
Zou et al. Cybersecurity (2023) 6:11
https://doi.org/10.1186/s42400-023-00143-2

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Cybersecurity

PosFuzz: augmenting greybox fuzzing
with effective position distribution
Yanyan Zou1,2,4,5, Wei Zou1,2,4,5, JiaCheng Zhao3,6, Nanyu Zhong1,2,4,5, Yu Zhang1,2,4,5, Ji Shi1,2,4,5 and
Wei Huo1,2,4,5* 

Abstract 

Mutation-based greybox fuzzing has been one of the most prevalent techniques for security vulnerability discovery
and a great deal of research work has been proposed to improve both its efficiency and effectiveness. Mutation-based
greybox fuzzing generates input cases by mutating the input seed, i.e., applying a sequence of mutation operators
to randomly selected mutation positions of the seed. However, existing fruitful research work focuses on schedul-
ing mutation operators, leaving the schedule of mutation positions as an overlooked aspect of fuzzing efficiency.
This paper proposes a novel greybox fuzzing method, PosFuzz, that statistically schedules mutation positions based
on their historical performance. PosFuzz makes use of a concept of effective position distribution to represent the
semantics of the input and to guide the mutations. PosFuzz first utilizes Good-Turing frequency estimation to calcu-
late an effective position distribution for each mutation operator. It then leverages two sampling methods in different
mutating stages to select the positions from the distribution. We have implemented PosFuzz on top of AFL, AFLFast
and MOPT, called Pos-AFL, -AFLFast and -MOPT respectively, and evaluated them on the UNIFUZZ benchmark (20
widely used open source programs) and LAVA-M dataset. The result shows that, under the same testing time budget,
the Pos-AFL, -AFLFast and -MOPT outperform their counterparts in code coverage and vulnerability discovery ability.
Compared with AFL, AFLFast, and MOPT, PosFuzz gets 21% more edge coverage and finds 133% more paths on aver-
age. It also triggers 275% more unique bugs on average.

Keywords  Greybox fuzzing, Mutation position, Mutation operator, Code coverage, Vulnerability discovery

Introduction
Mutation-based greybox fuzzing (https://​lcamt​uf.​cored​
ump.​cx/​afl/; https://​llvm.​org/​docs/​LibFu​zzer.​html; https://​
hongg​fuzz.​dev/; Li et al. 2018; Liang et al. 2018; Manès
et al. 2019; Serebryany 2017), is one of the most preva-
lent methods for discovering vulnerabilities in modern
software. In particular, mutation-based greybox fuzzing
organizes its fuzzing loop into three pipeline stages. Seed
selection selects a seed from a seed test cases pool, which
is initialized by user-provided input cases and updated
accordingly in the fuzzing process. The selected seed is
assigned an energy factor based on its length, improved
coverage and execution time. Input seed mutation itera-
tively mutates the selected seed by applying one or more
randomly picked mutation operators on several random
mutation positions using a mutation scheduler.

*Correspondence:
Wei Huo
huowei@iie.ac.cn
1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China
3 State Key Lab of Processors, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China
4 Key Laboratory of Network Assessment Technology, Chinese Academy
of Sciences, Beijing, China
5 Beijing Key Laboratory of Network Security and Protection Technology,
Beijing, China
6 Zhongguancun Laboratory, Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00143-2&domain=pdf
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://honggfuzz.dev/
https://honggfuzz.dev/

Page 2 of 21Zou et al. Cybersecurity (2023) 6:11

It generates input test cases according to energy of the
seed. Testing feeds the generated inputs to the target pro-
gram, detects its abnormal behavior, and records proper
runtime information, i.e., code coverage, to provide hints
for seed pool update and input mutation.

Related work
Numerous optimization methods spanning seed selec-
tion and input seed mutation have been proposed to
improve the performance of fuzzing, i.e., the ability to
discover vulnerabilities or obtain a higher code coverage
of the target program.

Seed selection Fruitful research has focused on the
seed selection phase, either adopting better selection
strategies (Böhme et al. 2016; Gan et al. 2018; Rawat
et al. 2017; Böhme et al. 2017; Lemieux and Sen 2018;
Petsios et al. 2017; Chen et al. 2018; She et al. 2022; Her-
rera et al. 2021), or leveraging different runtime informa-
tion (Xu et al. 2017; Liang et al. 2018; Nagy and Hicks
2019; Chen et al. 2019; Zong et al. 2020; Yun et al. 2018).
AFL (https://​lcamt​uf.​cored​ump.​cx/​afl/) and Libfuzzer
(https://​llvm.​org/​docs/​LibFu​zzer.​html) leverage a prior-
ity queue to schedule input seeds during fuzzing. They
both rely on edge coverage as a metric to determine the
priority of the input seed and update the seed pool. AFL-
Fast (Böhme et al. 2016) optimizes the scheduling of the
input seed by using a Markov chain model to determine
the energy score of each seed. AFLGo (Böhme et al.
2017) allocates more energy to seeds closer to the target
locations and vice versa, which is called a power sched-
uler. CollAFL (Gan et al. 2018) introduces a novel path-
sensitive seed selection policy, which is guided by precise
coverage statistics feedback and can efficiently mitigate
path collisions. Vuzzer (Rawat et al. 2017) prioritizes
input seeds that are unlikely to trigger error-handling
basic blocks while Angora (Chen and Chen 2018) prefers
ones that are likely to trigger conditional statements with
unexplored branches.

Input seed mutation The generation of highly effec-
tive input cases is vital for fuzzing performance. This line
of research (Rawat et al. 2017; Lemieux and Sen 2018;
Chen and Chen 2018; Li et al. 2017; Aschermann et al.
2019; You et al. 2019; Lyu et al. 2019; Wang et al. 2017;
Rajpal et al. 2017) assigns mutation operators with differ-
ent weights by mining the semantics of input bytes. Both
Vuzzer (Rawat et al. 2017) and Angora (Chen and Chen
2018) adopt taint analysis to find “magic” bytes in inputs,
i.e., bytes that are likely to be referenced in a branch
statement. Angora (Chen and Chen 2018) further pro-
poses to solve the path constraints problem using a gra-
dient descent-based search. REDQUEEN (Aschermann
et al. 2019) identifies a relationship called “input-to-state
correspondence”, which makes it possible for some input

bytes to be directly mapped to program memory. It lever-
ages this mapping relationship to implement a close but
lightweight approximation to taint tracking. GREYONE
(Gan et al. 2020) follows the traditional taint analysis
to guide the fuzzing process but proposes a novel data
flow analysis to tune the fuzzing direction further. PATA
(Liang et al. 2022) also conducts path-aware taint analysis
to identify input bytes that will be propagated to variables
used in path constraints and mutates them accordingly.
In summary, taint analysis is vital for identifying critical
bytes of inputs. However, it suffers from path explosion
and overhead issues, making it hard to scale to large pro-
grams or inputs.

There also exist other advancements (You et al. 2019;
Lyu et al. 2019; Rajpal et al. 2017) requiring no heavy
static/dynamic analysis. AFL contains a simple position-
sensitive policy: it skips the bytes that trigger no execu-
tion path in the flip8 operator for following operators
like flip16, flip32, and arithmetic. However, it is limited
to the deterministic stage of AFL, making it not appli-
cable for operators in the havoc stage. ProFuzzer (You
et al. 2019) predefines six classes of data fields, adopts
a lightweight probing approach to classify input bytes,
and performs mutation according to probed data type
semantics. MOPT (Lyu et al. 2019) focuses on the sched-
uling of mutation operators by prioritizing operators
that lead to new code coverage, paying no attention to
the mutation position schedule. Rajpal et al. (2017) also
explores the inequality of input seed bytes regarding
effectiveness in triggering interesting cases. It trains an
offline LSTM (Sundermeyer et al. 2012) model to cap-
ture patterns in past fuzzing and guide future mutations
accordingly.

To conclude, existing research still results in gener-
ating lots of redundant input cases. On the one hand,
if certain mutation operators are selected yet applied
to all positions like (Lyu et al. 2019), mutations are
performed unnecessarily in the input positions rep-
resenting raw data, e.g., pixel data of JPEG. On the
other hand, if the mutation operators are applied selec-
tively to the positions according to the inferred type of
data stored in the positions or the predefined weights
of mutation operators, e.g., (You et al. 2019; Rajpal
et al. 2017), they are not effective on the data with an
unknown type.

Testing Orthogonal to the aforementioned two aspects,
program instrumenting (Schumilo et al. 2017; Xu et al.
2017; Nagy and Hicks 2019; Andronidis and Cadar 2022)
and test scheduling (Zong et al. 2020; Chen et al. 2019)
are also proposed to accelerate the testing process. kAFL
(Schumilo et al. 2017) extends hardware-assisted feed-
back fuzzing to OS kernels by designing novel operating
system-level primitives. Xu et al. (2017) proposes to solve

https://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html

Page 3 of 21Zou et al. Cybersecurity (2023) 6:11 	

the file system contention and the scalability of fork() sys-
tem call under multi-core scenarios. UnTracer (Nagy and
Hicks 2019) traces only coverage-increasing test cases to
reduce fuzzing overhead. FuzzGuard (Zong et al. 2020)
filters out unreachable inputs before executing the target
program to boost the performance of fuzzing. EnFuzz
(Chen et al. 2019) adopts ensemble learning to fuzzing
through cooperatively combining multiple base fuzzers.

Our approach
In this paper, we propose PosFuzz, an augmented grey-
box fuzzer with a mutation strategy sensitive to the muta-
tion position. PosFuzz requires no prior about the data
types of mutation positions. PosFuzz constructs a statis-
tical model which records the historical performance of
mutation positions. Furthermore, PosFuzz applies muta-
tion operators on different mutation positions according
to the statistical model, reducing redundant input cases.
To be specific, PosFuzz computes an effective position
distribution for each mutation operator on the fly. Given
a mutation operator, an effective position associated with
it (abbreviated as an effective position) is a position in the
input seed on which the mutation could lead to a new
program coverage. PosFuzz schedules mutation positions
for a mutation operator using weights denoted by their
probabilities in the distribution. Note that the effective
position distribution for each mutation operator is cal-
culated regardless of the input format, which makes Pos-
Fuzz input format agnostic and more general.

In the input seed mutation phase, PosFuzz first records
profiles for each mutation operator, which are pairs of
mutation operators and mutation positions if a muta-
tion generates an interesting input case, i.e., an input
leading to a new program coverage. Then, it uses online
Good-Turing frequency estimation to calculate the posi-
tion distribution for each mutation operator based on the
profiles. At last, it utilizes acceptance-rejection sampling
and alias sampling, both of which are guided by the dis-
tribution to schedule the positions in two different muta-
tion stages.

We have implemented PosFuzz on top of three state-
of-the-art fuzzers, i.e., AFL, AFLFast, and MOPT, called
Pos-AFL, -AFLFast, and -MOPT, respectively. Evaluation
using 20 real-world programs (UNIFUZZ Li et al. 2021)
and LAVA-M dataset shows that, under the 24 h test-
ing time budget, PosFuzz outperforms AFL, AFLFast,
and MOPT in code coverage and vulnerability discov-
ery. Compared with its counterpart, Pos-AFL, -AFLFast
and -MOPT increases coverage by 22%, 23%, and 17% on
average, respectively, finds 131%, 165%, 102% more paths,
and triggers 243%, 311%, 271% more unique bugs.

In summary, this paper makes the following
contributions:

•	 We introduce a concept of effective position distribu-
tion to represent the semantics of the input, instead
of the data type of the positions in the input. The dis-
tribution can be used to select the mutation positions
with different weights, which can increase the ability
to generate interesting input cases.

•	 We propose PosFuzz, which leverages online Good-
Turing frequency estimation to calculate the position
distribution for each mutation operator, and sched-
ules the positions based on the distribution for the
later mutation.

•	 We implement PosFuzz on top of AFL, AFLFast,
and MOPT. Evaluations using 20 widely used open-
source programs and the LAVA-M dataset show that
PosFuzz outperforms these three methods in both
code coverage and the ability of bug finding.

Background and motivation
We briefly introduce mutation-based greybox fuzzing and
its de facto standard, American Fuzzy Lop (AFL) (https://​
lcamt​uf.​cored​ump.​cx/​afl/). We leverage a widely-used
open-source program exiv2 to demonstrate the limitation
of existing mutation-based greybox fuzzing and the idea of
PosFuzz. Specifically, we select an image with type JPEG as
the input of exiv2 to illustrate the problem in this section.

Mutation‑based greybox fuzzing
Mutation-based greybox fuzzing, like AFL and its
descendants, utilizes edge coverage or bug-finding feed-
back from the prior execution to guide the fuzzing process
and generate more effective inputs. Algorithm 1 presents
the overall workflow of AFL. Mutation-based greybox
fuzzing commonly requires a user-provided input corpus
serving as an initial set of input seeds (Line 1). Usually, the
input seeds are organized into a priority queue. The core
fuzzing loop (Lines 2–21) repeatedly selects an input seed
from the seed queue, mutates it to one or more input cases,
and feeds the generated input cases to the target program.
The interesting input cases, i.e., those trigger a new code
coverage and are added to the priority queue at the suit-
able position. Thus, the main workflow of mutation-based
greybox fuzzing can be divided into three phases:

Phase 1: Seed Selection. An input seed is picked from the
priority queue. And several input cases are generated from
the input seed based on its energy score. Thus, the key chal-
lenge is designing proper priority schemes and scoring meth-
ods to rank/score input seeds. A great deal of previous work
has explored different strategies to improve the effectiveness
of this process. For example, AFLFast leverages the Markov
chain to calculate the energy score of each input seed.

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

Page 4 of 21Zou et al. Cybersecurity (2023) 6:11

Phase 2: Input Seed Mutation. The given input seed is
mutated to generate several input cases by performing a
series of predefined mutation operators on the selected
mutation positions. The mutation operators define how
to manipulate the input seed while the mutation posi-
tions denote the places to mutate. AFL partitions this
phase into three stages:

•	 Deterministic Stage. A mutation operator with the
deterministic feature is selected one by one from the
set of predefined mutation operators and applied to
every byte of the input seed sequentially (Lines 4–9).
For example, bitflip 1/1 operator is used first to flip

each bit of the input seed, and bitflip 8/8 operator is
then applied to flip each byte.

•	 Havoc Stage. A mutation operator suitably used
in this stage is randomly selected from predefined
mutation operators and applied to randomly chosen
positions of the input seed (Lines 10–20).

•	 Splicing Stage. The stage is triggered when the previ-
ous two stages find no new crashes or paths for all
seeds, which rarely happens. In this stage, two input
seeds are spliced into a new one, and the havoc stage
is re-executed. Algorithm 1 doesn’t cover this stage as
it performs no mutation.

Page 5 of 21Zou et al. Cybersecurity (2023) 6:11 	

Note that AFL adopts a uniform mutation strategy.
Different mutation positions are selected with equal
probability, i.e., a byte definitely selected in the deter-
ministic stage or randomly selected with the same
probability in the havoc stage. In addition, the mutation
position is manipulated by a mutation operator selected
from the predefined operator set with the same prob-
ability too. Such a strategy is generally inefficient, lead-
ing to generating redundant input cases, which will be
explained specifically in the next subsection.

Phase 3: Testing. This phase feeds the input cases
to the instrumented target program. If any abnormal
behavior or a new code coverage appears, the corre-
sponding input case is marked as interesting and added
to the priority queue.

Insights in input seed mutation
We use the exiv2 program from UNIFUZZ (Li et al.
2021) benchmark as a motivating example. The exiv2 is
a cross-platform library for manipulating the metadata of
images. Thus, we test exiv2 for 24 h using JPEG images
and one state-of-the-art fuzzer AFLFast (Böhme et al.
2016), which shares the same fuzzing process shown
in Algorithm 1. We have analyzed the relation between
mutation positions/operators and generated interesting
cases in detail. We finally obtain two key observations
that guide the design of PosFuzz.

Observation 1  Mutation positions are not equal with
respect to their efficacy in generating interesting input
cases.

Lines 5 and 16 of Algorithm 1 indicate that all posi-
tions are assumed with the same importance. Thus, the
positions are selected either one by one in the determin-
istic stage or with equal probability in the havoc stage.

However, the input to a target program is usually struc-
tured and semantic-rich, making the assumption held by
AFL and its descendants doesn’t hold for most cases.

Figure 1 illustrates how a JPEG image is organized. In
summary, the input bytes can be categorized into four
kinds:

•	 Magic Number (blue boxes), marking the image
type ([0x00, 0x01]) or header type ([0x02, 0x03]
and[0x14, 0x15]).

•	 Size (green boxes), determining the length of each
header ([0x16, 0x17]).

•	 Enumeration (grey boxes), containing pre-defined
discrete values like Identifier ([0x06, 0x0A]), which is
a string value “JFIF\0” for JPEG format.

•	 Raw image data (white boxes), representing raw pixel
data of the image ([0x18, 0x1F]).

Clearly, the former three types play a more critical role
for image metadata manipulator like exiv2 than the last
raw image data types. For example, a value of 0xFFD8 in
position [0x00, 0x01] will lead exiv2 to call the handler
corresponding to JPEG format while another value like
0x4D4D will redirect the target program to TIFF handler,
which will definitely increase the edge coverage of the
target program.

The effectiveness of all positions in a sample JPEG file is
summarized in Fig. 2. Specifically, we collect the interest-
ing cases associated with the mutation positions, accord-
ing to Lines 24–26 of Algorithm 1. The horizontal axis of
Fig. 2 represents the first 32 bytes of mutation positions
(1 byte per slot), while the orange bars against the ver-
tical axis stands for the ratio between interesting input
cases and all input cases generated by mutating on this
position. We can observe that the interesting input cases
are not uniform-distributed over the mutation positions.

Fig. 1  Sample JPEG image

Page 6 of 21Zou et al. Cybersecurity (2023) 6:11

Taking position [0x18, 0x1F] for instance, less than 1% of
interesting input cases are generated when mutating on
these positions as they belong to the Raw image field,
which is unlikely to trigger more edges of exiv2. However,
for position range [0x02, 0x03], an order of magnitude
more interesting input cases (about 7% and 15% respec-
tively) are generated with the same amount of mutations,
due to the fact that this is a Magic number field, which

requires the target exiv2 program to perform branch-
ing on values in these positions. Thus, our observation
indicates that too many mutations are allocated to fewer
effective positions (e.g., position range [0x18, 0x1F]).

Observation 2  The efficacy of mutation positions in
generating interesting input cases is sensitive to mutation
operators.

Fig. 2  Effectiveness of the positions for JPEG in ratio

Fig. 3  Sensitivity of mutation positions w.r.t mutation operators in ratio

Page 7 of 21Zou et al. Cybersecurity (2023) 6:11 	

Line 4 of Algorithm 1 indicates that all the mutation
operators in deterministicMutations set are assumed
with the same importance, as they are applied one by
one. Meanwhile, Line 15 of Algorithm 1 indicates that
all the mutation operators in havocMutations set also
are assumed to have the same importance, as they are
selected with the same probability. However, we have
further discovered that different mutation positions are
often interpreted as different semantics, which means
the efficacy of the mutation positions is sensitive to the
mutation operators.

Figure 3 depicts the sensitivity of mutation positions
(2 bytes per slot) with respect to the mutation operators
using a histogram denoting the ratio of interesting input
cases. The horizontal axis is the positions of input seeds
ranging in [0x00, 0x1E] and the vertical axis is the distri-
bution of interesting input cases generated by mutation
operators in ratio. The bars with different colors repre-
sent four representative mutation operators: flip1, arith8,
int32, flip4.

Figure 3 shows that the efficacy of mutation positions
differs from one mutation operator to another. When
applying mutation operator flip1, more than 17% inter-
esting input cases are generated by applying the muta-
tion operator to the position [0x04, 0x05], while only 5%
interesting input cases are generated by applying muta-
tion operator arith8 to these positions. For mutation

operator arith8, more than 28% interesting input cases
are generated by applying to the position [0x14, 0x15], it
generates the most interesting input cases compared with
other positions.

Key idea of PosFuzz
Based on the observations above, we need to address
the problem of selecting suitable positions for certain
mutation operators. Instead of inferring the data type
of the positions to apply predefined mutation operators
for the data type, which is explored by ProFuzzer (You
et al. 2019), we treat the selection problem as an online
lightweight scheduling problem.

Given a set of mutation operators, we schedule the
positions to maximize the probability of generat-
ing interesting input cases. The scheduling decision is
made based on the effective position distribution of
that operator, which records the relative probabilities of
generating interesting input cases for all positions. Pos-
Fuzz records the historical performance of mutation
positions in a per-program and per-operator manner,
and calculates effective position distribution on the fly
according to the recorded historical performance.

We design PosFuzz, a position-sensitive mutation
scheduling method, to augment the current fuzzing
techniques without prior knowledge of the input data
types. PosFuzz utilizes a statistical model to calculate

Fig. 4  PosFuzz overview

Page 8 of 21Zou et al. Cybersecurity (2023) 6:11

the effective position distribution of an operator based
on the runtime information collected online, making
PosFuzz lightweight and more general. The statistical
model indicates which positions should be mutated
and how much energy should be spent on them for a
given mutation operator. An enhanced Good-Turing
frequency estimation learns the statistical model based
on a given operator’s historical performance of muta-
tion positions.

The constructed statistical model further guides posi-
tion selection. For a given mutation operator, PosFuzz
utilizes two sampling methods, i.e., acceptance-rejection
sampling for the deterministic stage and alias sampling
for the havoc stage, to aid the selection of proper posi-
tions for later mutating. The two sampling methods are
adopted as they are efficient, i.e., fast in selecting a posi-
tion, and precise, i.e., the sampled positions follow the
calculated distribution.

The statistical model is updated periodically as the
fuzzing process mines more semantics of the input
types. Thus, PosFuzz divides the whole fuzzing loop into
a sequence of epochs, each of which is the time unit for
the mutation scheduler. During an epoch, PosFuzz learns
a statistical model, selects the mutation positions guided
by the model, and then gathers the runtime information
for updating the model for the next epoch. In such a way,
PosFuzz can apply the mutation operators to as many
appropriate mutation positions as possible, improving
the fuzzing effect.

Approach overview
PosFuzz leverages a position-sensitive scheduler to aug-
ment mutation-based greybox fuzzers. The scheduler
consists of three main phases, i.e., effective information
profiling, position distribution estimation, and distribu-
tion-guided selection, on top of the typical greybox fuzz-
ing process. The overall approach is depicted in Fig. 4
with three phases highlighted in bold dotted squares.

PosFuzz divides the mutation process into multiple
sequential epochs, each epoch lasts for a constant time
whose value is configurable before fuzzing. PosFuzz
records effective information in a per-epoch manner.
Information from all previous epochs is accumulated to
estimate the effective position distribution.

Effective information profiling It records the histori-
cal performance of conducted mutations if they trigger
interesting input case generation. The effective informa-
tion is recorded using a pair of a mutation operator and
its mutation position, denoted as (op, pos) when an inter-
esting input case is generated during testing. At the end

of each epoch, the effective information of the current
epoch is accumulated to the historical performance data.

For instance, if an interesting input ‘id : 001451, src : 0
00931, op : flip4, pos : 60’ is generated from the source
seed #000931 by mutating the position 60 with the muta-
tion operator flip4, we record the effective informa-
tion as (‘flip4’, 60), and update the history performance
accordingly.

Position distribution estimation At the beginning
of an epoch, the effective position distribution for each
mutation operator is re-calculated according to the his-
torical performance. The position distribution of an
operator represents the probability of each position
being selected for mutation, and it is constructed from
effective information like (‘flip4’, 60), i.e., more input
cases generated means a higher selection probability in
the future. The critical challenge is to predict the effec-
tiveness of unseen positions precisely, as we are facing a
code start problem. We can not assign a zero probability
to positions generating no interesting input cases since
this position can either be ineffective or not be selected.
PosFuzz leverages Good-Turing frequency estimation to
tackle this problem. Good-Turing frequency estimation is
a statistical method that can provide a simple estimate of
the total probability of the objects seen and unseen (Gale
and Sampson 1995).

Taking fuzzing convert with TIFF format input as an
example. At the beginning of 25-th epoch, the effective
position distribution of operator flip1 has been re-com-
puted by Good-Turing frequency estimation according to
collected data from the previous 24 epochs. The proba-
bility of selecting position 54 for mutation is 20.83%, and
that probability for position 72 is 10.01%.

Distribution guided selection The distribution is
used to guide the input seed mutation phase. Due to
the different selecting actions in deterministic muta-
tions and havoc mutations, two sampling methods are
employed. For mutation operators in the determinis-
tic stage, the input positions are dealt with one by one,
and each position is selected using acceptance-rejection
sampling with a probability computed according to the
position distribution of the operator. For mutation opera-
tors in the havoc stage, a position is chosen from all the
input potions using alias sampling with the probability
recorded in the distribution for the selected mutation
operator.

Given the operator flip1 and its effective position dis-
tribution, PosFuzz can select the mutation positions at
a specific probability. For deterministic stage mutations,
position 54 is selected at a probability of 100% as it has

Page 9 of 21Zou et al. Cybersecurity (2023) 6:11 	

the most possibility to generate interesting cases among
all the positions, while position 72 is selected at a prob-
ability of 48.1%. For havoc stage mutations, position 54
and position 72 are chosen at probabilities of 20.83% and
10.01%, respectively, according to the distribution.

Design and implementation
In this section, we formalize the effective position distri-
bution and explain how this distribution helps to select
proper positions for a given mutation operator. Note that
PosFuzz divides the whole mutation process into multi-
ple sequential epochs. Thus, we discuss the key phases in
an epoch. We also present the algorithm of PosFuzz on
top of a typical greybox fuzzing process.

Effective information profiling
Firstly, for each input case, C , PosFuzz records its linkage,
i.e., how C is mutated directly from its parent input, as
L(C) . The linkage of a case is a set of pairs (op, pos). Each
pair (op, pos) stands for applying a mutation operator op
on a mutation position pos. Note that the order of apply-
ing mutation operators is not recorded, as it does not
affect the distribution calculation in this work.

Second, for the i-th epoch, denoting as Ei , all its inter-
esting cases are put into an input case set, denoting as
IntC(Ei) . An input case C is interesting as long as it can
cover a new execution path of the target program.

Position distribution estimation
At the very beginning of each epoch, PosFuzz calcu-
lates the effective position distribution using profiling
information accumulated from all previous epochs so
far. This section formalizes the definition of effective
position distribution for a mutation operator and intro-
duces Good-Turing frequency estimation to compute
it.

Effective position distribution definition
The effective position distribution is defined as:

Definition 1  Given a mutation operator op, an effective
position distribution fop(pos) for op is a discrete prob-
ability function that maps positions to probabilities, and
the probability of a position is determined by the number
of interesting input cases, the linkage of which contains
this position.

For the i-th effective position, its probability means the
possibility of being selected for mutation. The probability
is denoted as Pop(pos = posi) , and we have

Intuitively, AFL and its variants use a uniform effective
position distribution, which indicates that every position
is assumed to be equally important regarding generating
interesting cases. In this work, for each mutation opera-
tor op, fop(pos) is calculated based on the effective his-
torical information profiled from all previous epochs and
guides the mutation position selection in current epoch
accordingly.

Good‑turing frequency estimation
One straightforward way to estimate the effective posi-
tion distribution is to directly compute it using effective
historical information, i.e., all positions leading to inter-
esting cases are assigned with non-negative probability,
while all other positions are assigned zero probability.
However, this is not a good way due to the random nature
of fuzzing. A position triggering no interesting cases can
be either ineffective or given no chance to be selected. It
poses a unique challenge for us to distinguish these two
types of positions. To tackle this problem, we introduce
Good-Turing frequency estimation 0 to smooth the dis-
tribution among the unseen positions.

Step 1: Preparing effective information Firstly, all the
interesting input cases generated so far are denoted as:

where Ecur represents the current epoch.
Then, for a given operator op, all the input cases C

whose linkage contains op denoted as:

where (op, ∗) ∈ L(C) means that op is at least in one ele-
ment of L(C).

Step 2: Calculating fop(pos) . We need to estimate
the contribution of each position to its corresponding
input cases, i.e., the weight of each position. In general,
an input case is generated either in deterministic stage
or in havoc stage, and we consider that all input cases
are of the same importance. For deterministic stage, the
input case is generated by applying the mutation opera-
tor op to one specific position. For havoc stage, the input
case is generated by applying random mutation opera-
tors to multiple positions. Thus, we need to distrib-
ute the weight of the input case to positions in havoc
stage. Given an interesting case Ck and an effective pair
(op, posi) ∈ L(Ck) , the weight of the effective position
posi for the case is defined as:

i

Pop(pos = posi) = 1

U = IntC(E0) ∪ . . . ∪ IntC(Ecur)

C(op) = { C | (op, ∗) ∈ L(C) and C ∈ U }

Page 10 of 21Zou et al. Cybersecurity (2023) 6:11

where

Without loss of generality, we assume REPEATmax is
divisible by |(L(C))| here, as they are both some powers of
two in practice.

Given an operator op, the overall weight of an effective
position posi is defined as:

The overall scaled weight of an effective position posi is
called the frequency of posi.

Given a frequency r, the number of positions with this
frequency is denoted as:

Then the total number of samples is defined as:

According to Good-Turing frequency estimation, a
smoothed frequency of r is estimated as:

Therefore, fop(pos) is calculated as follows. For an
observed position posi , its corresponding probability is
computed as:

For an unseen position posi , its corresponding probabil-
ity is computed as:

Distribution guided selection
PosFuzz selects mutation positions after an operator op
is selected with the help of a distribution fop(pos) . In
particular, the position selection is orthogonal to opera-
tor selection strategies proposed by other works. As

weightk(posi) =
REPEATmax

|(L(Ck))|

REPEATmax = max(|L(C)|) where ∀ C ∈ C(op)

Ri =
∑

k

weightk(posi)

Nr = |{pos | pos = posi and Ri = r}|

N =

∞∑

r=0

rNr

r∗ = (r + 1)
Nr+1

Nr

Pop(pos = posi) =
r∗

N
=

(Ri + 1)

N

NRi+1

NRi

Pop(pos = posi) =
N1

N

illustrated in “Section Background and motivation”, two
distinct stages, i.e., deterministic and havoc stages exist
in de-facto mutation-based greybox fuzzing frameworks.
Thus, two different selection strategies are designed
accordingly.

Augmenting deterministic stage
In deterministic stage, traditional mutation-based grey-
box fuzzing applies all possible operators one by one,
and each operator is performed on all possible positions,
leading to an equal selecting probability (the probability
is one) for each position. Instead, given an operator, Pos-
Fuzz selects positions with different probabilities. For a
position posi , PosFuzz leverages Acceptance-Rejection
Sampling (Flury 1990) method to decide whether to
mutate on it with an acceptance probability. The prob-
ability is defined as:

Augmenting Havoc stage
In havoc stage, a traditional fuzzer like AFL selects muta-
tion operators randomly and chooses mutation posi-
tions for each operator using a uniform distribution,
i.e., selecting positions with the same probability. Differ-
ent from that, PosFuzz incorporates the Alias Sampling
(Shapiro and Silverman 1960) method, an efficient sam-
pling method, to choose some mutation position in the
input case with the probability recorded in fop(pos) . Alias
Sampling is a general method to sample from a discrete
probability distribution. It requires O(nlogn) or O(n) pre-
processing time and O(1) time to select a position based
on fop(pos) . Thus, in this stage, a position is selected with
a probability defined as:

PosFuzz implementation
Algorithm 2 illustrates a typical implementation of Pos-
Fuzz, which is on top of AFL.

The fuzzing process consists of loops of epochs, each
of which can last for a user-configured time inter-
val, e.g., 1 h. During an epoch, appropriate mutation
positions are selected based on the effective position
distribution computed from the effective historical
information.

(1)Paccop(pos = posi) =
Pop(pos = posi)

max(Pop(pos = posj))

(2)Pselop(pos = posi) = Pop(pos = posi)

Page 11 of 21Zou et al. Cybersecurity (2023) 6:11 	

Page 12 of 21Zou et al. Cybersecurity (2023) 6:11

At the beginning of an epoch, PosFuzz accumulates
the effective information of the current epoch and
updates it to the history information history (Line 6),
which will be used to calculate the effective distribu-
tion. PosFuzz utilizes Good-Turing frequency estima-
tion to compute the effective distribution dist based
on the effective historical information history profiled
so far (Line 7). It then selects positions with the help
of the distribution. In deterministic stage, it leverages
Acceptance-Rejection Sampling method, represented as
ifAcceptPos, to determine whether the current position
should be selected at a probability of Paccop(pos = posi)
(Line 12). In havoc stage, it adopts Alias Sampling
method, represented as selectPosForOp, to get a ran-
dom position with a probability of Pselop(pos = posi)
(Line 25).

Posfuzz records the linkage of an operator in the for-
mat of (op, pos) (Lines 15 and 27) when mutating. If an
interesting case is generated, the linkage is added to the
interesting pair δ of the current epoch (Line 39).

Evaluation
To demonstrate the generality and effectiveness of Pos-
Fuzz, we implement three variants of PosFuzz, Pos-AFL,
Pos-AFLFast, and Pos-MOPT, atop of three state-of-the-
art greybox fuzzers, i.e., AFL (https://​lcamt​uf.​cored​ump.​
cx/​afl/), AFLFast (Böhme et al. 2016) and MOPT (Lyu

et al. 2019), respectively. We choose AFL due to its popu-
larity in production. AFLFast and MOPT are selected
due to they are orthogonal to PosFuzz. AFLFast proposes
a novel seed selection policy while MOPT augments AFL
with efficient scheduling of mutation operators.

Evaluation dataset We evaluate PosFuzz using UNI-
FUZZ benchmark (Li et al. 2021) and a standard dataset
LAVA-M. UNIFUZZ contains 20 real-world programs
categorized into six functionality types, i.e., image, audio,
video, text, binary, and network. The setup of UNIFUZZ
benchmark is in line with (Li et al. 2021), and the second
column of Table 1 lists all the 20 programs. We report
edge coverage and unique executing paths for UNIFUZZ
benchmark. Moreover, both UNIFUZZ and LAVA-M
are utilized to evaluate PosFuzz regarding bug discovery
ability.

Experiment settings We run six fuzzing tools, i.e.,
AFL/Pos-AFL, AFLFast/Pos-AFLFast, and MOPT/
Pos-MOPT, for each program in the dataset. For each
program with each fuzzing tool alternative, we run the
experiment five times with the same seeds and each
run lasts 24 h. We report average results across the five
runs. Notice the test time for Pos-AFL, -AFLFast, and
-MOPT (Pos-* for short) contains effective distribu-
tion calculation and position sampling, i.e., all the runt-
ime overhead is included. A 1-h epoch is picked across
all experiments for Pos-*. All experiments are conducted

Table 1  The average edge coverage for PosFuzz on AFL, AFLFast and MOPT

No. Program AFL Pos-AFL INC AFLFast Pos-AFLFast INC MOPT Pos-MOPT INC

1 exiv2 5.53 14.09 155% 8.02 14.17 77% 8.09 13.35 65%

2 tiffsplit 4.57 5.49 20% 4.65 5.63 21% 4.72 5.25 11%

3 mp3gain 4.22 4.60 9% 3.97 4.61 16% 4.14 4.60 11%

4 wav2swf 0.62 0.62 1% 0.62 0.65 6% 0.63 0.65 3%

5 pdftotext 15.34 18.01 17% 14.97 18.05 21% 14.86 17.87 20%

6 infotocap 2.54 3.38 33% 2.41 3.61 50% 2.95 3.36 14%

7 mp42aac 3.57 3.98 11% 3.51 4.04 15% 4.11 4.35 6%

8 flvmeta 0.78 0.80 2% 0.75 0.80 7% 0.79 0.80 1%

9 objdump 6.65 8.60 29% 6.72 8.75 30% 6.44 8.67 35%

10 tcpdump 9.85 16.27 65% 9.72 15.82 63% 9.89 16.48 67%

11 ffmpeg 27.85 28.74 3% 28.32 29.85 -1% 28.13 28.58 2%

12 gdk-pixbuf-pixdata 2.95 3.81 29% 2.92 4.23 45% 2.95 3.96 34%

13 cflow 2.84 2.98 5% 2.82 2.99 6% 2.84 2.99 5%

14 nm-new 6.50 7.60 17% 6.15 7.76 26% 6.42 7.89 23%

15 sqlite3 33.43 37.15 11% 32.43 37.24 15% 32.44 36.37 12%

16 lame3.99.5 9.50 9.64 1% 9.18 9.63 5% 9.40 9.64 3%

17 jhead 0.52 0.52 0% 0.52 0.52 0% 0.52 0.52 0%

18 imginfo 3.67 4.84 32% 3.43 4.90 43% 3.97 4.71 19%

19 jq 5.97 6.24 5% 5.90 6.23 6% 6.15 6.26 2%

20 mujs 9.00 9.20 2% 8.21 9.24 13% 8.48 9.12 8%

Average 22% 23% 17%

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

Page 13 of 21Zou et al. Cybersecurity (2023) 6:11 	

on a two-socket, 80 cores machine with Intel Xeon Gold
6248v4@2.50GHz processor.

Effectiveness of augmentation for fuzzing real‑world
programs
We first report results on UNIFUZZ benchmark, which
contains 20 real-world programs.

The overall results
Coverage and paths Tables 1 and 2 depict the average
edge coverage and paths for all six fuzzers. In particular,
column Program denotes the target programs and col-
umn INC illustrates the improvement of Pos-* over its
counterpart, i.e., Pos-AFL over AFL.

Pos-* outperforms its counterpart in edge coverage
for 58 out of 60 cases. On average, Pos-* improves edge
coverage by 22% for AFL, 23% for AFLFast, and 17% for
MOPT. Moreover, Pos-* explores 131%, 165%, and 102%
more paths than AFL, AFLFast, and MOPT on average,
respectively. Note that the results of Pos-MOPT show
that the fine-grained mutation position selection on top
of the coarse-grained mutation operator selection (what
exactly MOPT does) can still eliminate the redundant
input cases, thus exploring more paths and getting higher
coverage.

Unique bugs We leverage the number of unique bugs
found as a metric of bug discovery ability for fuzzing

tools. We extract the top three functions in the stack
trace from the output of ASan (Serebryany et al. 2012)
to de-duplicate bugs, and divide the bugs that have dif-
ferent stack trace and vulnerability types as unique bugs.
Table 3 presents the total number of unique bugs trig-
gered by each fuzzer in five repetitions on the 20 real-
world programs. Pos-* triggers more unique bugs for all
of the programs. On average, Pos-AFL, Pos-AFFast, and
Pos-MOPT detect 243%, 311%, and 271% more unique
bugs than their counterparts. In particular, PosFuzz iden-
tifies 10x more unique bugs for the tcpdump program
due to the significant improvement in edge coverage and
paths.

Detail comparison
Figures 5 and 6 depict the detailed experiment results of
fuzzing efficiency for the first fuzzing execution, in terms
of edge coverage and execution paths. Each small figure
is associated with a target program, in which the green
dotted line, green line, red dotted line, red line, blue dot-
ted line, and blue line represent AFL, Pos-AFL, AFLFast,
Pos-AFLFast, MOPT, and Pos-MOPT, respectively.

Edge coverage For each small figure in Fig. 5, the hori-
zontal axis is the edge coverage in ratio, and the vertical
axis is the hours lasting for fuzzing. As shown in Fig. 5,
Pos-* outperforms its counterpart for all input formats
and target programs, showing good generality.

Table 2  The average paths for PosFuzz on AFL, AFLFast and MOPT

No. Program AFL Pos-AFL INC AFLFast Pos-AFLFast INC MOPT Pos-MOPT INC

1 exiv2 246.6 1741.4 606% 523.2 1982.4 279% 476.2 1458.8 206%

2 tiffsplit 989.8 1746.2 76% 1151.6 1948.8 69% 1315.2 1655.2 26%

3 mp3gain 1265.8 1945 54% 1040.4 1945.4 87% 1239.6 1854 50%

4 wav2swf 224.2 228.2 2% 230.2 293.2 27% 256.6 293.6 14%

5 pdftotext 4237.4 8212.8 94% 3726 7918.8 113% 3610.8 8163.4 126%

6 infotocap 1218.2 3119.4 156% 1177.6 3525.4 199% 2644.8 2948.6 11%

7 mp42aac 502.8 1186.6 136% 482.4 1174.4 143% 1715 1967 15%

8 flvmeta 525.6 678.6 29% 478.6 691.8 45% 579.8 648.6 12%

9 objdump 866.4 2470.4 185% 964 2604.2 170% 774.8 2463.4 218%

10 tcpdump 1450.8 5332.4 268% 1364.6 5062.6 271% 1522 5419.6 256%

11 ffmpeg 600.2 1066.4 78% 352 1176.4 234% 369.2 872.6 136%

12 gdk-pixbuf-pixdata 188.2 699.2 272% 172.6 972.2 463% 181.6 833 359%

13 cflow 500 892.4 78% 453.8 912.8 101% 514.6 948.4 84%

14 nm-new 1571.6 2548.6 62% 1167.8 2905.2 149% 1531.8 2809.4 83%

15 sqlite3 3187.2 8751.8 175% 2161.8 8891.2 311% 2282.6 7434.8 226%

16 lame3.99.5 1493.8 2335 56% 1274.4 2330.2 83% 1443.2 2300.8 59%

17 jhead 293.6 362.8 24% 258.4 374 45% 350.8 364.8 4%

18 imginfo 453.4 1154 155% 276.8 1280.8 363% 585.2 1093.2 87%

19 jq 906.6 1543.4 70% 938.6 1593.6 70% 1522.4 1550.6 2%

20 mujs 4380.2 6324 44% 3698 6214 68% 3738.4 5800.4 55%

Average 131% 165% 102%

Page 14 of 21Zou et al. Cybersecurity (2023) 6:11

Execution path For each small figure in Fig. 6, the
horizontal axis is the number of execution paths, and the
vertical axis is the hours lasting for fuzzing. As shown in
Fig. 5, Pos-* outperforms their counterparts dramatically
for most of the 20 target programs.

Specifically, Pos-* significantly improve the path dis-
covery for some image formats, e.g., imginfo and jpg.
The effectiveness of positions varies widely across image
formats due to their difference in semantic specifica-
tions and structured data layout. Thus, PosFuzz achieves
better performance when Pos-* acquires more accurate
and valuable effective position distribution information
from runtime profiling, e.g., imginfo and jpg. However,
for some audio and video formats, e.g., wav and mp4, the
effective positions distribute relatively even, so Pos-* do
not explore much more paths.

In summary, PosFuzz can automatically use statistical
information to guide the selection of mutation positions
without perceiving program semantics or input formats,
which can improve both edge coverage and explore more
execution paths.

Evaluation on LAVA‑M
LAVA-M consists of 4 target programs and is widely
adopted as a standard benchmark for measuring the
vulnerability discovery abilities of fuzzers. The initial
seed sets and all other settings are in line with (Rawat

et al. 2017), and they are identical across all six fuzzers
evaluated. For each program, we run the experiment five
times, and each run lasts 24 h.

Table 4 lists accumulated bugs in 5 runs for all fuzzers.
Pos-* outperforms its counterpart significantly. Pos-AFL
detects 533 more bugs than AFL, Pos-AFLFast detects
469 more bugs than AFLFast, and Pos-MOPT detects
126 more bugs than MOPT. In particular, Pos-* finds all
listed bugs in who, and 4 unlisted bugs in addition. More-
over, for the most buggy program who, Pos-* finds 466,
418, 118 more listed bugs and 42, 32, 8 more unlisted
bugs than AFL, AFLFast, and MOPT, respectively. More-
over, only Pos-AFLFast can identify one bug on md5sum
while all other fuzzers fail to find any.

Case study: exiv2
In this section, we leverage the program exiv2, a cross-
platform library for manipulating metadata of images to
investigate how PosFuzz outperforms state-of-the-art
fuzzing tools like AFLFast (Böhme et al. 2016). We test
exiv2 for 24 h using both AFLFast and Pos-AFLFast, the
setting of execute parameter and initial seeds are in line
with UNIFUZZ.

Intuitively, high-level semantics are crucial for improving
fuzzing performance. Take image formats for instance, posi-
tions containing metadata, e.g., the header positions (Magic
number in “Section Insights in input seed mutation”)

Table 3  The total number of unique bugs in five repetitions for PosFuzz on AFL, AFLFast and MOPT

No. Program AFL Pos-AFL AFLFast Pos-AFLFast MOPT Pos-MOPT

1 exiv2 5 11 3 7 5 6

2 tiffsplit 10 14 11 15 11 16

3 mp3gain 5 7 4 7 4 7

4 wav2swf 2 3 3 3 3 3

5 pdftotext 1 2 0 2 0 3

6 infotocap 7 10 5 15 10 10

7 mp42aac 0 0 0 0 0 0

8 flvmeta 2 2 2 2 2 2

9 objdump 8 14 4 14 3 14

10 tcpdump 12 134 11 134 12 132

11 ffmpeg 0 0 0 0 0 0

12 gdk-pixbuf-pixdata 0 7 0 16 0 16

13 cflow 0 2 0 3 0 3

14 nm-new 0 0 0 0 0 0

15 sqlite3 0 1 1 1 0 3

16 lame3.99.5 3 5 3 4 3 4

17 jhead 5 5 5 5 5 5

18 imginfo 0 0 0 0 0 0

19 jq 2 2 2 2 2 2

20 mujs 3 4 3 4 2 4

Total 65 223 57 234 62 230

Page 15 of 21Zou et al. Cybersecurity (2023) 6:11 	

Fig. 5  Comparison of edge coverage

Page 16 of 21Zou et al. Cybersecurity (2023) 6:11

Fig. 6  Comparison of paths

Page 17 of 21Zou et al. Cybersecurity (2023) 6:11 	

determining whether an image is JPEG or TIFF, are more
likely to increase edge coverage, compared to positions con-
taining only pixel data (Raw image data in “Section Insights
in input seed mutation”). However, instead of directly prob-
ing the types of input bytes as adopted by ProFuzzer (You

et al. 2019), PosFuzz chooses to conduct scheduling in a util-
ity-guided fashion: scheduling positions according to cover-
age improvement instead of scheduling them using their
semantic types. This design makes PosFuzz type-agnostic
and requires no pre-defined types.

Page 18 of 21Zou et al. Cybersecurity (2023) 6:11

Listing 1 is a code snippet extracted from exiv2.
exiv2 first determines types of input images by query-
ing position 0x00 with two-byte length: value 0xFFDB
for JPEG (Line 14) and value 0x4D4D or 0x4949 (ASCII
code for letter ‘II’ or ‘MM’) for TIFF (Lines 21 and 22).
Manipulating position [0x00, 0x01] will clearly lead
to different paths in exiv2 as every image type has its
own handler,e.g., isJpegType for JPEG and isTiffType for
TIFF. Moreover, given that an image is JPEG format,
the exiv2 further examines position 0x02 (marker in
Line 31) with a 2-byte length and position 0x04 (size
in Line 36). The exiv2 will perform a switch-case style
branch based on marker (from Line 37 to Line 57),
and the edge coverage will certainly increase if the
fuzzer mutates this marker position. The size field is
used to perform sanity checks according to JPEG speci-
fication (Line 38, 43, 48 and 53) and directly influences
how much data will be read by the program, which may
incur out-of-bounds access. Thus, mutating on size is
likely to trigger more interesting cases. The same analy-
sis holds for position 0x14 and 0x16, which is another

marker and size pair according to “Section Back-
ground and motivation. Besides, the raw image data
will be ignored by exiv2 (Line 56) as exiv2 is a metadata
manipulating tool and no further action is performed
based on the value of pixel data, making it less effective
in increasing edge coverage. In summary, mutation on
positions like Magic number and Size is more effective
than positions like Raw image data. PosFuzz demysti-
fies the efficacy difference between different positions
and assigns more weight to more effective positions
using online scheduling based on a statistical model.

Figure 7 depicts the distribution of the interesting cases
for both Pos-AFLFast and AFLFast with the x-axis being
positions (1-byte slot) and the y-axis being the absolute
number of interesting cases. For simplicity reasons, we
only report interesting cases that are triggered by flip1
mutation operator for a position range [0x00, 0x1F], and
one interesting case is amortized to all positions when it
is generated by mutating on multiple positions, e.g. cases
in havoc stage.

Table 4  The accumulated bugs triggered on LAVA-M

Program Listed bugs AFL Pos-AFL AFLFast Pos-AFLFast MOPT Pos-MOPT Arguments

base64 44 32 44(+4) 37(+1) 44(+4) 44(+4) 44(+4) -d @@

md5sum 57 0 0 0 1 0 0 -c @@

uniq 28 2 9 2 10 13 13 @@

who 2136 24(+4) 490(+48) 79(+8) 497(+40) 414(+50) 532(+58) @@

Total 2265 58(+4) 543(+52) 118(+9) 552(+44) 471(+54) 589(+62) –

Fig. 7  Histogram of interesting cases of both Pos-AFLFast and AFLFast for JPEG 

Page 19 of 21Zou et al. Cybersecurity (2023) 6:11 	

In total, Pos-AFLFast triggers 3.8X more interesting
cases than AFLFast under the same time budget for flip1
operator. According to Fig. 7, we can first confirm Obser-
vation 1 in “Section Background and motivation holds
for exiv2 program, and only a subset of positions (8 out
of 32 for AFLFast and 21 out of 32 for Pos-AFLFast) can
trigger interesting cases. Second, compared with AFL-
Fast, we can observe that Pos-AFLFast explores signifi-
cantly more interesting cases (66 vs 6) in a position range
[0x14, 0x17], which is a Marker and Size pair as stated
before. AFLFast only finds 6 interesting cases in this posi-
tion range as it wastes a lot of mutations in less effective
positions.

Figure 8 further depicts the distribution of input cases
generated for both AFLFast and Pos-AFLFast. The total
number of input cases is on par with each other, e.g.,
188440 for AFLFast and 183523 for Pos-AFLFast. How-
ever, the distribution of inputs across positions differs
significantly. AFLFast is unaware of the effectiveness
difference between positions, and adopts a uniform dis-
tribution, leading to nearly even input cases for each
position, as shown by blue bars in Fig. 8. On the contrary,
Pos-AFLFast schedules positions according to their his-
torical performance in triggering interesting cases and
assigns more mutations to effective positions. For exam-
ple, 28441 input cases are generated for position 0x17,
while only 635 cases are for position 0x1E. In summary,
PosFuzz schedules mutation positions using a statistical
model and assigns more weight to positions like Magic
numbers and Size, thus avoiding redundant mutation on
positions like Raw image data.

Discussions
In this section, we briefly discuss the relationship
between PosFuzz and other fruitful research work in the
literature.

First, PosFuzz is orthogonal to methods focusing on
seed selection, e.g. AFL (https://​lcamt​uf.​cored​ump.​cx/​
afl/) and AFLFast (Böhme et al. 2016). PosFuzz can be
combined with them transparently, and we have con-
ducted augmentation for AFL and AFLFast, respectively.
Second, PosFuzz aims to generate highly effective input
cases, which has been explored by numerous research
work (Rawat et al. 2017; Li et al. 2017; Chen and Chen
2018; Aschermann et al. 2019; Lyu et al. 2019; You et al.
2019; Wang et al. 2017; Lemieux and Sen 2018; Rajpal
et al. 2017). PosFuzz shares the same principle among
other research work: leverage the semantics of input
bytes to generate more effective input cases (Rawat et al.
2017; Li et al. 2017; Chen and Chen 2018; Aschermann
et al. 2019; Lyu et al. 2019; You et al. 2019; Wang et al.
2017; Lemieux and Sen 2018; Rajpal et al. 2017). How-
ever, PosFuzz is built upon runtime profiling of inter-
esting test cases with negligible overhead while existing
work requires static/dynamic program analysis (Rawat
et al. 2017; Chen and Chen 2018; Aschermann et al.
2019; Gan et al. 2020; Liang et al. 2022) which may suf-
fer from the overhead of offline analysis. ProFuzzer
(You et al. 2019) requires no static/dynamic program
analysis but needs to predefine six classes for input
bytes while PosFuzz is input type-agnostic and doesn’t
need to define the data types beforehand. MOPT (Lyu
et al. 2019) prioritizes operators that lead to new code

Fig. 8  Histogram of mutation cases of both Pos-AFLFast and AFLFast for JPEG 

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

Page 20 of 21Zou et al. Cybersecurity (2023) 6:11

coverage and can be combined with PosFuzz to improve
fuzzing performance, as evaluated in “Section Evalua-
tion”. Rajpal et al. (2017) schedules mutation positions
based on an offline-trained LSTM model while PosFuzz
requires no pre-fuzzing training and can adapt to new
inputs dynamically, i.e., update the distribution every
epoch.

Conclusion
We identify the inefficiency of the existing mutation posi-
tions scheduler and leverage the effectiveness of different
positions for different mutation operators. We propose a
mutation position-sensitive scheduler for input mutation,
which utilizes a statistical method to direct the selection
of mutation positions for a mutation operator. Using the
novel scheduler, PosFuzz augments three state-of-the-
art fuzzers and implements three prototypes, Pos-AFL,
-AFLFast, and -MOpt. We evaluated these fuzzers on the
UNIFUZZ benchmark (20 widely used open source pro-
grams) and LAVA-M dataset, and the evaluation result
shows that Pos-* outperform their counterparts in both
edge coverage and vulnerability discovery.

Acknowledgements
Not applicable.

Author contributions
YYZ and WH designed this research. YYZ, JCZ, NYZ built this framework and
performed experiments. YYZ and WH wrote this paper. YZ, JS, WZ reviewed
and edited the manuscript. All authors read and approved the manuscript.

Funding
This research was supported by National Key R&D Program of China
(2022YFB3103900), and National Natural Science Foundation of China
(62032010, 62202462), and Strategic Priority Research Program of the CAS
(XDC02030200).

Availability of data and materials
All public dataset sources are as described in the paper.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 6 August 2022 Accepted: 10 February 2023

References
A Security Oriented, Feedback-driven, Evolutionary, Easy-to-use Fuzzer with

Interesting Analysis Options. https://​hongg​fuzz.​dev/
American Fuzzy Lop. https://​lcamt​uf.​cored​ump.​cx/​afl/
Andronidis A, Cadar C (2022) Snapfuzz: high-throughput fuzzing of network

applications
Aschermann C, Schumilo S, Blazytko T, Gawlik R, Holz T (2019) Redqueen: fuzz-

ing with input-to-state correspondence. In: NDSS, vol 19, pp 1–15

Böhme M, Pham V-T, Roychoudhury A (2016) Coverage-based greybox fuzzing
as markov chain. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp 1032–1043

Böhme M, Pham V-T, Nguyen M-D, Roychoudhury A (2017) Directed greybox
fuzzing. In: Proceedings of the 2017 ACM SIGSAC conference on com-
puter and communications security, pp 2329–2344

Chen P, Chen H (2018) Angora: Efficient fuzzing by principled search. In: 2018
IEEE symposium on security and privacy (SP). IEEE, pp 711–725

Chen Y, Jiang Y, Ma F, Liang J, Wang M, Zhou C, Jiao X, Su Z (2019) Enfuzz:
Ensemble fuzzing with seed synchronization among diverse fuzzers. In:
28th USENIX Security Symposium (USENIX Security 19), pp 1967–1983

Chen H, Xue Y, Li Y, Chen B, Xie X, Wu X, Liu Y (2018) Hawkeye: towards a
desired directed grey-box fuzzer. In: Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security, pp
2095–2108

Flury BD (1990) Acceptance-rejection sampling made easy. SIAM Rev
32(3):474–476

Gale WA, Sampson G (1995) Good-turing frequency estimation without tears. J
Quant Linguist 2(3):217–237

Gan S, Zhang C, Chen P, Zhao B, Qin X, Wu D, Chen Z (2020) GREYONE: Data
flow sensitive fuzzing. In: 29th USENIX security symposium (USENIX
Security 20), pp 2577–2594

Gan S, Zhang C, Qin X, Tu X, Li K, Pei Z, Chen Z (2018) Collafl: Path sensitive
fuzzing. In: 2018 IEEE symposium on security and privacy (SP). IEEE, pp
679–696

Herrera A, Gunadi H, Magrath S, Norrish M, Payer M, Hosking AL (2021) Seed
selection for successful fuzzing. In: Proceedings of the 30th ACM SIGSOFT
international symposium on software testing and analysis, pp 230–243

Lemieux C, Sen K (2018) Fairfuzz: a targeted mutation strategy for increas-
ing greybox fuzz testing coverage. In: Proceedings of the 33rd ACM/
IEEE international conference on automated software engineering, pp
475–485

Li J, Zhao B, Zhang C (2018) Fuzzing: a survey. Cybersecurity 1(1):1–13
Liang H, Pei X, Jia X, Shen W, Zhang J (2018) Fuzzing: state of the art. IEEE Trans

Reliab 67(3):1199–1218
Liang J, Jiang Y, Chen Y, Wang M, Zhou C, Sun J (2018) Pafl: extend fuzzing

optimizations of single mode to industrial parallel mode. In: Proceedings
of the 2018 26th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering,
pp 809–814

Liang J, Wang M, Zhou C, Wu Z, Jiang Y, Liu J, Liu Z, Sun J (2022) Pata: Fuzzing
with path aware taint analysis. In: 2022 2022 IEEE symposium on security
and privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, pp
154–170

LibFuzzer - a Library for Coverage-guided Fuzz Testing. https://​llvm.​org/​docs/​
LibFu​zzer.​html

Li Y, Chen B, Chandramohan M, Lin S-W, Liu Y, Tiu A (2017) Steelix: program-
state based binary fuzzing. In: Proceedings of the 2017 11th joint meet-
ing on foundations of software engineering, pp 627–637

Li Y, Ji S, Chen Y, Liang S, Lee W-H, Chen Y, Lyu C, Wu C, Beyah R, Cheng P et al.
(2021) Unifuzz: A holistic and pragmatic metrics-driven platform for
evaluating fuzzers. In: 30th USENIX security symposium (USENIX Security
21). USENIX Association

Lyu C, Ji S, Zhang C, Li Y, Lee W-H, Song Y, Beyah R (2019) MOPT: Optimized
mutation scheduling for fuzzers. In: 28th USENIX security symposium
(USENIX security 19), pp 1949–1966

Manès VJM, Han H, Han C, Cha SK, Egele M, Schwartz EJ, Woo M (2019) The art,
science, and engineering of fuzzing: a survey. IEEE Trans Softw Eng

Nagy S, Hicks M (2019) Full-speed fuzzing: reducing fuzzing overhead through
coverage-guided tracing. In: 2019 IEEE symposium on security and
privacy (SP). IEEE, pp 787–802

Petsios T, Zhao J, Keromytis AD, Jana S (2017) Slowfuzz: automated domain-
independent detection of algorithmic complexity vulnerabilities. In:
Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pp 2155–2168

Rajpal M, Blum W, Singh R (2017) Not all bytes are equal: neural byte sieve for
fuzzing. arXiv preprint arXiv:​1711.​04596

Rawat S, Jain V, Kumar A, Cojocar L, Giuffrida C, Bos H (2017) Vuzzer: Applica-
tion-aware evolutionary fuzzing. In: NDSS, vol 17, pp 1–14

https://honggfuzz.dev/
https://lcamtuf.coredump.cx/afl/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
http://arxiv.org/abs/1711.04596

Page 21 of 21Zou et al. Cybersecurity (2023) 6:11 	

Schumilo S, Aschermann C, Gawlik R, Schinzel S, Holz T (2017) kafl: Hardware-
assisted feedback fuzzing for OS kernels. In: 26th USENIX security sympo-
sium (USENIX Security 17), pp 167–182

Serebryany K (2017) Oss-fuzz-google’s continuous fuzzing service for open
source software

Serebryany K, Bruening D, Potapenko A, Vyukov D (2012) AddressSanitizer: a
fast address sanity checker. In: 2012 USENIX annual technical conference
(USENIX ATC 12), pp 309–318

Shapiro HS, Silverman RA (1960) Alias-free sampling of random noise. J Soc Ind
Appl Math 8(2):225–248

She D, Shah A, Jana S (2022) Effective seed scheduling for fuzzing with graph
centrality analysis. In: 2022 2022 IEEE symposium on security and privacy
(SP) (SP). IEEE Computer Society, Los Alamitos, CA, USA, pp 1558–1558

Sundermeyer M, Schlüter R, Ney H (2012) LSTM neural networks for language
modeling. In: Thirteenth annual conference of the international speech
communication association

Wang J, Chen B, Wei L, Liu Y (2017) Skyfire: Data-driven seed generation for
fuzzing. In: 2017 IEEE symposium on security and privacy (SP). IEEE, pp
579–594

Xu W, Kashyap S, Min C, Kim T (2017) Designing new operating primitives to
improve fuzzing performance. In: Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, pp 2313–2328

You W, Wang X, Ma S, Huang J, Zhang X, Wang X, Liang B (2019) Profuzzer: On-
the-fly input type probing for better zero-day vulnerability discovery. In:
2019 IEEE symposium on security and privacy (SP). IEEE, pp 769–786

Yun I, Lee S, Xu M, Jang Y, Kim T (2018) Qsym: a practical concolic execution
engine tailored for hybrid fuzzing. In: 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, Baltimore, MD, pp 745–761

Zong P, Lv T, Wang D, Deng Z, Liang R, Chen K (2020) Fuzzguard: filtering out
unreachable inputs in directed grey-box fuzzing through deep learning

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	PosFuzz: augmenting greybox fuzzing with effective position distribution
	Abstract
	Introduction
	Related work
	Our approach

	Background and motivation
	Mutation-based greybox fuzzing
	Insights in input seed mutation
	Key idea of PosFuzz

	Approach overview
	Design and implementation
	Effective information profiling
	Position distribution estimation
	Effective position distribution definition
	Good-turing frequency estimation

	Distribution guided selection
	Augmenting deterministic stage
	Augmenting Havoc stage

	PosFuzz implementation

	Evaluation
	Effectiveness of augmentation for fuzzing real-world programs
	The overall results
	Detail comparison

	Evaluation on LAVA-M
	Case study: exiv2
	Discussions

	Conclusion
	Acknowledgements
	References

