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Abstract 

Mutation-based greybox fuzzing has been one of the most prevalent techniques for security vulnerability discovery 
and a great deal of research work has been proposed to improve both its efficiency and effectiveness. Mutation-based 
greybox fuzzing generates input cases by mutating the input seed, i.e., applying a sequence of mutation operators 
to randomly selected mutation positions of the seed. However, existing fruitful research work focuses on schedul-
ing mutation operators, leaving the schedule of mutation positions as an overlooked aspect of fuzzing efficiency. 
This paper proposes a novel greybox fuzzing method, PosFuzz, that statistically schedules mutation positions based 
on their historical performance. PosFuzz makes use of a concept of effective position distribution to represent the 
semantics of the input and to guide the mutations. PosFuzz first utilizes Good-Turing frequency estimation to calcu-
late an effective position distribution for each mutation operator. It then leverages two sampling methods in different 
mutating stages to select the positions from the distribution. We have implemented PosFuzz on top of AFL, AFLFast 
and MOPT, called Pos-AFL, -AFLFast and -MOPT respectively, and evaluated them on the UNIFUZZ benchmark (20 
widely used open source programs) and LAVA-M dataset. The result shows that, under the same testing time budget, 
the Pos-AFL, -AFLFast and -MOPT outperform their counterparts in code coverage and vulnerability discovery ability. 
Compared with AFL, AFLFast, and MOPT, PosFuzz gets 21% more edge coverage and finds 133% more paths on aver-
age. It also triggers 275% more unique bugs on average.
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Introduction
Mutation-based greybox fuzzing (https://​lcamt​uf.​cored​
ump.​cx/​afl/; https://​llvm.​org/​docs/​LibFu​zzer.​html; https://​
hongg​fuzz.​dev/; Li et  al. 2018; Liang et  al. 2018; Manès 
et  al. 2019; Serebryany 2017), is one of the most preva-
lent methods for discovering vulnerabilities in modern 
software. In particular, mutation-based greybox fuzzing 
organizes its fuzzing loop into three pipeline stages. Seed 
selection selects a seed from a seed test cases pool, which 
is initialized by user-provided input cases and updated 
accordingly in the fuzzing process. The selected seed is 
assigned an energy factor based on its length, improved 
coverage and execution time. Input seed mutation itera-
tively mutates the selected seed by applying one or more 
randomly picked mutation operators on several random 
mutation positions using a mutation scheduler. 
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It generates input test cases according to energy of the 
seed. Testing feeds the generated inputs to the target pro-
gram, detects its abnormal behavior, and records proper 
runtime information, i.e., code coverage, to provide hints 
for seed pool update and input mutation.

Related work
Numerous optimization methods spanning seed selec-
tion and input seed mutation have been proposed to 
improve the performance of fuzzing, i.e., the ability to 
discover vulnerabilities or obtain a higher code coverage 
of the target program.

Seed selection Fruitful research has focused on the 
seed selection phase, either adopting better selection 
strategies (Böhme et  al.  2016; Gan et  al. 2018; Rawat 
et  al. 2017; Böhme et  al. 2017; Lemieux and Sen 2018; 
Petsios et al. 2017; Chen et al. 2018; She et al. 2022; Her-
rera et al. 2021), or leveraging different runtime informa-
tion (Xu et  al. 2017; Liang et  al. 2018; Nagy and Hicks 
2019; Chen et al. 2019; Zong et al. 2020; Yun et al. 2018). 
AFL (https://​lcamt​uf.​cored​ump.​cx/​afl/) and Libfuzzer 
(https://​llvm.​org/​docs/​LibFu​zzer.​html) leverage a prior-
ity queue to schedule input seeds during fuzzing. They 
both rely on edge coverage as a metric to determine the 
priority of the input seed and update the seed pool. AFL-
Fast (Böhme et al. 2016) optimizes the scheduling of the 
input seed by using a Markov chain model to determine 
the energy score of each seed. AFLGo (Böhme et  al. 
2017) allocates more energy to seeds closer to the target 
locations and vice versa, which is called a power sched-
uler. CollAFL (Gan et al. 2018) introduces a novel path-
sensitive seed selection policy, which is guided by precise 
coverage statistics feedback and can efficiently mitigate 
path collisions. Vuzzer (Rawat et  al. 2017) prioritizes 
input seeds that are unlikely to trigger error-handling 
basic blocks while Angora (Chen and Chen 2018) prefers 
ones that are likely to trigger conditional statements with 
unexplored branches.

Input seed mutation The generation of highly effec-
tive input cases is vital for fuzzing performance. This line 
of research (Rawat et  al. 2017; Lemieux and Sen 2018; 
Chen and Chen 2018; Li et  al. 2017; Aschermann et  al. 
2019; You et al. 2019; Lyu et al. 2019; Wang et al. 2017; 
Rajpal et al. 2017) assigns mutation operators with differ-
ent weights by mining the semantics of input bytes. Both 
Vuzzer (Rawat et al. 2017) and Angora (Chen and Chen 
2018) adopt taint analysis to find “magic” bytes in inputs, 
i.e., bytes that are likely to be referenced in a branch 
statement. Angora (Chen and Chen 2018) further pro-
poses to solve the path constraints problem using a gra-
dient descent-based search. REDQUEEN (Aschermann 
et al. 2019) identifies a relationship called “input-to-state 
correspondence”, which makes it possible for some input 

bytes to be directly mapped to program memory. It lever-
ages this mapping relationship to implement a close but 
lightweight approximation to taint tracking. GREYONE 
(Gan et  al. 2020) follows the traditional taint analysis 
to guide the fuzzing process but proposes a novel data 
flow analysis to tune the fuzzing direction further. PATA 
(Liang et al. 2022) also conducts path-aware taint analysis 
to identify input bytes that will be propagated to variables 
used in path constraints and mutates them accordingly. 
In summary, taint analysis is vital for identifying critical 
bytes of inputs. However, it suffers from path explosion 
and overhead issues, making it hard to scale to large pro-
grams or inputs.

There also exist other advancements (You et al. 2019; 
Lyu et  al. 2019; Rajpal et  al. 2017) requiring no heavy 
static/dynamic analysis. AFL contains a simple position-
sensitive policy: it skips the bytes that trigger no execu-
tion path in the flip8 operator for following operators 
like flip16, flip32, and arithmetic. However, it is limited 
to the deterministic stage of AFL, making it not appli-
cable for operators in the havoc stage. ProFuzzer (You 
et  al. 2019) predefines six classes of data fields, adopts 
a lightweight probing approach to classify input bytes, 
and performs mutation according to probed data type 
semantics. MOPT (Lyu et al. 2019) focuses on the sched-
uling of mutation operators by prioritizing operators 
that lead to new code coverage, paying no attention to 
the mutation position schedule. Rajpal et al. (2017) also 
explores the inequality of input seed bytes regarding 
effectiveness in triggering interesting cases. It trains an 
offline LSTM (Sundermeyer et  al. 2012) model to cap-
ture patterns in past fuzzing and guide future mutations 
accordingly.

To conclude, existing research still results in gener-
ating lots of redundant input cases. On the one hand, 
if certain mutation operators are selected yet applied 
to all positions like (Lyu et  al. 2019), mutations are 
performed unnecessarily in the input positions rep-
resenting raw data, e.g., pixel data of JPEG. On the 
other hand, if the mutation operators are applied selec-
tively to the positions according to the inferred type of 
data stored in the positions or the predefined weights 
of mutation operators, e.g., (You et  al. 2019; Rajpal 
et  al. 2017), they are not effective on the data with an 
unknown type.

Testing Orthogonal to the aforementioned two aspects, 
program instrumenting (Schumilo et  al. 2017; Xu et  al. 
2017; Nagy and Hicks 2019; Andronidis and Cadar 2022) 
and test scheduling (Zong et al. 2020; Chen et al. 2019) 
are also proposed to accelerate the testing process. kAFL 
(Schumilo et  al. 2017) extends hardware-assisted feed-
back fuzzing to OS kernels by designing novel operating 
system-level primitives. Xu et al. (2017) proposes to solve 
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the file system contention and the scalability of fork() sys-
tem call under multi-core scenarios. UnTracer (Nagy and 
Hicks 2019) traces only coverage-increasing test cases to 
reduce fuzzing overhead. FuzzGuard (Zong et  al. 2020) 
filters out unreachable inputs before executing the target 
program to boost the performance of fuzzing. EnFuzz 
(Chen et  al. 2019) adopts ensemble learning to fuzzing 
through cooperatively combining multiple base fuzzers.

Our approach
In this paper, we propose PosFuzz, an augmented grey-
box fuzzer with a mutation strategy sensitive to the muta-
tion position. PosFuzz requires no prior about the data 
types of mutation positions. PosFuzz constructs a statis-
tical model which records the historical performance of 
mutation positions. Furthermore, PosFuzz applies muta-
tion operators on different mutation positions according 
to the statistical model, reducing redundant input cases. 
To be specific, PosFuzz computes an effective position 
distribution for each mutation operator on the fly. Given 
a mutation operator, an effective position associated with 
it (abbreviated as an effective position) is a position in the 
input seed on which the mutation could lead to a new 
program coverage. PosFuzz schedules mutation positions 
for a mutation operator using weights denoted by their 
probabilities in the distribution. Note that the effective 
position distribution for each mutation operator is cal-
culated regardless of the input format, which makes Pos-
Fuzz input format agnostic and more general.

In the input seed mutation phase, PosFuzz first records 
profiles for each mutation operator, which are pairs of 
mutation operators and mutation positions if a muta-
tion generates an interesting input case, i.e., an input 
leading to a new program coverage. Then, it uses online 
Good-Turing frequency estimation to calculate the posi-
tion distribution for each mutation operator based on the 
profiles. At last, it utilizes acceptance-rejection sampling 
and alias sampling, both of which are guided by the dis-
tribution to schedule the positions in two different muta-
tion stages.

We have implemented PosFuzz on top of three state-
of-the-art fuzzers, i.e., AFL, AFLFast, and MOPT, called 
Pos-AFL, -AFLFast, and -MOPT, respectively. Evaluation 
using 20 real-world programs (UNIFUZZ Li et al. 2021) 
and LAVA-M dataset shows that, under the 24  h test-
ing time budget, PosFuzz outperforms AFL, AFLFast, 
and MOPT in code coverage and vulnerability discov-
ery. Compared with its counterpart, Pos-AFL, -AFLFast 
and -MOPT increases coverage by 22%, 23%, and 17% on 
average, respectively, finds 131%, 165%, 102% more paths, 
and triggers 243%, 311%, 271% more unique bugs.

In summary, this paper makes the following 
contributions:

•	 We introduce a concept of effective position distribu-
tion to represent the semantics of the input, instead 
of the data type of the positions in the input. The dis-
tribution can be used to select the mutation positions 
with different weights, which can increase the ability 
to generate interesting input cases.

•	 We propose PosFuzz, which leverages online Good-
Turing frequency estimation to calculate the position 
distribution for each mutation operator, and sched-
ules the positions based on the distribution for the 
later mutation.

•	 We implement PosFuzz on top of AFL, AFLFast, 
and MOPT. Evaluations using 20 widely used open-
source programs and the LAVA-M dataset show that 
PosFuzz outperforms these three methods in both 
code coverage and the ability of bug finding.

Background and motivation
We briefly introduce mutation-based greybox fuzzing and 
its de facto standard, American Fuzzy Lop (AFL) (https://​
lcamt​uf.​cored​ump.​cx/​afl/). We leverage a widely-used 
open-source program exiv2 to demonstrate the limitation 
of existing mutation-based greybox fuzzing and the idea of 
PosFuzz. Specifically, we select an image with type JPEG as 
the input of exiv2 to illustrate the problem in this section.

Mutation‑based greybox fuzzing
Mutation-based greybox fuzzing, like AFL and its 
descendants, utilizes edge coverage or bug-finding feed-
back from the prior execution to guide the fuzzing process 
and generate more effective inputs. Algorithm 1 presents 
the overall workflow of AFL. Mutation-based greybox 
fuzzing commonly requires a user-provided input corpus 
serving as an initial set of input seeds (Line 1). Usually, the 
input seeds are organized into a priority queue. The core 
fuzzing loop (Lines 2–21) repeatedly selects an input seed 
from the seed queue, mutates it to one or more input cases, 
and feeds the generated input cases to the target program. 
The interesting input cases, i.e., those trigger a new code 
coverage and are added to the priority queue at the suit-
able position. Thus, the main workflow of mutation-based 
greybox fuzzing can be divided into three phases:

Phase 1: Seed Selection. An input seed is picked from the 
priority queue. And several input cases are generated from 
the input seed based on its energy score. Thus, the key chal-
lenge is designing proper priority schemes and scoring meth-
ods to rank/score input seeds. A great deal of previous work 
has explored different strategies to improve the effectiveness 
of this process. For example, AFLFast leverages the Markov 
chain to calculate the energy score of each input seed.

https://lcamtuf.coredump.cx/afl/
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Phase 2: Input Seed Mutation. The given input seed is 
mutated to generate several input cases by performing a 
series of predefined mutation operators on the selected 
mutation positions. The mutation operators define how 
to manipulate the input seed while the mutation posi-
tions denote the places to mutate. AFL partitions this 
phase into three stages:

•	 Deterministic Stage. A mutation operator with the 
deterministic feature is selected one by one from the 
set of predefined mutation operators and applied to 
every byte of the input seed sequentially (Lines 4–9). 
For example, bitflip 1/1 operator is used first to flip 

each bit of the input seed, and bitflip 8/8 operator is 
then applied to flip each byte.

•	 Havoc Stage. A mutation operator suitably used 
in this stage is randomly selected from predefined 
mutation operators and applied to randomly chosen 
positions of the input seed (Lines 10–20).

•	 Splicing Stage. The stage is triggered when the previ-
ous two stages find no new crashes or paths for all 
seeds, which rarely happens. In this stage, two input 
seeds are spliced into a new one, and the havoc stage 
is re-executed. Algorithm 1 doesn’t cover this stage as 
it performs no mutation.



Page 5 of 21Zou et al. Cybersecurity            (2023) 6:11 	

Note that AFL adopts a uniform mutation strategy. 
Different mutation positions are selected with equal 
probability, i.e., a byte definitely selected in the deter-
ministic stage or randomly selected with the same 
probability in the havoc stage. In addition, the mutation 
position is manipulated by a mutation operator selected 
from the predefined operator set with the same prob-
ability too. Such a strategy is generally inefficient, lead-
ing to generating redundant input cases, which will be 
explained specifically in the next subsection.

Phase 3: Testing. This phase feeds the input cases 
to the instrumented target program. If any abnormal 
behavior or a new code coverage appears, the corre-
sponding input case is marked as interesting and added 
to the priority queue.

Insights in input seed mutation
We use the exiv2 program from UNIFUZZ (Li et  al. 
2021) benchmark as a motivating example. The exiv2 is 
a cross-platform library for manipulating the metadata of 
images. Thus, we test exiv2 for 24 h using JPEG images 
and one state-of-the-art fuzzer AFLFast (Böhme et  al. 
2016), which shares the same fuzzing process shown 
in Algorithm  1. We have analyzed the relation between 
mutation positions/operators and generated interesting 
cases in detail. We finally obtain two key observations 
that guide the design of PosFuzz.

Observation 1  Mutation positions are not equal with 
respect to their efficacy in generating interesting input 
cases.

Lines 5 and 16 of Algorithm  1 indicate that all posi-
tions are assumed with the same importance. Thus, the 
positions are selected either one by one in the determin-
istic stage or with equal probability in the havoc stage. 

However, the input to a target program is usually struc-
tured and semantic-rich, making the assumption held by 
AFL and its descendants doesn’t hold for most cases.

Figure 1 illustrates how a JPEG image is organized. In 
summary, the input bytes can be categorized into four 
kinds:

•	 Magic Number (blue boxes), marking the image 
type ([0x00,  0x01]) or header type ([0x02,  0x03] 
and[0x14, 0x15] ).

•	 Size (green boxes), determining the length of each 
header ([0x16, 0x17]).

•	 Enumeration (grey boxes), containing pre-defined 
discrete values like Identifier ([0x06, 0x0A]), which is 
a string value “JFIF\0” for JPEG format.

•	 Raw image data (white boxes), representing raw pixel 
data of the image ([0x18, 0x1F]).

Clearly, the former three types play a more critical role 
for image metadata manipulator like exiv2 than the last 
raw image data types. For example, a value of 0xFFD8 in 
position [0x00,  0x01] will lead exiv2 to call the handler 
corresponding to JPEG format while another value like 
0x4D4D will redirect the target program to TIFF handler, 
which will definitely increase the edge coverage of the 
target program.

The effectiveness of all positions in a sample JPEG file is 
summarized in Fig. 2. Specifically, we collect the interest-
ing cases associated with the mutation positions, accord-
ing to Lines 24–26 of Algorithm 1. The horizontal axis of 
Fig. 2 represents the first 32 bytes of mutation positions 
(1 byte per slot), while the orange bars against the ver-
tical axis stands for the ratio between interesting input 
cases and all input cases generated by mutating on this 
position. We can observe that the interesting input cases 
are not uniform-distributed over the mutation positions. 

Fig. 1  Sample JPEG image
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Taking position [0x18, 0x1F] for instance, less than 1% of 
interesting input cases are generated when mutating on 
these positions as they belong to the Raw image field, 
which is unlikely to trigger more edges of exiv2. However, 
for position range [0x02,  0x03], an order of magnitude 
more interesting input cases (about 7% and 15% respec-
tively) are generated with the same amount of mutations, 
due to the fact that this is a Magic number field, which 

requires the target exiv2 program to perform branch-
ing on values in these positions. Thus, our observation 
indicates that too many mutations are allocated to fewer 
effective positions (e.g., position range [0x18, 0x1F]).

Observation 2  The efficacy of mutation positions in 
generating interesting input cases is sensitive to mutation 
operators.

Fig. 2  Effectiveness of the positions for JPEG in ratio

Fig. 3  Sensitivity of mutation positions w.r.t mutation operators in ratio
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Line 4 of Algorithm  1 indicates that all the mutation 
operators in deterministicMutations set are assumed 
with the same importance, as they are applied one by 
one. Meanwhile, Line 15 of Algorithm  1 indicates that 
all the mutation operators in havocMutations set also 
are assumed to have the same importance, as they are 
selected with the same probability. However, we have 
further discovered that different mutation positions are 
often interpreted as different semantics, which means 
the efficacy of the mutation positions is sensitive to the 
mutation operators.

Figure  3 depicts the sensitivity of mutation positions 
(2 bytes per slot) with respect to the mutation operators 
using a histogram denoting the ratio of interesting input 
cases. The horizontal axis is the positions of input seeds 
ranging in [0x00, 0x1E] and the vertical axis is the distri-
bution of interesting input cases generated by mutation 
operators in ratio. The bars with different colors repre-
sent four representative mutation operators: flip1, arith8, 
int32, flip4.

Figure 3 shows that the efficacy of mutation positions 
differs from one mutation operator to another. When 
applying mutation operator flip1, more than 17% inter-
esting input cases are generated by applying the muta-
tion operator to the position [0x04, 0x05], while only 5% 
interesting input cases are generated by applying muta-
tion operator arith8 to these positions. For mutation 

operator arith8, more than 28% interesting input cases 
are generated by applying to the position [0x14, 0x15], it 
generates the most interesting input cases compared with 
other positions.

Key idea of PosFuzz
Based on the observations above, we need to address 
the problem of selecting suitable positions for certain 
mutation operators. Instead of inferring the data type 
of the positions to apply predefined mutation operators 
for the data type, which is explored by ProFuzzer (You 
et al. 2019), we treat the selection problem as an online 
lightweight scheduling problem.

Given a set of mutation operators, we schedule the 
positions to maximize the probability of generat-
ing interesting input cases. The scheduling decision is 
made based on the effective position distribution of 
that operator, which records the relative probabilities of 
generating interesting input cases for all positions. Pos-
Fuzz records the historical performance of mutation 
positions in a per-program and per-operator manner, 
and calculates effective position distribution on the fly 
according to the recorded historical performance.

We design PosFuzz, a position-sensitive mutation 
scheduling method, to augment the current fuzzing 
techniques without prior knowledge of the input data 
types. PosFuzz utilizes a statistical model to calculate 

Fig. 4  PosFuzz overview
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the effective position distribution of an operator based 
on the runtime information collected online, making 
PosFuzz lightweight and more general. The statistical 
model indicates which positions should be mutated 
and how much energy should be spent on them for a 
given mutation operator. An enhanced Good-Turing 
frequency estimation learns the statistical model based 
on a given operator’s historical performance of muta-
tion positions.

The constructed statistical model further guides posi-
tion selection. For a given mutation operator, PosFuzz 
utilizes two sampling methods, i.e., acceptance-rejection 
sampling for the deterministic stage and alias sampling 
for the havoc stage, to aid the selection of proper posi-
tions for later mutating. The two sampling methods are 
adopted as they are efficient, i.e., fast in selecting a posi-
tion, and precise, i.e., the sampled positions follow the 
calculated distribution.

The statistical model is updated periodically as the 
fuzzing process mines more semantics of the input 
types. Thus, PosFuzz divides the whole fuzzing loop into 
a sequence of epochs, each of which is the time unit for 
the mutation scheduler. During an epoch, PosFuzz learns 
a statistical model, selects the mutation positions guided 
by the model, and then gathers the runtime information 
for updating the model for the next epoch. In such a way, 
PosFuzz can apply the mutation operators to as many 
appropriate mutation positions as possible, improving 
the fuzzing effect.

Approach overview
PosFuzz leverages a position-sensitive scheduler to aug-
ment mutation-based greybox fuzzers. The scheduler 
consists of three main phases, i.e., effective information 
profiling, position distribution estimation, and distribu-
tion-guided selection, on top of the typical greybox fuzz-
ing process. The overall approach is depicted in Fig.  4 
with three phases highlighted in bold dotted squares.

PosFuzz divides the mutation process into multiple 
sequential epochs, each epoch lasts for a constant time 
whose value is configurable before fuzzing. PosFuzz 
records effective information in a per-epoch manner. 
Information from all previous epochs is accumulated to 
estimate the effective position distribution.

Effective information profiling It records the histori-
cal performance of conducted mutations if they trigger 
interesting input case generation. The effective informa-
tion is recorded using a pair of a mutation operator and 
its mutation position, denoted as (op, pos) when an inter-
esting input case is generated during testing. At the end 

of each epoch, the effective information of the current 
epoch is accumulated to the historical performance data.

For instance, if an interesting input ‘id : 001451, src : 0
00931,  op  :  flip4,  pos  :  60’ is generated from the source 
seed #000931 by mutating the position 60 with the muta-
tion operator flip4, we record the effective informa-
tion as (‘flip4’, 60), and update the history performance 
accordingly.

Position distribution estimation At the beginning 
of an epoch, the effective position distribution for each 
mutation operator is re-calculated according to the his-
torical performance. The position distribution of an 
operator represents the probability of each position 
being selected for mutation, and it is constructed from 
effective information like (‘flip4’, 60), i.e., more input 
cases generated means a higher selection probability in 
the future. The critical challenge is to predict the effec-
tiveness of unseen positions precisely, as we are facing a 
code start problem. We can not assign a zero probability 
to positions generating no interesting input cases since 
this position can either be ineffective or not be selected. 
PosFuzz leverages Good-Turing frequency estimation to 
tackle this problem. Good-Turing frequency estimation is 
a statistical method that can provide a simple estimate of 
the total probability of the objects seen and unseen (Gale 
and Sampson 1995).

Taking fuzzing convert with TIFF format input as an 
example. At the beginning of 25-th epoch, the effective 
position distribution of operator flip1 has been re-com-
puted by Good-Turing frequency estimation according to 
collected data from the previous 24 epochs. The proba-
bility of selecting position 54 for mutation is 20.83%, and 
that probability for position 72 is 10.01%.

Distribution guided selection The distribution is 
used to guide the input seed mutation phase. Due to 
the different selecting actions in deterministic muta-
tions and havoc mutations, two sampling methods are 
employed. For mutation operators in the determinis-
tic stage, the input positions are dealt with one by one, 
and each position is selected using acceptance-rejection 
sampling with a probability computed according to the 
position distribution of the operator. For mutation opera-
tors in the havoc stage, a position is chosen from all the 
input potions using alias sampling with the probability 
recorded in the distribution for the selected mutation 
operator.

Given the operator flip1 and its effective position dis-
tribution, PosFuzz can select the mutation positions at 
a specific probability. For deterministic stage mutations, 
position 54 is selected at a probability of 100% as it has 
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the most possibility to generate interesting cases among 
all the positions, while position 72 is selected at a prob-
ability of 48.1%. For havoc stage mutations, position 54 
and position 72 are chosen at probabilities of 20.83% and 
10.01%, respectively, according to the distribution.

Design and implementation
In this section, we formalize the effective position distri-
bution and explain how this distribution helps to select 
proper positions for a given mutation operator. Note that 
PosFuzz divides the whole mutation process into multi-
ple sequential epochs. Thus, we discuss the key phases in 
an epoch. We also present the algorithm of PosFuzz on 
top of a typical greybox fuzzing process.

Effective information profiling
Firstly, for each input case, C , PosFuzz records its linkage, 
i.e., how C is mutated directly from its parent input, as 
L(C) . The linkage of a case is a set of pairs (op, pos). Each 
pair (op, pos) stands for applying a mutation operator op 
on a mutation position pos. Note that the order of apply-
ing mutation operators is not recorded, as it does not 
affect the distribution calculation in this work.

Second, for the i-th epoch, denoting as Ei , all its inter-
esting cases are put into an input case set, denoting as 
IntC(Ei) . An input case C is interesting as long as it can 
cover a new execution path of the target program.

Position distribution estimation
At the very beginning of each epoch, PosFuzz calcu-
lates the effective position distribution using profiling 
information accumulated from all previous epochs so 
far. This section formalizes the definition of effective 
position distribution for a mutation operator and intro-
duces Good-Turing frequency estimation to compute 
it.

Effective position distribution definition
The effective position distribution is defined as:

Definition 1  Given a mutation operator op, an effective 
position distribution fop(pos) for op is a discrete prob-
ability function that maps positions to probabilities, and 
the probability of a position is determined by the number 
of interesting input cases, the linkage of which contains 
this position.

For the i-th effective position, its probability means the 
possibility of being selected for mutation. The probability 
is denoted as Pop(pos = posi) , and we have

Intuitively, AFL and its variants use a uniform effective 
position distribution, which indicates that every position 
is assumed to be equally important regarding generating 
interesting cases. In this work, for each mutation opera-
tor op, fop(pos) is calculated based on the effective his-
torical information profiled from all previous epochs and 
guides the mutation position selection in current epoch 
accordingly.

Good‑turing frequency estimation
One straightforward way to estimate the effective posi-
tion distribution is to directly compute it using effective 
historical information, i.e., all positions leading to inter-
esting cases are assigned with non-negative probability, 
while all other positions are assigned zero probability. 
However, this is not a good way due to the random nature 
of fuzzing. A position triggering no interesting cases can 
be either ineffective or given no chance to be selected. It 
poses a unique challenge for us to distinguish these two 
types of positions. To tackle this problem, we introduce 
Good-Turing frequency estimation 0 to smooth the dis-
tribution among the unseen positions.

Step 1: Preparing effective information Firstly, all the 
interesting input cases generated so far are denoted as:

where Ecur represents the current epoch.
Then, for a given operator op, all the input cases C 

whose linkage contains op denoted as:

where (op, ∗) ∈ L(C) means that op is at least in one ele-
ment of L(C).

Step 2: Calculating fop(pos) . We need to estimate 
the contribution of each position to its corresponding 
input cases, i.e., the weight of each position. In general, 
an input case is generated either in deterministic stage 
or in havoc stage, and we consider that all input cases 
are of the same importance. For deterministic stage, the 
input case is generated by applying the mutation opera-
tor op to one specific position. For havoc stage, the input 
case is generated by applying random mutation opera-
tors to multiple positions. Thus, we need to distrib-
ute the weight of the input case to positions in havoc 
stage. Given an interesting case Ck and an effective pair 
(op, posi) ∈ L(Ck) , the weight of the effective position 
posi for the case is defined as:

i

Pop(pos = posi) = 1

U = IntC(E0) ∪ . . . ∪ IntC(Ecur)

C(op) = { C | (op, ∗) ∈ L(C) and C ∈ U }



Page 10 of 21Zou et al. Cybersecurity            (2023) 6:11 

where

Without loss of generality, we assume REPEATmax is 
divisible by |(L(C))| here, as they are both some powers of 
two in practice.

Given an operator op, the overall weight of an effective 
position posi is defined as:

The overall scaled weight of an effective position posi is 
called the frequency of posi.

Given a frequency r, the number of positions with this 
frequency is denoted as:

Then the total number of samples is defined as:

According to Good-Turing frequency estimation, a 
smoothed frequency of r is estimated as:

Therefore, fop(pos) is calculated as follows. For an 
observed position posi , its corresponding probability is 
computed as:

For an unseen position posi , its corresponding probabil-
ity is computed as:

Distribution guided selection
PosFuzz selects mutation positions after an operator op 
is selected with the help of a distribution fop(pos) . In 
particular, the position selection is orthogonal to opera-
tor selection strategies proposed by other works. As 

weightk(posi) =
REPEATmax

|(L(Ck))|

REPEATmax = max(|L(C)|) where ∀ C ∈ C(op)

Ri =
∑

k

weightk(posi)

Nr = |{pos | pos = posi and Ri = r}|

N =

∞∑

r=0

rNr

r∗ = (r + 1)
Nr+1

Nr

Pop(pos = posi) =
r∗

N
=

(Ri + 1)

N

NRi+1

NRi

Pop(pos = posi) =
N1

N

illustrated in “Section  Background and motivation”, two 
distinct stages, i.e., deterministic and havoc stages exist 
in de-facto mutation-based greybox fuzzing frameworks. 
Thus, two different selection strategies are designed 
accordingly.

Augmenting deterministic stage
In deterministic stage, traditional mutation-based grey-
box fuzzing applies all possible operators one by one, 
and each operator is performed on all possible positions, 
leading to an equal selecting probability (the probability 
is one) for each position. Instead, given an operator, Pos-
Fuzz selects positions with different probabilities. For a 
position posi , PosFuzz leverages Acceptance-Rejection 
Sampling (Flury 1990) method to decide whether to 
mutate on it with an acceptance probability. The prob-
ability is defined as:

Augmenting Havoc stage
In havoc stage, a traditional fuzzer like AFL selects muta-
tion operators randomly and chooses mutation posi-
tions for each operator using a uniform distribution, 
i.e., selecting positions with the same probability. Differ-
ent from that, PosFuzz incorporates the Alias Sampling 
(Shapiro and Silverman 1960) method, an efficient sam-
pling method, to choose some mutation position in the 
input case with the probability recorded in fop(pos) . Alias 
Sampling is a general method to sample from a discrete 
probability distribution. It requires O(nlogn) or O(n) pre-
processing time and O(1) time to select a position based 
on fop(pos) . Thus, in this stage, a position is selected with 
a probability defined as:

PosFuzz implementation
Algorithm 2 illustrates a typical implementation of Pos-
Fuzz, which is on top of AFL.

The fuzzing process consists of loops of epochs, each 
of which can last for a user-configured time inter-
val, e.g., 1  h. During an epoch, appropriate mutation 
positions are selected based on the effective position 
distribution computed from the effective historical 
information.

(1)Paccop(pos = posi) =
Pop(pos = posi)

max(Pop(pos = posj))

(2)Pselop(pos = posi) = Pop(pos = posi)
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At the beginning of an epoch, PosFuzz accumulates 
the effective information of the current epoch and 
updates it to the history information history (Line 6), 
which will be used to calculate the effective distribu-
tion. PosFuzz utilizes Good-Turing frequency estima-
tion to compute the effective distribution dist based 
on the effective historical information history profiled 
so far (Line 7). It then selects positions with the help 
of the distribution. In deterministic stage, it leverages 
Acceptance-Rejection Sampling method, represented as 
ifAcceptPos, to determine whether the current position 
should be selected at a probability of Paccop(pos = posi) 
(Line 12). In havoc stage, it adopts Alias Sampling 
method, represented as selectPosForOp, to get a ran-
dom position with a probability of Pselop(pos = posi) 
(Line 25).

Posfuzz records the linkage of an operator in the for-
mat of (op, pos) (Lines 15 and 27) when mutating. If an 
interesting case is generated, the linkage is added to the 
interesting pair δ of the current epoch (Line 39).

Evaluation
To demonstrate the generality and effectiveness of Pos-
Fuzz, we implement three variants of PosFuzz, Pos-AFL, 
Pos-AFLFast, and Pos-MOPT, atop of three state-of-the-
art greybox fuzzers, i.e., AFL (https://​lcamt​uf.​cored​ump.​
cx/​afl/), AFLFast (Böhme et  al. 2016) and MOPT (Lyu 

et al. 2019), respectively. We choose AFL due to its popu-
larity in production. AFLFast and MOPT are selected 
due to they are orthogonal to PosFuzz. AFLFast proposes 
a novel seed selection policy while MOPT augments AFL 
with efficient scheduling of mutation operators.

Evaluation dataset We evaluate PosFuzz using UNI-
FUZZ benchmark (Li et al. 2021) and a standard dataset 
LAVA-M. UNIFUZZ contains 20 real-world programs 
categorized into six functionality types, i.e., image, audio, 
video, text, binary, and network. The setup of UNIFUZZ 
benchmark is in line with (Li et al. 2021), and the second 
column of Table  1 lists all the 20 programs. We report 
edge coverage and unique executing paths for UNIFUZZ 
benchmark. Moreover, both UNIFUZZ and LAVA-M 
are utilized to evaluate PosFuzz regarding bug discovery 
ability.

Experiment settings We run six fuzzing tools, i.e., 
AFL/Pos-AFL, AFLFast/Pos-AFLFast, and MOPT/
Pos-MOPT, for each program in the dataset. For each 
program with each fuzzing tool alternative, we run the 
experiment five times with the same seeds and each 
run lasts 24 h. We report average results across the five 
runs. Notice the test time for Pos-AFL, -AFLFast, and 
-MOPT (Pos-* for short) contains effective distribu-
tion calculation and position sampling, i.e., all the runt-
ime overhead is included. A 1-h epoch is picked across 
all experiments for Pos-*. All experiments are conducted 

Table 1  The average edge coverage for PosFuzz on AFL, AFLFast and MOPT

No. Program AFL Pos-AFL INC AFLFast Pos-AFLFast INC MOPT Pos-MOPT INC

1 exiv2 5.53 14.09 155% 8.02 14.17 77% 8.09 13.35 65%

2 tiffsplit 4.57 5.49 20% 4.65 5.63 21% 4.72 5.25 11%

3 mp3gain 4.22 4.60 9% 3.97 4.61 16% 4.14 4.60 11%

4 wav2swf 0.62 0.62 1% 0.62 0.65 6% 0.63 0.65 3%

5 pdftotext 15.34 18.01 17% 14.97 18.05 21% 14.86 17.87 20%

6 infotocap 2.54 3.38 33% 2.41 3.61 50% 2.95 3.36 14%

7 mp42aac 3.57 3.98 11% 3.51 4.04 15% 4.11 4.35 6%

8 flvmeta 0.78 0.80 2% 0.75 0.80 7% 0.79 0.80 1%

9 objdump 6.65 8.60 29% 6.72 8.75 30% 6.44 8.67 35%

10 tcpdump 9.85 16.27 65% 9.72 15.82 63% 9.89 16.48 67%

11 ffmpeg 27.85 28.74 3% 28.32 29.85 -1% 28.13 28.58 2%

12 gdk-pixbuf-pixdata 2.95 3.81 29% 2.92 4.23 45% 2.95 3.96 34%

13 cflow 2.84 2.98 5% 2.82 2.99 6% 2.84 2.99 5%

14 nm-new 6.50 7.60 17% 6.15 7.76 26% 6.42 7.89 23%

15 sqlite3 33.43 37.15 11% 32.43 37.24 15% 32.44 36.37 12%

16 lame3.99.5 9.50 9.64 1% 9.18 9.63 5% 9.40 9.64 3%

17 jhead 0.52 0.52 0% 0.52 0.52 0% 0.52 0.52 0%

18 imginfo 3.67 4.84 32% 3.43 4.90 43% 3.97 4.71 19%

19 jq 5.97 6.24 5% 5.90 6.23 6% 6.15 6.26 2%

20 mujs 9.00 9.20 2% 8.21 9.24 13% 8.48 9.12 8%

Average 22% 23% 17%

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
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on a two-socket, 80 cores machine with Intel Xeon Gold 
6248v4@2.50GHz processor.

Effectiveness of augmentation for fuzzing real‑world 
programs
We first report results on UNIFUZZ benchmark, which 
contains 20 real-world programs.

The overall results
Coverage and paths Tables  1 and 2 depict the average 
edge coverage and paths for all six fuzzers. In particular, 
column Program denotes the target programs and col-
umn INC illustrates the improvement of Pos-* over its 
counterpart, i.e., Pos-AFL over AFL.

Pos-* outperforms its counterpart in edge coverage 
for 58 out of 60 cases. On average, Pos-* improves edge 
coverage by 22% for AFL, 23% for AFLFast, and 17% for 
MOPT. Moreover, Pos-* explores 131%, 165%, and 102% 
more paths than AFL, AFLFast, and MOPT on average, 
respectively. Note that the results of Pos-MOPT show 
that the fine-grained mutation position selection on top 
of the coarse-grained mutation operator selection (what 
exactly MOPT does) can still eliminate the redundant 
input cases, thus exploring more paths and getting higher 
coverage.

Unique bugs We leverage the number of unique bugs 
found as a metric of bug discovery ability for fuzzing 

tools. We extract the top three functions in the stack 
trace from the output of ASan (Serebryany et  al. 2012) 
to de-duplicate bugs, and divide the bugs that have dif-
ferent stack trace and vulnerability types as unique bugs. 
Table  3 presents the total number of unique bugs trig-
gered by each fuzzer in five repetitions on the 20 real-
world programs. Pos-* triggers more unique bugs for all 
of the programs. On average, Pos-AFL, Pos-AFFast, and 
Pos-MOPT detect 243%, 311%, and 271% more unique 
bugs than their counterparts. In particular, PosFuzz iden-
tifies 10x more unique bugs for the tcpdump program 
due to the significant improvement in edge coverage and 
paths.

Detail comparison
Figures 5 and 6 depict the detailed experiment results of 
fuzzing efficiency for the first fuzzing execution, in terms 
of edge coverage and execution paths. Each small figure 
is associated with a target program, in which the green 
dotted line, green line, red dotted line, red line, blue dot-
ted line, and blue line represent AFL, Pos-AFL, AFLFast, 
Pos-AFLFast, MOPT, and Pos-MOPT, respectively.

Edge coverage For each small figure in Fig. 5, the hori-
zontal axis is the edge coverage in ratio, and the vertical 
axis is the hours lasting for fuzzing. As shown in Fig. 5, 
Pos-* outperforms its counterpart for all input formats 
and target programs, showing good generality.

Table 2  The average paths for PosFuzz on AFL, AFLFast and MOPT

No. Program AFL Pos-AFL INC AFLFast Pos-AFLFast INC MOPT Pos-MOPT INC

1 exiv2 246.6 1741.4 606% 523.2 1982.4 279% 476.2 1458.8 206%

2 tiffsplit 989.8 1746.2 76% 1151.6 1948.8 69% 1315.2 1655.2 26%

3 mp3gain 1265.8 1945 54% 1040.4 1945.4 87% 1239.6 1854 50%

4 wav2swf 224.2 228.2 2% 230.2 293.2 27% 256.6 293.6 14%

5 pdftotext 4237.4 8212.8 94% 3726 7918.8 113% 3610.8 8163.4 126%

6 infotocap 1218.2 3119.4 156% 1177.6 3525.4 199% 2644.8 2948.6 11%

7 mp42aac 502.8 1186.6 136% 482.4 1174.4 143% 1715 1967 15%

8 flvmeta 525.6 678.6 29% 478.6 691.8 45% 579.8 648.6 12%

9 objdump 866.4 2470.4 185% 964 2604.2 170% 774.8 2463.4 218%

10 tcpdump 1450.8 5332.4 268% 1364.6 5062.6 271% 1522 5419.6 256%

11 ffmpeg 600.2 1066.4 78% 352 1176.4 234% 369.2 872.6 136%

12 gdk-pixbuf-pixdata 188.2 699.2 272% 172.6 972.2 463% 181.6 833 359%

13 cflow 500 892.4 78% 453.8 912.8 101% 514.6 948.4 84%

14 nm-new 1571.6 2548.6 62% 1167.8 2905.2 149% 1531.8 2809.4 83%

15 sqlite3 3187.2 8751.8 175% 2161.8 8891.2 311% 2282.6 7434.8 226%

16 lame3.99.5 1493.8 2335 56% 1274.4 2330.2 83% 1443.2 2300.8 59%

17 jhead 293.6 362.8 24% 258.4 374 45% 350.8 364.8 4%

18 imginfo 453.4 1154 155% 276.8 1280.8 363% 585.2 1093.2 87%

19 jq 906.6 1543.4 70% 938.6 1593.6 70% 1522.4 1550.6 2%

20 mujs 4380.2 6324 44% 3698 6214 68% 3738.4 5800.4 55%

Average 131% 165% 102%
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Execution path For each small figure in Fig.  6, the 
horizontal axis is the number of execution paths, and the 
vertical axis is the hours lasting for fuzzing. As shown in 
Fig. 5, Pos-* outperforms their counterparts dramatically 
for most of the 20 target programs.

Specifically, Pos-* significantly improve the path dis-
covery for some image formats, e.g., imginfo and jpg. 
The effectiveness of positions varies widely across image 
formats due to their difference in semantic specifica-
tions and structured data layout. Thus, PosFuzz achieves 
better performance when Pos-* acquires more accurate 
and valuable effective position distribution information 
from runtime profiling, e.g., imginfo and jpg. However, 
for some audio and video formats, e.g., wav and mp4, the 
effective positions distribute relatively even, so Pos-* do 
not explore much more paths.

In summary, PosFuzz can automatically use statistical 
information to guide the selection of mutation positions 
without perceiving program semantics or input formats, 
which can improve both edge coverage and explore more 
execution paths.

Evaluation on LAVA‑M
LAVA-M consists of 4 target programs and is widely 
adopted as a standard benchmark for measuring the 
vulnerability discovery abilities of fuzzers. The initial 
seed sets and all other settings are in line with (Rawat 

et  al. 2017), and they are identical across all six fuzzers 
evaluated. For each program, we run the experiment five 
times, and each run lasts 24 h.

Table 4 lists accumulated bugs in 5 runs for all fuzzers. 
Pos-* outperforms its counterpart significantly. Pos-AFL 
detects 533 more bugs than AFL, Pos-AFLFast detects 
469 more bugs than AFLFast, and Pos-MOPT detects 
126 more bugs than MOPT. In particular, Pos-* finds all 
listed bugs in who, and 4 unlisted bugs in addition. More-
over, for the most buggy program who, Pos-* finds 466, 
418, 118 more listed bugs and 42, 32, 8 more unlisted 
bugs than AFL, AFLFast, and MOPT, respectively. More-
over, only Pos-AFLFast can identify one bug on md5sum 
while all other fuzzers fail to find any.

Case study: exiv2
In this section, we leverage the program exiv2, a cross-
platform library for manipulating metadata of images to 
investigate how PosFuzz outperforms state-of-the-art 
fuzzing tools like AFLFast (Böhme et  al. 2016). We test 
exiv2 for 24 h using both AFLFast and Pos-AFLFast, the 
setting of execute parameter and initial seeds are in line 
with UNIFUZZ.

Intuitively, high-level semantics are crucial for improving 
fuzzing performance. Take image formats for instance, posi-
tions containing metadata, e.g., the header positions (Magic 
number in “Section  Insights in input seed mutation”) 

Table 3  The total number of unique bugs in five repetitions for PosFuzz on AFL, AFLFast and MOPT

No. Program AFL Pos-AFL AFLFast Pos-AFLFast MOPT Pos-MOPT

1 exiv2 5 11 3 7 5 6

2 tiffsplit 10 14 11 15 11 16

3 mp3gain 5 7 4 7 4 7

4 wav2swf 2 3 3 3 3 3

5 pdftotext 1 2 0 2 0 3

6 infotocap 7 10 5 15 10 10

7 mp42aac 0 0 0 0 0 0

8 flvmeta 2 2 2 2 2 2

9 objdump 8 14 4 14 3 14

10 tcpdump 12 134 11 134 12 132

11 ffmpeg 0 0 0 0 0 0

12 gdk-pixbuf-pixdata 0 7 0 16 0 16

13 cflow 0 2 0 3 0 3

14 nm-new 0 0 0 0 0 0

15 sqlite3 0 1 1 1 0 3

16 lame3.99.5 3 5 3 4 3 4

17 jhead 5 5 5 5 5 5

18 imginfo 0 0 0 0 0 0

19 jq 2 2 2 2 2 2

20 mujs 3 4 3 4 2 4

Total 65 223 57 234 62 230
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Fig. 5  Comparison of edge coverage
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Fig. 6  Comparison of paths
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determining whether an image is JPEG or TIFF, are more 
likely to increase edge coverage, compared to positions con-
taining only pixel data (Raw image data in “Section Insights 
in input seed mutation”). However, instead of directly prob-
ing the types of input bytes as adopted by ProFuzzer (You 

et al. 2019), PosFuzz chooses to conduct scheduling in a util-
ity-guided fashion: scheduling positions according to cover-
age improvement instead of scheduling them using their 
semantic types. This design makes PosFuzz type-agnostic 
and requires no pre-defined types.
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Listing  1 is a code snippet extracted from exiv2. 
exiv2 first determines types of input images by query-
ing position 0x00 with two-byte length: value 0xFFDB 
for JPEG (Line 14) and value 0x4D4D or 0x4949 (ASCII 
code for letter ‘II’ or ‘MM’) for TIFF (Lines 21 and 22). 
Manipulating position [0x00,  0x01] will clearly lead 
to different paths in exiv2 as every image type has its 
own handler,e.g., isJpegType for JPEG and isTiffType for 
TIFF. Moreover, given that an image is JPEG format, 
the exiv2 further examines position 0x02 (marker in 
Line 31) with a 2-byte length and position 0x04 (size 
in Line 36). The exiv2 will perform a switch-case style 
branch based on marker (from Line 37 to Line 57), 
and the edge coverage will certainly increase if the 
fuzzer mutates this marker position. The size field is 
used to perform sanity checks according to JPEG speci-
fication (Line 38, 43, 48 and 53) and directly influences 
how much data will be read by the program, which may 
incur out-of-bounds access. Thus, mutating on size is 
likely to trigger more interesting cases. The same analy-
sis holds for position 0x14 and 0x16, which is another 

marker and size pair according to “Section  Back-
ground and motivation. Besides, the raw image data 
will be ignored by exiv2 (Line 56) as exiv2 is a metadata 
manipulating tool and no further action is performed 
based on the value of pixel data, making it less effective 
in increasing edge coverage. In summary, mutation on 
positions like Magic number and Size is more effective 
than positions like Raw image data. PosFuzz demysti-
fies the efficacy difference between different positions 
and assigns more weight to more effective positions 
using online scheduling based on a statistical model.

Figure 7 depicts the distribution of the interesting cases 
for both Pos-AFLFast and AFLFast with the x-axis being 
positions (1-byte slot) and the y-axis being the absolute 
number of interesting cases. For simplicity reasons, we 
only report interesting cases that are triggered by flip1 
mutation operator for a position range [0x00, 0x1F], and 
one interesting case is amortized to all positions when it 
is generated by mutating on multiple positions, e.g. cases 
in havoc stage.

Table 4  The accumulated bugs triggered on LAVA-M

Program Listed bugs AFL Pos-AFL AFLFast Pos-AFLFast MOPT Pos-MOPT Arguments

base64 44 32 44(+4) 37(+1) 44(+4) 44(+4) 44(+4) -d @@

md5sum 57 0 0 0 1 0 0 -c @@

uniq 28 2 9 2 10 13 13 @@

who 2136 24(+4) 490(+48) 79(+8) 497(+40) 414(+50) 532(+58) @@

Total 2265 58(+4) 543(+52) 118(+9) 552(+44) 471(+54) 589(+62) –

Fig. 7  Histogram of interesting cases of both Pos-AFLFast and AFLFast for JPEG 
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In total, Pos-AFLFast triggers 3.8X more interesting 
cases than AFLFast under the same time budget for flip1 
operator. According to Fig. 7, we can first confirm Obser-
vation 1 in “Section  Background and motivation holds 
for exiv2 program, and only a subset of positions (8 out 
of 32 for AFLFast and 21 out of 32 for Pos-AFLFast) can 
trigger interesting cases. Second, compared with AFL-
Fast, we can observe that Pos-AFLFast explores signifi-
cantly more interesting cases (66 vs 6) in a position range 
[0x14,  0x17], which is a Marker and Size pair as stated 
before. AFLFast only finds 6 interesting cases in this posi-
tion range as it wastes a lot of mutations in less effective 
positions.

Figure 8 further depicts the distribution of input cases 
generated for both AFLFast and Pos-AFLFast. The total 
number of input cases is on par with each other, e.g., 
188440 for AFLFast and 183523 for Pos-AFLFast. How-
ever, the distribution of inputs across positions differs 
significantly. AFLFast is unaware of the effectiveness 
difference between positions, and adopts a uniform dis-
tribution, leading to nearly even input cases for each 
position, as shown by blue bars in Fig. 8. On the contrary, 
Pos-AFLFast schedules positions according to their his-
torical performance in triggering interesting cases and 
assigns more mutations to effective positions. For exam-
ple, 28441 input cases are generated for position 0x17, 
while only 635 cases are for position 0x1E. In summary, 
PosFuzz schedules mutation positions using a statistical 
model and assigns more weight to positions like Magic 
numbers and Size, thus avoiding redundant mutation on 
positions like Raw image data.

Discussions
In this section, we briefly discuss the relationship 
between PosFuzz and other fruitful research work in the 
literature.

First, PosFuzz is orthogonal to methods focusing on 
seed selection, e.g. AFL (https://​lcamt​uf.​cored​ump.​cx/​
afl/) and AFLFast (Böhme et  al. 2016). PosFuzz can be 
combined with them transparently, and we have con-
ducted augmentation for AFL and AFLFast, respectively. 
Second, PosFuzz aims to generate highly effective input 
cases, which has been explored by numerous research 
work (Rawat et al. 2017; Li et al. 2017; Chen and Chen 
2018; Aschermann et al. 2019; Lyu et al. 2019; You et al. 
2019; Wang et  al. 2017; Lemieux and Sen 2018; Rajpal 
et  al. 2017). PosFuzz shares the same principle among 
other research work: leverage the semantics of input 
bytes to generate more effective input cases (Rawat et al. 
2017; Li et al. 2017; Chen and Chen 2018; Aschermann 
et al. 2019; Lyu et al. 2019; You et al. 2019; Wang et al. 
2017; Lemieux and Sen 2018; Rajpal et  al. 2017). How-
ever, PosFuzz is built upon runtime profiling of inter-
esting test cases with negligible overhead while existing 
work requires static/dynamic program analysis (Rawat 
et  al. 2017; Chen and Chen 2018; Aschermann et  al. 
2019; Gan et al. 2020; Liang et al. 2022) which may suf-
fer from the overhead of offline analysis. ProFuzzer 
(You et  al. 2019) requires no static/dynamic program 
analysis but needs to predefine six classes for input 
bytes while PosFuzz is input type-agnostic and doesn’t 
need to define the data types beforehand. MOPT (Lyu 
et  al. 2019) prioritizes operators that lead to new code 

Fig. 8  Histogram of mutation cases of both Pos-AFLFast and AFLFast for JPEG 

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
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coverage and can be combined with PosFuzz to improve 
fuzzing performance, as evaluated in “Section  Evalua-
tion”. Rajpal et  al. (2017) schedules mutation positions 
based on an offline-trained LSTM model while PosFuzz 
requires no pre-fuzzing training and can adapt to new 
inputs dynamically, i.e., update the distribution every 
epoch.

Conclusion
We identify the inefficiency of the existing mutation posi-
tions scheduler and leverage the effectiveness of different 
positions for different mutation operators. We propose a 
mutation position-sensitive scheduler for input mutation, 
which utilizes a statistical method to direct the selection 
of mutation positions for a mutation operator. Using the 
novel scheduler, PosFuzz augments three state-of-the-
art fuzzers and implements three prototypes, Pos-AFL, 
-AFLFast, and -MOpt. We evaluated these fuzzers on the 
UNIFUZZ benchmark (20 widely used open source pro-
grams) and LAVA-M dataset, and the evaluation result 
shows that Pos-* outperform their counterparts in both 
edge coverage and vulnerability discovery.
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