∑
n=0

T̂j,nYn(~ωi) (12)

Let Êk ∈R9 be the SH coefficients vector for Ek(~ωi) – the particular
directional illumination k. Ek then is approximated by:

Ek(~ωi)≈
8

∑
n=0

Êk,nYn(~ωi) (13)

The images of the used database are each taken under light from
one particular direction which is specified by azimuth and elevation
angle. That means that the distant light field Ek(~ωi) corresponding
to an illumination k only contains light from this single direction
~ωk. The integral in equation (11) thus becomes a direct evaluation
of the basis function at this direction. We assume unit intensity.

Êk,n =
∫

S2
Ek(~ωi) ·Yn(~ωi)d~ωi =

∫
S2

δ (~ωi−~ωk) ·Yn(~ωi)d~ωi = Yn(~ωk)

(14)

A directional light is locally defined in angular space, but contains
all frequencies when defined in angular frequency space. An accu-
rate representation by an SH expansion would need degree L = ∞.
The limitation to L = 2 involves a coarse approximation.

The reflected light can be expressed as an integral of the prod-
uct of RTF and particular distant illumination over all directions
(eq. (9)). With both the RTF as well as the distant illumination
expressed in SHs, we can exploit the orthonormal properties (see
eq. (15)) of the SH basis functions:∫

S2
Ya(~ω) ·Yb(~ω)d~ω = δa,b =

{
1 if a = b
0 else (15)

When inserting the SH approximations from equations (12) and
(13), the integral in equation (9) becomes a simple dot product of
the SH coefficient vectors representing Tj and Ek.

R j,k =
∫

S2
Tj(~ωi) ·Ek(~ωi)d~ωi (16)

≈ T̂>j · Êk (17)

In the following we loosely write = instead of ≈ also when refer-
ring to SH approximations.

3.4.4 System of Equations
Within the offline learning stage of the RTFs each sample posi-
tion x j is considered separately. Given a particular image i, with Eki
being the distant illumination containing only incident light from
direction ωki and fi being the particular face in image i. Let I j,i be
the intensity of reflected light R j,ki (at surface point x j into direction
~ω j by face fi under illumination Eki measured by the intensity of the
pixel corresponding to sample position x j in image i) compensated
by the albedo term of face fi.

For each image we get an equation (17) between the unknown
RTF Tj at position x j in the face, the measured known reflected
light intensity R j,k and the corresponding known illumination Ek.

From the set of images we can build a system of equations (18)
for a particular surface point x j and can calculate the least squares
solution for the coefficients T̂j of the RTF.

Ê>k(i=1)

Ê>k(i=2)

...
Ê>k(i=|K|·|F |)

 · T̂j =


I j,(i=1)
I j,(i=2)

...
I j,(i=|K|·|F |)

 (18)

The offline stage results in recovered RTFs (each specified in SH
coefficients T̂j) for the selected positions x j in the face.

Figure 1 (d) illustrates how the RTF is evaluated for different
sample positions. First the measured reflected intensities for one
sample position are extracted from the multitude of images of the
faces under different directional illumination. Then an RTF mod-
eled by SH basis functions is fitted to the different measurements.

3.5 Online Illumination Estimation
In the online stage we receive an image of a (potentially unknown)
face as input and thereof estimate the unknown directional distribu-
tion of incident light E(~ωi).

Assuming that the sample positions within the image are already
given, a system of equations similar to the one of equation (18) is
built. In comparison to the offline learning process, where equa-
tions are collected for one sample position x j from a multitude of
images, this time equations for the directional distribution of in-
cident light within one image from the multitude of sample posi-
tions are joined. The RTFs Tj for the different sample positions are
known from the offline estimation step, but E is unknown. I j is the
intensity of reflected light R j (at surface point x j into direction ~ω j
measured by the intensity of the pixel corresponding to sample po-
sition x j) potentially compensated by an albedo term of the current
face. This albedo term inhere leads to a scale of the estimated il-
lumination. This is especially important when also estimating light
color by making separate light estimations per color channel.

T̂>j=1
T̂>j=2

...
T̂>j=|J|

 · Ê =


I j=1
I j=2

...
I j=|J|

 (19)

For this system of equations we calculate the least squares solution
giving us the SH coefficients Ê of the directional distribution of
incident light.

4 FACE TRACKING AND RENDERING OF VIRTUAL OBJECTS

In order to build the system of equations (19) for an input image, the
sample positions x j defined on the face first must be projected onto
pixel positions of the image. Therefore, and for positioning virtual
content in a spatial relationship to the face, the face of the user must
be tracked. Information on our face tracking and the projection of



sample points x j is given in section 4.1. With estimated illumi-
nation and determined pose we then render the augmented image.
This rendering of the augmented scene (real plus virtual content)
must run in real-time. We beforehand pre-compute the occlusion of
the distant environment for the virtual content, as described in sec-
tion 4.2. The real-time rendering uses the pre-computed data and
combines it with the live estimated directional distribution of inci-
dent light in order to shade the virtual content coherently with the
appearance of the real scene, see section 4.3.

4.1 Face Tracking
We use an image-based face tracking prototype as a black box. For
an input image of a human face we obtain a 6DoF pose comprising
3D translation and 3D rotation. It is used for transforming the coor-
dinate system for rendering virtual content as well as for projecting
the sample positions x j defined on the face onto pixel positions of
the captured camera image. Note that in our prototype we before-
hand projected the 2D sample positions onto a 3D face model for
sake of simplicity. Figure 1 (c) shows the projected sample posi-
tions during live tracking. For now, our light estimation algorithm
assumes close to frontal head poses in order to work properly.

4.2 Offline Pre-Computation for Rendering
For the shading of a virtual object, we currently only support direct
lighting – no interreflections. The light coming from the distant en-
vironment is modeled using SHs up to 2nd degree. We pre-compute
the influence of incident light from the distant environment on the
virtual geometry as described in [34, 13]. For every vertex x of a
virtual 3D model we calculate the influence cn of each SH basis
function Yn modeling incident light on the intensity of the vertex:

cn =
∫

Ω(x)
V (x, ~ωi) ·Yn(~ωi)(~ωi ·~n(x))d~ωi (20)

This influence cn depends on the surface orientation at the vertex
as well as on occlusions of the distant environment by the local
scene itself (see figure 4). Besides the virtual object, the local scene
hereby also contains a proxy geometry for the face which occludes
parts of the environment, depicted in gray in figure 5. The cal-
culation of the integral is done using Monte-Carlo integration by
casting rays from the vertex position x randomly into all directions.
The value of the SH basis function is evaluated for unoccluded di-
rections, compensated by the cosine of angle between sample di-
rection and surface orientation and summed up. For each vertex we
thus obtain an SH coefficient vector Ĉ ∈R9, which will be supplied
as per vertex attribute in the rendering stage. Figure 5 illustrates the
coefficients of the SH basis functions over the surface of the model.
Each image corresponds to the influence of one SH basis function.

For the proxy head model we additionally investigate pre-
computing the differential change of the solutions with and without
the virtual content, in order to simulate shadow cast from virtual
content onto the real face. First results thereof can be found in fig-
ure S.4 in the Supplemental Materials as well as in the video.

4.3 Real-Time Rendering
Our implementation for the real-time rendering part is based on
the Metaio SDK1 using OpenGL and GLSL. Thanks to the image-
based face tracking, virtual geometry is rendered in a fixed spatial
relationship to the face.

The pre-computed SH coefficient vectors Ĉ from section 4.2 are
supplied as per vertex attributes to the rendering stage. The esti-
mated SH coefficients Ê of the directional distribution of incident
light from section 3.5 are supplied in form of uniform arrays, with
9 coefficients each for red, green and blue light. The final irradiance
for a vertex is determined by the dot products of Ĉ and Ê. Note that

1http://www.metaio.com/sdk/

Figure 5: Pre-Computed Radiance Transfer (shadowed, no inter-
reflections) for the rendering modeling the influence of each SH basis
function on the particular point - green symbolizes positive, red neg-
ative influence, the brighter the greater the influence. The gray head
is a proxy geometry used to incorporate occlusions by a real head.

SH coefficients pre-computed for the geometry and SH coefficients
estimated for the lighting are already in the same coordinate system
as long as the virtual geometry is fixed with regard to the face.

5 EVALUATIONS AND RESULTS

Below we evaluate our algorithm, compare estimated illuminations
to ground truth and present visual results from live video sequences.

The per frame illumination estimation takes less than 1 ms for
grayscale and less than 2 ms for RGB estimation on a Lenovo
ThinkPad Helix i7-3667U (Windows 8.1 Pro) using a set of 294
sample positions.

5.1 Evaluation of Estimated Light Against Ground Truth

We first compare the primary light direction of our estimation with
the ground truth light direction – both parametrized as SHs. Then
we have a look at the visual qualitative impact of the differences
between illumination estimation and ground truth.

5.1.1 Quantitative Results

In order to obtain a quantitative evaluation of the estimated illumi-
nation, we estimate illumination from images of faces under known
directional illumination using the same database as for training. We
divide the set of images from the used database beforehand into one
part for training and a separate part for the evaluation.

For comparing the estimated illumination against ground truth,
i.e. known azimuth and elevation of the directional light source,
we extract the optimal linear direction [34] from the estimated il-
lumination to approximate a directional light source. Note that this
only utilizes the linear coefficients of the estimated lighting envi-
ronment. The thus extracted values for azimuth and elevation from
the estimated SH vector Ê representing the directional distribution
of incident light are compared to the ground truth data for azimuth
and elevation in figure 6.

Albeit there is some kind of imprecision, the estimations show a
high degree of reliability. Note that the results contain all kind of
images, including lighting under extreme angles. Also for lighting
from above (elevation = 90◦) there is a degree of freedom for the
azimuth resulting in bad estimations at ground truth azimuth 0◦.

Overall the estimation for the azimuth has a mean absolute error
of 10.4◦ with a standard deviation of 20.6◦. The estimation for the
elevation has a mean absolute error of 8.2◦ with a standard devia-
tion of 8.3◦.
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Figure 6: Comparison of estimations against ground truth.

We also examine the real angle between estimated and ground
truth light direction by the dot product of the two direction vectors.
This estimation has a mean absolute error of 12.3◦ with a standard
deviation of 15.5◦. Excluding the 2% of the estimations with an
angular error above 75◦ the remaining estimations have a mean ab-
solute error of 10.4◦ with a standard deviation of 7.1◦.

5.1.2 Qualitative Results

Figure S.5 in the Supplemental Materials contains a grid of visu-
alizations of light estimations for different faces and directional il-
luminations from the used database. Each estimation is illustrated
by 6 parts. Part (a) displays the input image of a face used for
estimating the incident illumination. Part (b) shows a latitude lon-
gitude image depicting the ground truth illumination resulting from
projecting the known directional illumination into SHs. The bright-
ness of a pixel in this image represents the light intensity out of the
direction corresponding to the pixel. Green values symbolize posi-
tive values, while red values represent negative values. These phys-
ically non reasonable negative values for particular directions arise
from the approximation of the directional light source by project-
ing it into the low dimensional space of SHs and cutting off higher
frequencies of the SH expansion. Part (c) shows the same kind of
latitude longitude image, however depicting the estimated illumi-
nation based on the image shown in part (a). Part (d) and (e) show
renderings of a virtual face geometry using the illumination from
part (b) and (c) respectively for better visual comparison. The ren-
derings do not consider occlusions (accounting for the surface ori-
entation only) and use full diffuse reflectance. Part (f) finally shows
the difference image between the images from part (d) and (e).

The results demonstrate that the estimated illumination is in gen-
eral comparable to the ground truth illumination also under harsh
illumination from the side. The estimation however tends to overes-
timate intensities and compensates therefore using also higher neg-
ative intensities. We suspect, that using negative intensities allows
the estimator to reproduce higher frequency effects visible in the
input image like cast shadow and specularities, which could not be
modeled by the low frequency RTFs. Also the estimated albedo for
different faces seems to work reasonable well, visible in the similar
scale of illumination of parts (d) and (e) in figure S.5.

Note that the evaluation on ground truth uses images which only
contain one directional light source. For real-world applications,
light is coming from all directions. A quantitative evaluation of
our method on images with known environment light is part of our
future work, e.g. by combining database images as in [36].

5.2 Qualitative Results on Webcam Sequences
Besides our results using the ground truth database, we ran our
method on live video sequences captured with a webcam. In the
following we provide qualitative results from sequences taken in
multiple environments under varying illumination and with differ-
ent users. As a result different faces, that are not part of the training
dataset, act as a basis for illumination estimation in this case.

Figure 1 (a,b) shows two frames of a sequence where a user
wears a virtual baseball cap on his head. To exaggerate changes in
directional illumination, the person in this case uses the flashlight
of a mobile phone to illuminate his own face. It is clearly visible,
that the illumination used to render the virtual cap is consistent with
the illumination apparent in the face, and therefore with the posi-
tion of the flashlight. More examples for estimation of grayscale
illumination are shown in figure 7 (a,b), where the light sources are
lamps on a ceiling (a) and the sun in an outdoor scene (b).

Our approach is also capable of estimating the color of the in-
cident light by estimating RGB (i.e. red, green, and blue) light
individually. In figure 7 (c-e) we use a light source with control-
lable color to illuminate the face of a user. As can be seen particu-
larly well in the insets showing the virtual white clown’s nose (i.e.
sphere) attached to the user’s nose, the estimation of color succeeds
and provides plausible illumination of the virtual contents.

Further examples and visual results can be found in figure S.2
and figure S.3 in the supplemental materials. We further show how
our approach performs in real-time on image sequences in the sup-
plemental video.

6 CONCLUSIONS AND FUTURE WORK

In here we presented a method for estimating the illumination situ-
ation within a scene in real-time from the image of the user’s face
which allows coherent rendering of virtual and real parts in AR ap-
plications. The effectiveness of the method has been demonstrated
in ground truth comparisons as well as under a variety of scenarios
presented in image and video footage.

By discovering and exploiting the fact, that the face of the user
is always within the scene and can be captured in many cases by
a user-facing camera, we eliminated the use of a separate illumi-
nation estimation step which is needed in many State-of-the-Art
approaches without us demanding any special hardware. The light
estimation can be done inherently without the user even taking no-
tice and runs on mobile devices in real-time.

Due to the limited range in variations between different human
faces, we build a two-step algorithm extracting the expensive learn-
ing part into an offline process. RTFs for sample positions in the
face representing the correlation between incident and reflected
light are trained offline based on a plurality of images of faces under
different known illumination. This knowledge is used for estimat-
ing the incident light from a single image of a face in real-time. The
presented two-step algorithm could in future also be generalized for
other objects than the face.

We intentionally designed our light estimation approach as sim-
ple as possible and we could show that it already provides pleasing
results in a variety of cases. However, we believe that in future
work some of the parts of our pipeline could be further improved.

Improving the Offline Training Stage For example the coor-
dinate system for sampling intensities in the database images is de-
fined only based on the eye positions and therefore does not model
the differences in facial proportions between different humans. Us-
ing a more sophisticated model incorporating for example the posi-
tion of the mouth or nose [33] or a full Morphable Model [11] could
result in more accurate sample positions.

At the moment we are using the first 9 SH basis functions for the
RTF and the estimated light. For diffuse lighting and convex diffuse
geometries, when shading depends on surface orientation only, this



Figure 7: Results of grayscale (a,b) and RGB (c-e) illumination estimation and coherent rendering for different environments and illumination.

is sufficient as elaborated in [31, 30, 4]. Compared to other ap-
proaches, that often ignore cast shadows, we capture the occlusions
within concave regions with our RTFs which thereby incorporate
more information than only surface orientation. The SH approxi-
mation used for the RTFs however does not well model those high-
frequent features. Resulting residuals when modeling variations by
illumination using different numbers of eigenvectors have for ex-
ample been evaluated by Epstein et al. [9]. Also the diffuse ma-
terial assumption does not hold for faces. In order to capture and
evaluate effects like cast shadows and glossy reflections, we plan to
investigate the use of higher degrees of SHs or the use of some other
appropriate function basis. On the other side Ramamoorthi [29] has
analyzed the fact that a single image contains only roughly one half
of all possible surface orientations – the front facing ones – and
demonstrated that the variation within a single image of a convex
diffuse object under arbitrary illumination can be even modeled by
only 5 basis functions. He showed that orthogonality of the SH ba-
sis functions is no longer given for the restricted domain of visible
surface orientations in one image. We want to investigate how far
cast shadow and non-diffuse reflectance in faces as well as multiple
images with different camera orientations reduce this phenomenon.

In the same context we plan to further evaluate the properties
of the RTFs at different sample positions and measure which po-
sitions and distributions are well suited for light estimations. We
used a first evaluation for reducing the number of sample positions.
From an initial number of sample positions randomly positioned
over the whole area of the face, we select the ones that have an ab-
solute influence (coefficient) above a certain percentile for at least
one SH basis function. Figure 8 shows the subsets of originally 512
uniformly distributed sample positions, that have an absolute influ-
ence (coefficient) above the 75-th percentile per SH basis function.
We tested that approach reducing the number of sample positions
from 512 to 294 (90-th percentile) without any significant decrease
in accuracy. Another approach to reduce the number and evalu-
ate the properties of sample positions (and thereby also determine
the rank) would be a PCA over the SH vectors of the recovered
RTFs. Groups of similar RTFs could be determined. This could
also be used in a real-time per face optimization where we plan to
select a subgroup of sample positions valid for a particular face.
Sample positions exhibiting inconsistent intensities (e.g. macula,
tattoo, beard, hair, geometric deviations) can be detected and ex-
cluded from the light estimation making the algorithm more stable
for faces partially deviating from the learned model.

Our goal was to find one compact model for the RTFs that fits on
different humans. We thus calculated the average RTFs over all dif-
ferent persons. We plan to investigate training separate RTF groups

Figure 8: Sample positions with influence above the 75-th percentile;
per SH basis function.

for different persons and potentially combine it with PCA. For on-
line estimation the best fitting group could then be picked. We also
presume that learned face properties well represent the tracked face.
A user wearing a hat would for example violate this assumption.
This condition could however also be learned from images.

The RTFs are estimated based on images with light coming
(mainly) from in front of the user. Thereby the fact that light from
behind the user has an influence close to zero for many sample po-
sitions, is not explicitly represented. Although the recovered RTFs
(see figure 1 (d)) show plausible results, a more complete set of
(also synthetic) training images with lighting from behind could
make the estimation more reliable especially when a higher fre-
quency approximation is used.

Improving the Online Estimation The estimated real-world
lighting conditions give plausible results when applied to virtual
content for coherent rendering. However, our algorithm tends to
also estimate negative light intensities from particular directions.
As mentioned in section 5.1.2, negative intensities may arise from
the low dimensional approximation of light sources by SHs. In
here however negative lighting is used in combination with over
estimated positive lighting to reproduce harsh variations in pixel
intensities. This may lead to effects visible in figure 7 (c,d), where
dominant red light on one side of the sphere leads to a lack in es-
timated red light components on the opposite side. The problem is
enforced by the fact, that we only have observations of intensity for



half of the possible surface orientations, leaving the optimization
freedom in modeling back parts of the illumination. To resolve this
problem, we plan to constrain the range of allowed solutions for the
light estimation to prevalent positive intensities, for example using
a convex optimization to enforce non-negative lighting as in [4].

For the images in the offline learning stage we assume some unit
intensity of light. During online processing, we ignore the (non-
linear) camera response function and parameters such as exposure,
contrast or color saturation settings. For physically meaningful es-
timations a radiometric calibration of the camera would be crucial.
Our approach however mimics some camera effects by including
them into the light estimation. An underexposed face for example
leads to an estimation of low light intensity and to coherent under-
exposure of virtual content.

Another challenge, which is especially important for estimating
colored (RGB) illumination, is an (online) albedo estimation for
the user’s face. Either active lighting using the camera flashlight or
approaches based on cast shadows could be investigated.

Our current implementation estimates the incident light for each
frame from a single image allowing the estimation to always be
up-to-date even during rapid changes in illumination. Albeit for
many cases this provides stable estimations we noticed in some sce-
narios high-frequent changes in the estimated illumination result-
ing in flickering augmentations. Temporal smoothing over multiple
frames could eliminate this problem.

For the future we will tackle current limitations of the implemen-
tation as discussed above. Until now we focused on frontal facing
faces only. We plan to extend our method to other poses. Depend-
ing on the head pose, different learned RTFs could be used or a
model for the variation per viewing angle could be extracted.

Realistically showcasing products to the user will be a major re-
quirement for successful AR kiosks and web- or app-based shop-
ping applications. Estimating the present illumination is an impor-
tant step for coherent rendering and is achieved by the method pre-
sented in here without posing any additional challenge to the user.
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