
CybersecurityXu et al. Cybersecurity (2020) 3:18
https://doi.org/10.1186/s42400-020-00058-2

RESEARCH Open Access

ELAID: detecting integer-Overflow-to-
Buffer-Overflow vulnerabilities by
light-weight and accurate static analysis
Lili Xu1*, Mingjie Xu1,2, Feng Li1 and Wei Huo1

Abstract

The Integer-Overflow-to-Buffer-Overflow (IO2BO) vulnerability has been widely exploited by attackers to cause severe
damages to computer systems. Automatically identifying this kind of vulnerability is critical for software security.
Despite many works have been done to mitigate integer overflow, existing tools either report large number of false
positives or introduce unacceptable time consumption. To address this problem, in this article we present a static
analysis framework. It first constructs an inter-procedural call graph and utilizes taint analysis to accurately identify
potential IO2BO vulnerabilities. Then it uses a light-weight method to further filter out false positives. Specifically, it
generates constraints representing the conditions under which a potential IO2BO vulnerability can be triggered, and
feeds the constraints to SMT solver to decide their satisfiability. We have implemented a prototype system ELAID
based on LLVM, and evaluated it on 228 programs of the NIST’s SAMATE Juliet test suite and 14 known IO2BO
vulnerabilities in real world. The experiment results show that our system can effectively and efficiently detect all
known IO2BO vulnerabilities.

Keywords: Integer-Overflow-to-Buffer-Overflow (IO2BO) vulnerability, Inter-procedural dataflow analysis, Taint
analysis, Path satisfiability

Introduction
Integer overflow is one of the most common types of
software vulnerabilities. According to the Common Vul-
nerability and Exploit (CVE) (Common Vulnerabilities
and Exposures (CVE) 2020), integer overflow has become
the secondmost critical type of coding errors, second only
to buffer overflows (Christey andMartin 2007). If themal-
formed value generated by integer overflow (IO for short)
is used for determining how much memory to allocate, it
will cause a buffer overflow (BO for short), which is known
as the Integer Overflow to Buffer Overflow vulnerabil-
ity (CWE-680: IO2BO Vulnerabilities 2020). According to
(Zhang et al. 2010), it is difficult to distinguish integer
overflow vulnerabilities from benign overflows, but in the

*Correspondence: xulili@iie.ac.cn
1Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
China
Full list of author information is available at the end of the article

context of IO2BO, the involved integer overflow cannot
be benign and it must be a real vulnerability.
In recent years, IO2BO is being widely exploited by

attackers to cause severe damages to computer systems,
such as (Chen et al. 2005; Sotirov 2007; Vreugdenhil 2020).
According to statistics, from July 2019 to July 2020, the
National Vulnerability Database (NVD (National Vulner-
ability Database 2020)) has recorded 77 IO2BO vulnera-
bilities, which makes up more than one third of integer
overflow vulnerabilities (207 in total) recorded by NVD in
the same period.
As IO2BO vulnerabilities have become a dominant kind

of integer overflow vulnerabilities in practice, a variety
of solutions have been proposed for IO2BO detection.
The solutions can be categorized into approaches based
on static analysis (e.g. Wang et al. (2012, 2009) and
those depended on dynamic testing (e.g. (Zhang et al.
2010; Dietz et al. 2012; Wang et al. 2010; Chen et al.

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-020-00058-2&domain=pdf
mailto: xulili@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

Xu et al. Cybersecurity (2020) 3:18 Page 2 of 19

2012)). Dynamic testing approaches are commonly used
during software deployment, but their efficiency highly
relies on the completeness of the test inputs. Static anal-
ysis approaches do not require the availability of test
inputs and usually take all possible paths of the programs
into consideration, which makes them more populate in
practice. However, the key limitation of static analysis
approaches is that the reported integer overflow vulnera-
bilities contain too many false positives due to the lack of
execution information. To solve this problem, tools such
as PREfix+Z3 (Moy et al. 2009) and IntScope (Wang et
al. 2009) employ symbolic execution (Brummayer 2009)
to generate path constraints and prune infeasible paths
in order to alleviate false positives. However, these tools
may suffer from path explosion when applied to large pro-
grams. Another state-of-the-art tool, KINT (Wang et al.
2012), also collects path constraints to prune false posi-
tive but it only generates intra-procedural path constraints
for each reported integer overflow program point. It also
ignores implicit data dependencies imported by memory
operations or complex data structures. Our experiments
in “Evaluation” section shows that the false negatives
reported by KINT remain high when detecting IO2BO
vulnerabilities.
In the preliminary version (Mingjie X et al. 2018) of this

paper, we proposed LAID, a static analysis framework uti-
lizing an improved taint analysis (compared with KINT)
and a lightweight approach for path constraint generation
and solving to detect IO2BO vulnerabilities. Specifically,
LAID first uses taint analysis to identify potential IO2BO
vulnerabilities. It supports implicit data flow introduced
by memory operations (load and store) and taint prop-
agation on complex data structures, which improves the
accuracy of detection. Then it applies an inter-procedural
path-satisfiability analysis to filter out false positives. The
analysis generates conditions under which an IO2BO vul-
nerability can be triggered in practice and then performs
constraints solving by feeding the generated conditions
into a solver. If the conditions of a potential IO2BO
vulnerability cannot be satisfied, the potential IO2BO
vulnerability will be filtered out as a false positive. Com-
pared with symbolic execution that needs to model the
runtime environment, LAID is more light-weight in the
constraints generation, thus has less space and time con-
sumption. An evaluation on 6 real-world vulnerabilities
shows that LAID can effectively reduce false positives and
false negatives in detecting real vulnerabilities.
However, LAID only considers the cases where the over-

flowed value is used in a buffer operation within the same
function. LAID still misses some real vulnerabilities due
to the incomplete considerations of the indirect calls in C
programs and the cases where the BO sites are reachable

inter-procedurally from the IO sites. In many C programs,
function pointer and indirect calls are used to support
a dynamic run-time feature. Existing approaches identify
indirect-call targets based on type analysis, specifically,
by matching the types of function pointers and the set
of address-taken functions (whose addresses have been
generated and stored). Such approaches, however, suffer
from a high false-positive rate as many irrelevant func-
tions may share the same types. Alternatively, one may opt
for precise solutions (e.g., SVF (Sui and Xue 2016)) based
on pointer analysis, which, however, would be unscalable
when analyzing large-scale programs like a linux kernel.
In this article, we present ELAID (short for an Enhanced

Light-weight and Accurate method of static IO2BO
vulnerability Detection), an enhancement of LAID, to
improve the effectiveness of LAID in three major aspects.
(i) It proposes a precise and scalable indirect call analysis
technique on top of the LLVM framework (Lattner 2012;
Lattner and Adve 2004). It utilizes a two-stage approach
that incorporates both a definition-based and the type-
based ways to resolve indirect calls. (ii) Based on a more
complete global call graph, it covers the cases where the
tainted IO sites and the sensitive BO sites are reachable
inter-procedurally. Thus two more real-world vulnerabil-
ities are detected in the evaluation part. (iii) A large-scale
program, namely, Linux kernel is added to the benchmark
programs set to show the scalability of ELAID. We inves-
tigate 8 real IO2BO vulnerabilities in the history of Linux
kernel, locate the precise IO and the BO sites, and revert
the latest version of Linux kernel to a vulnerable version.
We implement ELAID as a prototype tool by integrating

the above improvements into LAID. We evaluate ELAID’s
effectiveness and efficiency on 228 programs of the NIST’s
SAMATE Juliet test suite (?SAMATElink) and 7 real-
world open-source applications each of which involves
known IO2BO vulnerabilities. Our experimental results
show that ELAID is capable of detecting IO2BO vul-
nerabilities in the real-world applications with low false
positives and false negative rates. The results demonstrate
that ELAID performs better than LAID in detecting IO
sites that contaminate inter-procedural BO sites.
In summary, this paper makes the following main

improvements:

• We propose a two-stage analysis to effectively refine
indirect-call targets. Our indirect call analysis is
elastic and does not introduce false negatives to
existing type analysis-based approaches. It is also
scalable for large-scale programs like linux kernel.

• We extend LAID by supporting the detection of the
IO2BO vulnerabilities where the IO sites and the BO
sites are reachable inter-procedurally.

Xu et al. Cybersecurity (2020) 3:18 Page 3 of 19

• We implement a prototype tool ELAID and evaluated
it on 228 programs of the NIST’s SAMATE Juliet test
suite and 7 real-world applications with 14 known
IO2BO vulnerabilities. The experiment result shows
that our framework can catch all harmful IO2BOs in
the SAMATE suite with no false positive, and for
real-world applications, it can significantly reduce the
number of false positives and detect more known
vulnerabilities than LAID and KINT.

The rest of this paper is organized as follows. Our sys-
tem overview is shown in “System overview” section. In
“Indirect call analysis” section we present our indirect call
analysis approach. In “Identify potential iO2BO vulnera-
bilities” section, we describe how to use taint analysis to
identify potential IO2BO vulnerabilities. In “Vulnerability
filter” section, we describe how to use constraint solving
to filter out potential IO2BO vulnerabilities that cannot
be triggered. “Evaluation” section shows the experiment
results. Related work and conclusion are discussed in
“Related work” section and “Conclusions” section, respec-
tively.

System overview
In this section, we describe the architecture of our sys-
tem as illustrated in Fig. 1. It takes LLVM intermediate
representation (IR) as input, which is obtained by compil-
ing C source code using Clang, and performs a two-stage
analysis to detect IO2BO vulnerabilities in these IRs. At
the end of analysis, it outputs the detected IO2BOs along
with their locations. The first stage constructs a whole-
program call graph. An inter-procedural taint analysis is
performed based on the system-wide call graph. Sensitive

Fig. 1 The structure of our framework

taint sources and sinks are given by our built-in annota-
tions as well as user annotations. Potentially vulnerable
integer operations are identified by the comparison with
the pattern of IO2BO vulnerabilities; the second stage per-
forms constraint generation and solving for each poten-
tial IO2BO vulnerability, if the constraint of a potential
IO2BO vulnerability cannot be satisfied, the vulnerability
will be filtered out, which helps reduce false positives.
Next we use a real IO2BO vulnerability existed in

Jbig2dec (a JBIG2 decoder library) showed in Fig. 2
as an example to explain how our system works. The
IO2BO vulnerability (CVE-2016-9601) occurs in function
jbig2_image_new at line 56 (highlighted in the red
color) of jbig_image.c. The addition operation at line 56
overflows and results in a memory allocation less than
expected.
Call Graph Construction. To support inter procedural

analysis, we need a system-wide call graph. It is straight-
forward to decide the targets for direct calls as the callsite
at line 129 in Fig. 2. While for C language to achieve an
abstract and modular design, function pointers and indi-
rect calls are often used. For these cases, we make use of a
two-stage indirect call analysis: a definition-based way as
well as a type-based way to resolve indirect calls.
Taint Analysis. Find and annotate the taint source

(untrusted input) occurred in Jbig2dec, such as the param-
eters of main function and the pointer to file returned
by fopen function. Perform taint tracking to determine
which values can be influenced by untrusted inputs, and
which values may be used in memory allocation opera-
tions, such as function jbig2_new in this case.
Vulnerability Identification. After the taint analysis,

the parameter width, parameter height and variable
check in function jbig2_image_new are found all
influenced by untrusted inputs. The result of the addi-
tion operation check+1 at line 56 is used for determining
how much memory to allocate by calling jbig2_new
function, so this line is identified as a potential IO2BO
vulnerability
Vulnerability Filter.We perform constraint generation

and solving for this potential IO2BO vulnerability to ver-
ify whether it can be triggered in program’s execution.
The constraint can be divided into overflow condition and
path constraint:
Overflow Condition. If the involved integer operation

overflows, the condition (int)check + 1 > INT_MAX
should be satisfied.
Path constraint. We generate the path constraints from

the caller of jbig2_image_new to the integer over-
flow point. Usually one function has more than one
caller. As long as the path from one caller is satisfiable,
we consider the potential IO2BO site as feasible. We
take one of jbig2_image_new’s callers, namely, func-
tion jbig2_decode_pattern_dict as an example,

Xu et al. Cybersecurity (2020) 3:18 Page 4 of 19

Fig. 2 A real-world IO2BO vulnerability in Jbig2dec

which is shown in the lower part of Fig. 2. The con-
trol flow condition from its function entry to the callsite
of jbig2_image_new (highlighted in the blue color) is
always true. Furthermore, in jbig2_image_new, if the
program executes to the overflow point, it should satisfy
the branch condition at line 50, i.e., check == (int)check.
So the complete constraint is

((int)check + 1 > INT_MAX) ∧ true
∧(check == (int)check) (1)

The SMT solver is invoked to decide whether or not
the above constraint can be satisfied, if not, we treat the
potentially vulnerable site as a false positive and hence
filter it out, otherwise we report it as an IO2BO vulnera-
bility.

Indirect call analysis
To support inter-procedural analysis, global call graph is
required. To eliminate false negatives, ELAID must con-
servatively identify all potential targets of indirect calls. To
improve the resolution rate of indirect callsites, and at the
same time, to avoid the inclusion of toomany false targets,
we propose a two-stage indirect call analysis approach.
We first use a definition-based analysis to precisely resolve
indirect callisites. For the cases in which the first way fails
to resolve, we turn to the type-based analysis.
For better illustrating the two-stage indirect call anal-

ysis, we take several code snippets, i.e., Figs. 3–6, from
swftools-0.9.2, a tool for Adobe Flash files (SWF files). It
supports SWF files creation from different kinds of con-
tent (like images, sound files, videos or sourcecode). To

achieve a modular design, it relies on function pointers to
define a set of abstraction layers that specify the common
interfaces to different concrete implementations.

Stage-1: definition-based analysis
Function pointers used in C programs are often defined
in a field of a function pointer type in a C struct:
e.g., func of struct arguments at line 4 in Fig. 3.
Many C interfaces (i.e. C structs) are statically allo-
cated and initialized as the case of func with c_swf,
c_image and c_movie at lines 9-11 in Fig. 3. Some
interfaces may be dynamically allocated and initialized at
run time for reconfiguration, as the case of d->lineTo
with polydraw_lineTo and linedraw_lineTo at
line 6 and 13, respectively, in Fig. 4.
For the former, ELAID scans LLVM IR linearly to find

all statically allocated and initialized struct objects with
function pointer fields. Then, for each struct objects,
ELAID keeps tracks of which function address is assigned

Fig. 3 E.g. initialization of function pointer in a struct field

Xu et al. Cybersecurity (2020) 3:18 Page 5 of 19

Fig. 4 E.g. definitions of function pointer in a struct field

to which function pointers field using an offset as a key
for the field. For example, for the function pointer func
at line 4 in Fig. 3, we use “struct.arguments.1”
to denote that func is the first1 field of struct
arguments and its possible initialization values c_swf,
c_image, c_movie at lines 9-11 are inserted to func’s
possible targets set. This procedure can be intuitively
expressed by the following pseudocode.

Callees[func] = Callees[struct.arguments.1]
+ = {c_swf , c_image, c_movie};

By denoting the specific offset of the field in a struct,
ELAID implements a field-sensitive analysis, it allows the
collected targets to be associated with the individual field
of an interface.
For the latter dynamically initialized interfaces, ELAID

performs a data flow analysis to collect any assignment
of a function address to the function pointer inside an
interface. There are mainly three cases in which function
address assignments happen:

1 The definitions of function pointers in struct fields.
Take the function pointer lineTo occurring at lines
6 and 13 in Fig. 4 as an example, analogous to the
case of global struct’s initialization, we denote it by
“struct.gfx drawer_t.4” where the number 4
is the index of lineTo field in gfxdrawer_t.
Because of the assignments at lines 6 and 13, funtions
polydraw_lineTo and linedraw_lineTo are
inserted to lineTo’s possible targets set. We use the
following pseudocode to illustrate this procedure.

Callees[lineTo] = Callees[struct.gfxdrawer_t.4]
+ = {polydraw_lineTo, linedraw_lineTo};

2 The definitions of global function pointer variables.
Take the function pointer SWF_error at line 1 in
Fig. 5 as an example, because of the definition at line
6, function print_error is inserted to
SWF_error’s possible targets set, which can be

1Here the count starts at zero.

expressed by the following pseudocode.

Callees[SWF_error]+ = {print_error};
3 Function pointers as arguments at Callsites. Take the

function pointer callback at line 1 in Fig. 6 as an
example, we denote it by arg.enumerateUsed
IDs.2, to represent that it is the second argument of
the function call enumerateUsedIDs. Functions
callbackCount and callbackFillin are
callback’s possible targets, as they are passed as
the actual arguments at enumerateUsedIDs’s
callsites at lines 7 and 13, respectively. This can be
represented by the following pseudocode.

Callees[callback] = Callees[arg.enumerateUsedIDs.2]
+ = {callbackCount, callbackFillin};

After the collection of indirect call targets at initial-
ization sites, function pointer related definition sites and
argument passing at callsites, ELAID stores the result of
the above first pass in a key-value map data structure in
which the key is a tuple of assignment type (“struct” or
“arg”), interface type name and an offset (the index of a
field in a struct, or the index of a function pointer argu-
ment at a callsite), and the value is a set of call targets. At
each indirect callsite, ELAID retireves the type of an inter-
face and the offset from LLVM IR, looks up the map using
them as a key, and figures out the matched call targets.

Stage-2: type-based analysis
Due to the weakly-typed nature of C, e.g., prevalent uses
of void pointer type and omnipotent character pointer
type, when a struct-type is cast to/from or stored to gen-
eral pointer types (e.g., char*) and integer types, we say
that the struct-type is escaping (Lu and Hu 2019). When
the previous definition-based type analysis is not avail-
able due to type escaping, ELAID can turn to a more
permissive way for finding indirect call targets. Namely,
we first collect the address-taken functions, and use the
type-analysis-based approach (Niu and Tan 2014; Tice et
al. 2014) to find the targets of indirect calls. In practice,
LLVM can check which functions are-address taken, i.e.,

Xu et al. Cybersecurity (2020) 3:18 Page 6 of 19

Fig. 5 E.g., definition of global function pointer variable

there is a source line that generates the address of the
function and stores it. Then, as long as the type of the
arguments of an address-taken function matches with the
callsite of the indirect call, we assume it is a valid target.
When doing type matching for arguments, note that we
also assume universal pointers (e.g., char *, void *) and an
8-bytes integer can match with any type.

Identify potential iO2BO vulnerabilities
The input of this module is the LLVM intermediate rep-
resentation (IR) translated using clang from source code.
First we annotate taint source and taint sink on LLVM
IR. Second, we do taint propagation in a manner simi-
lar to classic dataflow analysis. We add the support for
implicit dataflow caused by the load or store operation on
the same memory address, and implement field-sensitive
taint propagation for complex data structures, that is, the
taint information can be propagated on specific fields
of a Struct data type, which improves the accuracy of
taint analysis. If any operand of an arithmetic operation is
tainted (thus untrusted) and the result is used in a mem-
ory allocation function, there exists a potential IO2BO
vulnerability. After the taint propagation, some candidate
IO2BO vulnerabilities are generated and we collect them
for further filtering.
If any operand of an arithmetic operation is tainted (thus

untrusted) and the result is used in a memory allocation
function, we identify it as a potential IO2BO vulnerability.
In the preliminary version of this paper, we only con-

sidered the case in which the integer overflow(IO) site
and the buffer overflow(BO) site occur with in the same
function. In this paper, we extend the previous work by

considering also the BO sites that can be reached inter-
procedurally from IO sites.

Taint source initialization
Taint source represents the untrusted input of the pro-
gram, which can be files, net-work data, input messages
of mouse and keyboard. Generally, it is necessary to pro-
vide untrusted input source information according to the
specific program under analysis. In the experiments, we
annotate the parameters of the main function, the file
pointer returned by the fopen function, the pointer to
the buffer used in fread function, etc. as the taint source.
For the case of Linux kernel, we additionally annotate
“copy_from_user” and data parameters of IOCTL related
functions as taint sources.

Taint propagation
Given the information of taint source, taint propagation
is performed according to the algorithm shown in Algo-
rithm 1. Since our implementation is based on LLVM
IR, the algorithm mainly describes the strategies of taint
propagation for several typical instructions in IR. Given
the LLVM bytecode of program P, the algorithm starts
with the provided taint source, propagates the tainted
data and records the instructions influenced by dirty
data. Finally it annotates all tainted instructions by adding
metadata information on LLVM IR for corresponding
instructions and outputs the modified LLVM bytecode as
P′.
In Algorithm 1, we first generate a system-wide

call graph for program P. To increase the precision
of the analysis, we use the method introduced in

Fig. 6 E.g., function pointer as an argument at a callsite

Xu et al. Cybersecurity (2020) 3:18 Page 7 of 19

Algorithm 1 Taint propagation algorithm
1: procedure TAINTPROPAGATION(Program P, Pro-

gram P′)
2: Compute a call graph CG of P, mapping a callsite

to all potential callees;
3: Let � be the set of tainted instructions in P;
4: � = annotateTaintSource();
5: bool changed = true;
6: while changed do
7: changed = false;
8: for each instruction in each function of each

module in P do
9: if it is a memory instruction then

10: changed |=
memory_propapgation(�);

11: else if it is a function call instruction then
12: Obtain the callee according to the con-

structed CG;
13: changed |= call_propapgation(�);
14: else
15: changed |= other_propapgation(�);
16: P′ = P by adding to each instruction in � a new

metadata indicating that this instruction is tainted;

“Indirect call analysis” section to resolve the indirectly
called functions that a function pointer may point to. We
use the symbol � to denote the set of instructions tainted
by untrusty input, which is initialized to the taint source
annotated by users. Themain algorithm consists of a while
loop, taint propagation rule is applied to each instruction
in P iteratively and newly tainted instructions are added to
�. Once there is no newly tainted instruction in an itera-
tion, i.e., the flag variable changed is false, the process will
terminate.
For different kinds of instructions, different taint prop-

agation rules are applied. We divide the instructions
into three categories: memory related instructions, func-
tion call instructions and other instructions, correspond-
ing to the memory_propapgation, call_propapgation and
other_propapgation sub-processes respectively in Algo-
rithm 1.
The taint propagation strategies for these three cat-

egories of instructions are described in Table 1 below,
specifying the taint status for data derived from tainted or
untainted operands. Since taint can be represented with a
bit, propositional logic is usually used to express the prop-
agation policy, T1 ∨ T2 indicates that the result is tainted
if T1 or T2 is tainted.
The meaning of the taint propagation strategies in

Table 1 are described in detail below:
Memory Instructions. The memory instructions

include store, load instruction and the closely related

getelementptr instruction which computes positions in a
Struct data type.
Store and Load operation. For store instruction: store

val, ptr, the val operand is the value to be stored and the
ptr operand specifies the address at which to store val.
The rule T(ptr) = T(val) says that if the val operand
is tainted, the ptr operand is set to be tainted. For load
instruction: val = load ptr, the rule T(val) = T(ptr)
means that if the ptr operand that specifies the memory
address from which to load is tainted, the val operand is
set to be tainted.
Getelementptr operation. Getelementptr instruction:

resptr = getelementptr [struct] .[ptr] .[idx], is used to
get the address of the idx-th sub-element of the struct type
pointer variable ptr. The first rule T(resptr) = T(ptr) ∨
T(ptr+ idx)means that if the ptr operand is tainted or the
address of the idx-th sub-element is tainted, the resptr is
set to be tainted.
In fact, the getelementptr instruction performs address

calculation only and does not access memory. Notice that
the result of getelementptr instruction is usually used in
load and store instructions. In order to realize a field-
sensitive taint propagation for complex data structures,
namely, to propagate taint data on specific fields of a
Struct type, we need to record the taint status of the
specific sub-element obtained through the getelementptr
instruction. Essentially, the second rule T(ptr + idx) =
T(resptr) implies that if the address resptr obtained by
the getelementptr instruction has been used to store dirty
data, the corresponding sub-element’s address ptr+ idx is
also set to be tainted.
In Example 1 we illustrate intuitively how the taint prop-

agation strategy for memory-related instructions works
using the toy sample code in Fig. 7 below.

Example 1 The code in Fig. 7 is a snippet of LLVM IR
omitting type information for the sake of readability. It first
uses getelementptr instruction to get the address of variable
bar of struct TEST pointer x, namely, a1. Tainted data is
then stored into a1. The address of variable bar in Struct
TEST pointer x is calculated again as a2. The value b1 is
read from address a2 and used in malloc for determining
how much memory to allocate.
The variable taint_data is initialized to be tainted, by

applying the aforementioned taint propagation strategy,
the taint propagation process works as shown in Table 2.
The result of the taint propagation shows that the

operand b1 is tainted. Since the tainted b1 is used in
memory allocation function malloc, we conclude that there
exists a security risk.

Function Call Instructions.Call instruction represents
a simple function call. We divided the function calls into
programmer-defined function calls and special library
function calls.

Xu et al. Cybersecurity (2020) 3:18 Page 8 of 19

Table 1 The strategies of taint propagation for different kinds of instructions

Instruction type Intermediate representation Strategy T

Memory instructions store val, ptr T(ptr) = T(val)

val = load ptr T(val) = T(ptr)

resptr = getelementptr [struct] .[ptr] .[idx] (1) T(resptr) = T(ptr) ∨ T(ptr+ idx) (2) T(ptr+ idx) = T(resptr)

Function Call Instructions retval = call fun(arg) //Definition of fun function: define
fun(arg_fun) { · · · ret retval_fun }

(1) T(arg_fun) = T(arg)
(2) T(retval) = T(retval_fun)

//special library function call, e.g.: retval = call
fopen(pathname,mode)

T(retval) = T(pathname)

Other instructions res = OP op1, op2, . . . , opn T(res) = T(op1) ∨ T(op2) ∨ · · · ∨T(opn)

Programmer-defined function. The form is retval =
call fun(arg), where the definition of fun is: define
fun(arg_fun) { · · · ret retval_fun }. The first rule
T(arg_fun) = T(arg) implies that if the actual param-
eter of called function is tainted, the formal param-
eter of called funtion is set to be tainted. Simi-
larly, the second rule T(retval) = T(retval_fun)

indicates that if the return value of called funtion
is tainted, the result of function call instruction is
tainted.
Special library function. Thanks to the special effects

of some library functions, we can directly determine
the taint status of their return values or certain actual
parameters. Take function fopen as an example, retval =
call fopen(pathname,mode), parameter pathname indi-
cates the file to be opened, parameter mode indicates
the file access mode and retval is a pointer to the
opened file. If pathname is tainted, retval is set to be
tainted.
Other Instructions. The form is res = OP

op1, op2, . . . , opn, such as add, sub andmul instructions in
LLVM IR. The ruleT(res) = T(op1)∨T(op2)∨···∨T(opn)
says that if any operand of the instruction is tainted, the
return value is set to be tainted.

Fig. 7 Sample code snippet for memory operation

Vulnerability identification
After annotating taint source and taint propagation, all
values influenced by taint source will be marked as
tainted. We identify the instructions that satisfy the fol-
lowing 3 conditions as potential IO2BO vulnerabilities:

1 The instruction is an integer arithmetic operation;
2 The instruction is influenced by taint source;
3 The result of the instruction is used in memory

allocation function such as malloc for determining
how much memory to allocate.

Example 2 Figure 8 shows a snippet of code of LLVM IR
omitting type information and type conversion for the sake
of readability. It first uses alloca to allocate 16 bytes mem-
ory for variable buf. A file f 0 is opened and the first 16
bytes of the file is stored into the memory pointed by buf.
Lastly, the content of the second byte in buf is multiplied
by 4 and the result is used in malloc for determining how
much memory to allocate.
Assuming that the opened file is provided by user, the

return value f 0 is thus tainted, and the argument buf used
in fread function is also set to be tainted. The variable
conv obtains the contents pointed by the second byte of the
buf, so conv is set to be tainted. All tainted variables are
denoted in blue in Fig. 8.
The variable mul is the result of multiplying conv by 4,

and it is used in malloc, i.e., the variable mul is affected by
taint source and is eventually used in memory allocation.
According to the above identification principles, the

instruction mul = mul conv, 4 at line 6 (highlighted in red)

Table 2 An example of detailed taint propagation process

Step IR Line No. Taint propagation Applied rule

Initialization - T(taint_data)=true Initialization

The first loop 2 T(a1) = T(taint_data) Store rule

The second loop 1 T(x−>bar) = T(a1) Getelementptr rule 2

3 T(a2) = T(x−>bar) Getelementptr rule 1

4 T(b1) = T(a2) Load rule

Xu et al. Cybersecurity (2020) 3:18 Page 9 of 19

Fig. 8 Sample code for illustrating potential IO2BO vulnerabilities identification

will be marked as a potential IO2BO vulnerability and
used for further filtering.
In the above example, the IO site and the BO site occur

in the same function. To detect the cases where the BO
sites are reached from IO sites after several function calls,
we again utilize the taint analysis approach, consider the
detected tainted IO sites as new tainted sources, propa-
gate them inter-procedurally and check if they will reach
any sensitive BO sites.

Vulnerability filter
After the taint analysis, the candidate IO2BO vulnerabil-
ities are generated. However the taint analysis is path-
insensitive, thus there may bemany infeasible paths which
bring false positives. To eliminate the false positives, we
examine whether the overflow conditions under which
an integer overflow may occur, and the path constraints
that associated with the paths from caller functions’ entry
points, going through overflow points and reaching the
corresponding sinks could both be satisfied. Given a can-
didate IO2BO vulnerability, the tactic validates if it is
genuine as follows:

1 The overflow condition is calculated for the overflow
point according to Table 3.

2 The path constraint encodes the conditions on both
the paths from caller functions’ entry points to the
overflow point, and the paths from the overflow
point to the corresponding sinks, also known as
forward vulnerable paths.

3 A whole constraint formula, denoted by �, is
obtained by integrating the overflow condition and
the path constraint with a logical conjunction.

4 The SMT solver is invoked to solve whether or not �

can be satisfied. If not, then the vulnerability is a false
positive and hence filtered out.

Overflow condition
An N-bit signed integer is in the bounds − 2N−1 to
2N−1 − 1 and an N-bit unsigned integer is in the bounds
0 to 2N−1. Table 3 lists the requirements of producing an
out-of-bounds result for each integer operation. The
second column indicates the operands are unsigned or

signed. The operands are all N-bit width integers by
default. Taking division operation as an example, the divi-
sor should be non-zero and the signed division − 2N−1/−
1 is not in bounds, because the expected mathematical
result 2N−1 is out of the bounds of N-bit signed integers.

Path constraint
We refer to the function where the integer overflow
locates as the defective function and refer to the func-
tion that calls the defective function as the caller
function. When generating path constraint, we collect
the conditions on paths starting from the entry point
of the caller function, passing through the overflow
point and reaching the memory allocation operation
in the defective function where the overflowed integer
is used.
We do not consider the conditions on paths originat-

ing from the entry point of the whole program under
test. In “Evaluation” section we will illustrate by experi-
ments that, when considering the whole path constraints
for real-world programs, the time consumption of con-
straints solving increases but the effectiveness of false
positives filter is not improved significantly. This basically
shows the fact that for heavy-weight programs, the condi-
tions really affecting the existence of an integer overflow
are usually imposed within the defective function and its
caller function. We believe that for light-weight programs,
considering whole path constraints can impact more on
the filter. We leave it as future work to design a strat-
egy to strike a balance between performance and low false
positive rate.
The path constraint is divided into two parts for con-

struction, intra-procedural path constraint and one-level
inter-procedural path constraint.

1 First, we generate the conditions on paths within the
defective function, namely, the paths starting from
the defective function’s entry point, passing through
the risky integer operation and reaching the
corresponding sinks. We denote this constraint by
IntraPC.

2 Then we generate the conditions on paths within the
caller function, namely, the paths starting from the

Xu et al. Cybersecurity (2020) 3:18 Page 10 of 19

Table 3 Overflow condition for integer operations

Integer operation Sign Overflow condition

x + y < S, S > x + y /∈[−2N−1,−2N−1]

< U,U > x + y /∈[0,−2N−1]

x − y < S, S > x − y /∈[−2N−1,−2N−1]

< U,U > x − y /∈[0,−2N−1]

x × y < S, S > x × y /∈[−2N−1,−2N−1]

< U,U > x × y /∈[0,−2N−1]

x/y < S, S > (y = 0)∨ (x = −2N−1 ∧ y = −1)

< U,U > y = 0

x << y, x >> y < S, S > y /∈[0,N − 1]

< U,U >

caller’s entry point to the callsite of the defective
function. We denote this constraint by InterPC.

3 We denote by ParamPassing the equality relations
between the actual parameters in the caller function
and the formal parameters in the defective function.

4 Thus, the complete path constraint is composed of:

IntraPC ∧ InterPC ∧ ParamPassing.

These constraints IntraPC and InterPC arise from two
sources: assignments to variables involved in the integer
operation and conditional branches along the execution
path. We denote by PC(start, end) the constraint on paths
from basic block(BB) start to BB end, which is caculated
as follows:

PC(start, end) =
⎧
⎨

⎩

True; if start = end

∨p∈Pred(end)(PC(start, p) ∧ br ∧ as); otherwise

where p is a predecessor BB of end, br is the branch con-
dition from p to BB end, and as are the assignments to
variables along the path from p to end. We denote by
dEntry the entry BB of the defective function, by io the
BB where the integer overflow point locates and by mem
the BB where the risky memory operation locates, then
IntraPC = PC(dEntry, io)∧PC(io,mem). Analogously, we
denote by cEntry the entry BB of the caller function and
by cs the BB where the callsite of the defective function
locates, then InterPC = PC(cEntry, cs).
In the following Example 3 we use a code snippet in

Fig. 9 to explain how the vulnerability filter module works.

Example 3 According to the principles presented in
“Identify potential iO2BO vulnerabilities” section, in Fig. 9
the variable n in function foo is influenced by user input,
and the result of n ∗ 8 is used in malloc, so the line
highlighted in red is identified as a potential IO2BO vul-
nerability. In this example, the function foo is the defec-
tive function and the function bar is the caller function.

Fig. 9 Code snippet for illustrating how filter module works

The overflow condition for the argument used in mal-
loc is n > MAX/8. In foo, the malloc operation will be
executed under the condition (intra-procedural path con-
straint) that (n <= (1 << 30) ∧ n = t−>x). In bar, the
callsite to foo will be executed under the condition (the one-
level inter-procedural path constraint) (s−>x >= 0 ∧ s−>
x <= 100). The actual parameter s passed to foo function
is equal to the formal parameter t in foo function prototype.
Thus, the parameter passing condition is s−>x = t−>x.
The complete path constraint is a conjunction of the pre-
vious three parts. The whole constraint � is a conjunction
of the complete path constraint and the overflow condition.
Lastly,� is fed into the solver to see if it is satisfiable. In this
case, it is impossible to satisfy n > MAX/8 and n <= 100
at the same time, so the candidate vulnerability is a false
positive and hence filtered out. The detailed constraints are
shown in Table 4.

In (Wang et al. 2012) the algorithm that computes the
path constraint for a basic block within a function was
given and is shown in Algorithm 2. Here we generalize
it by combining the path constraint in the caller func-
tion and the one in the defective callee function, and the
resultant whole path constraint is fed to constraint solver.

Table 4 The condition of the code snippet in Fig. 9

Condition type Content of condition

Overflow condition n > MAX/8

Intra-procedural path constraint
(IntraPC)

n <= (1 << 30) ∧ n = t−>x

One-level inter-procedural path
constraint (InterPC)

s−>x >= 0 ∧ s−>x <= 100

Parameter passing condition
(ParamPassing)

s−>x = t−>x

The whole constraint� (n > MAX/8) ∧ (n <= 1 << 30 ∧
n = t−>x)∧ (s−>x >= 0 ∧ s−>

x <= 100) ∧ (s−>x = t−>x)

Xu et al. Cybersecurity (2020) 3:18 Page 11 of 19

Algorithm 2 Path constraint generation
1: procedure PATHCONSTRAINT(blk)
2: if blk is entry then
3: return true
4: g ← false
5: for all pred ∈ blk’s predecessors do
6: e ← (pred, blk)
7: if e is not a back edge then
8: br ← e’s branching condition
9: as ← ∧i(xi = yi) for all assignments along

e
10: g ← g ∨(PATHCONSTRAINT(pred) ∧ br ∧

as)
11: return g

Note that for the filter process, we use a safe approxima-
tion based on the result of constraint solver. Specifically,
only when the solver can determine that a possibly vul-
nerable IO site is not feasible, do we filter this site out,
otherwise the site is kept as vulnerable. In this way, we
would not miss real vulnerabilities.

Evaluation
We implement our framework as a prototype tool ELAID
based on LLVM passes. The vulnerability identification
module consists of four passes: annotation pass, call graph
construction pass, taint pass and check pass. The anno-
tation pass is used to recognize the taint source occurred
in the program to be tested. The call graph construc-
tion pass generates a system-wide function call graph to
support the following inter-procedural analysis. After the
taint pass performing taint tracking to determine which
values can be influenced by untrusted sources, the check
pass will identify the potential vulnerabilities according to
the IO2BO pattern. The vulnerability filter module con-
sists of two passes: intrasat pass and intersat pass. The
intrasat pass generates the overflow condition and the
intersat pass generates the path constraint. A conjunc-
tion of the overflow condition and the path constraint is
fed into the SMT solver Boolector, which provides APIs
for conveniently constructing efficient overflow detection
conditions.
We have tested ELAID on 228 programs in the NIST’s

SAMATE Juliet test suite version 1.2 and 7 real-world
open-source applications, including a large scale pro-
gram like linux kernel. The evaluation was performed on
Ubuntu14.04 virtual machine with 32GB memory and 4
processors of an Intel Xeon host machine.

Experiments on juliet test suite
SAMATE (?SAMATElink) has a suite of test bench
programs in C, C++ and Java to demonstrate common

security problems and presents security errors in design,
source code, binaries, etc. For C/C++ code, the SAMATE’s
Juliet test suite version 1.2 provides 61,387 test programs
for 118 different CWEs. Specially, CWE 680 describes
the integer overflow to buffer overflow vulnerabilities. We
choose all C programs (228 programs) in CWE 680 as
our experimental subjects. Each program has a good func-
tion and a bad function. The good function demonstrates
normal behavior and the bad function demonstrates a
vulnerability.
We applied ELAID on all these 228 programs and

had detected vulnerabilities in 152 programs. For the
remaining 76 programs, the values involved in the
overflowed integer expressions are either constants or
those generated by random functions, and therefore are
beyond the scope of IO2BO conditions mentioned in
“Vulnerability identification” subsection. In other words,
ELAID had successfully reported all harmful IO2BOs in
the 228 programs with no false positive.

Experiments on real iO2BOs
In order to evaluate ELAID in real IO2BOs, 7 real-
world open-source applications are chosen, containing 14
known IO2BO CVEs (Common Vulnerabilities and Expo-
sures (CVE) 2020). Their information is listed in Table 5.
Columns 1-4 describe the vulnerable software, version,
LOC(lines of code) and the CVE number, respectively. For
the case of linux kernel, we build it under the default con-
figuration and its LOC is obtained by counting just the
built source files. Columns IO_op and MEM show the
type of the overflowed integer operation and the name of
the risky sink, respectively.

Table 5 Information of applications used in evaluation

Programs Version LOC CVE Number IO_ op MEM

gocr 0.40 21608 CVE-2005-1141 ∗s malloc

jasper 1.900.1 28279 CVE-2011-4517 ∗u jas_malloc

cpio 2.9 30309 CVE-2014-9112 +u xmalloc

libexif 0.6.21 10828 CVE-2016-6328 ∗u exif_mem_alloc

jbig2dec 0.13 10750 CVE-2016-9601 +s jbig2_new

swftools 0.9.2 211618 CVE-2017-16868 ∗s malloc

linux kernel 5.8-rc1 1473247 CVE-2019-14283 ∗u memcpy

CVE-2018-13406 ∗u kmalloc

CVE-2017-8924 −u memcpy

CVE-2016-9084 ∗s kzalloc

CVE-2016-3135 +u kvmalloc

CVE-2014-9904 ∗u kmalloc

CVE-2012-6703 ∗u kmalloc

CVE-2012-0044 ∗s kzalloc

Xu et al. Cybersecurity (2020) 3:18 Page 12 of 19

Evaluation of indirect call analysis We compared the
effectiveness and efficiency of ELAID’s indirect call anal-
ysis with the definition-based approach and with the
type-based approach. LAID from the preliminary version
of this paper resolves indirect calls based on merely the
definition-based approach. Table 6 summaries evaluation
results of ELAID, comparing it to the definition-based
approach and the type-based approach in terms of the per-
centage of indirect callsite(ICS for short) resolved and the
average number of targets per ICS.
For these tested programs, they contain 1.08% percent-

age of ICS in average. LAID from the preliminary version
of this paper resolves in average 78% of all indirect call-
sites, which is lower than that of ELAID, i.e., 88.7%. For
ELAID, the number of average indirect call targets per
resolved indirect callsite is 16.3. It is smaller than that of
the type-based approach, i.e., 29, by 43.8% reduction, as
shown in the last row of Table 6. The reason is that the
type-based approach classifies all functions into different
sets based on the function type. This implies that all func-
tions in the set are regarded as possible call targets of that
function pointer. Table 6 shows that ELAID can achieve a
higher resolution rate than LAID(merely definition-based
approach), and at the same time have a lower average
number of targets per ICS than the type-based approach.
Effectiveness of Vulnerability Identification. In

Table 7, we evaluate the effects of vulnerability identifi-
cation with the underlying call graph generated by the
definition-based, the type-based and ELAID’s approaches,
respectively. In Table 8, we evaluate the effects of vul-
nerability identification of IO2BO bugs in which the IO
and BO sites are reachable intra-procedurally, and the
ones in which the IO and BO sites are reachable inter-
procedurally(IP), we call them IO2IPBO for short in the
following.
Usually in large software, developers will encapsulate

memory allocation operations. Therefore, we do not only
annotate malloc, calloc, realloc, etc. as the sinks of taint
analysis, but also annotate corresponding wrapped mem-
ory allocation functions in the testcases as sinks, such as
“jas_malloc”, “exif_mem_alloc” and “jbig2_new”.
Table 7 shows, for each benchmark program, the num-

ber of total integer arithmetic operations in the program
(column 2) and the number of integer arithmetic oper-
ations identified as potential IO2BO sites (column 3, 6
and 9), with the underlying call graph generated by the
definition-based, the type-based and ELAID’s approaches,
respectively. Column 4, 7 and 8 shows the checking ratio,
i.e., (the number of integer arithmetic operations iden-
tified as potential IO2BO sites) / (the total number of
integer arithmetic operations). Results show that, the per-
centage of integer operations that need to be checked is
reduced to very small, on average around 2%∼ 2.2%, by
vulnerability identification module.

Table 8 displays, for each benchmark program, the num-
ber of the identified IO2IPBO sites and the correspond-
ing analysis time. To tradeoff between the vulnerability
detection rate and a conservative number of reports, after
investigating two real IO2IPBO vulnerabilities in linux
kernel (i.e., CVE-2019-14283 and CVE-2017-8924), we
set in the experiment the length of call chains from IO
sites to BO sites to be 3. The last two columns show
the performance comparison in terms of the ratios of the
increased vulnerable sites and of the increased time over-
head. As shown in Table 8, by considering the BO points
that can be reached inter-procedurally from IO points, i.e.,
IO2IPBOs, the number of identified vulnerable sites are
increased by 73.2% on average. The time overhead is on
average doubled as IO2IPBOs are identified by reusing the
taint analysis framework.
Effectiveness of Vulnerability Filter. In this section,

we evaluate the effect of filter module. The experimental
results are given in Table 9. Column 1 lists the names of
the benchmarks. Column 2 shows the number of potential
IO2BO vulnerabilities obtained after performing LAID’s
vulnerability identification. Columns 3 to 5 show the
number of remaining potential IO2BO sites after doing
vulnerability filter of one-level inter-procedural path con-
straints, the filter ratio and its time usage in seconds. The
filter module successfully filters out a significant portion
of potential IO2BO vulnerabilities that cannot be trig-
gered, on average, 49.2% of integer operations are filtered
out. Particularly, for swftools, more than two-thirds of the
suspicious points are filtered out.
As mentioned in “Path constraint” subsection, we com-

pare the performance of filter strategies between one-level
inter-procedural path constraints and whole program
path constraints. Columns 6 to 8 in Table 9 show the num-
ber of remaining potential IO2BO sites after doing vulner-
ability filter of whole program path constraints, the filter
ratio and its time usage in seconds. The last two columns
of Table 9 show the performance comparison in terms of
the reduction ratio in the number of filtered sites, as well
as the ratio of the increased time overhead. As shown in
the table, the filter module considering whole program
path constraints improves the filter effect by 8.8% on aver-
age, however, it costs on average 4.1X more time on path
constraints generation and solving than the filter module
considering one-level inter-procedural path constraints.
Particularly, in the cases of libexif, jbig2dec and swftools,
no suspicious point is further filtered out. Thus, ELAID
decides to generate one-level inter-procedural path con-
straints only.
Comparison of ELAID with LAID and KINT. LAID is

a tool proposed by the preliminary version of this paper.
ELAID is an enhancement of LAID by using a two-stage
indirect call analysis and considering BO sites that are
reachable from IO sites inter-procedurally. KINT is a well-

Xu et al. Cybersecurity (2020) 3:18 Page 13 of 19

Ta
b
le

6
In
di
re
ct
C
al
lA

na
ly
si
s

P
ro
g
ra
m
s

To
ta
lC

S
To

ta
lI
C
S

%
o
fI
C
S

LA
ID
(D

ef
in
it
io
n
-b
as
ed

)
Ty

p
e-
b
as
ed

EL
A
ID
(L
A
ID
+
Ty

p
e)

%
o
fI
C
S
re
so

lv
ed

#
o
fa

vg
ta
rg
et

%
o
fI
C
S
re
so

lv
ed

#
o
fa

vg
ta
rg
et

%
o
fI
C
S
re
so

lv
ed

#
o
fa

vg
ta
rg
et

go
cr

42
07

2
0.
05
%

10
0%

1
10
0%

2
10
0%

1

ja
sp
er

37
22

56
1.
5%

98
%

3.
6

10
0%

11
.3

10
0%

3.
7

cp
io

27
47

24
0.
87
%

63
%

2.
2

83
%

2.
6

83
%

2.
2

lib
ex
if

24
50

22
0.
9%

95
%

2.
9

95
%

9.
1

95
%

2.
1

jb
ig
2d

ec
26
68

30
1.
12
%

10
0%

2.
9

10
0%

3.
3

10
0%

2.
9

sw
ft
oo

ls
62
17
8

72
3

1.
16
%

66
%

7
10
0%

75
.5

10
0%

63
.9

lin
ux

ke
rn
el

11
60
54
1

22
63
2

1.
95
%

25
%

5
43
%

98
.2

43
%

38
.4

A
ve

ra
g
e

-
-

1.
08
%

78
%

3.
5

88
.7
%

29
88
.7
%

16
.3

Xu et al. Cybersecurity (2020) 3:18 Page 14 of 19

Ta
b
le

7
Pe
rfo

rm
an
ce

of
Vu

ln
er
ab

ili
ty
Id
en

tif
ic
at
io
n
un

de
rD

iff
er
en

tI
nd

ire
ct
C
al
lA

na
ly
si
s

P
ro
g
ra
m
s

#T
o
ta
l-
in
t-
o
p
s

LA
ID
(D

ef
in
it
io
n
-b
as
ed

)
Ty

p
e-
b
as
ed

EL
A
ID
(L
A
ID
+
Ty

p
e)

#I
O
2B

O
-s
it
es

R
at
io

A
n
al
ys
is
ti
m
e(
s)

#I
O
2B

O
-s
it
es

R
at
io

A
n
al
ys
is
ti
m
e(
s)

#I
O
2B

O
-s
it
es

R
at
io

A
n
al
ys
is
ti
m
e(
s)

go
cr

45
83

23
0.
5%

2.
1

24
0.
5%

4
24

0.
5%

3

ja
sp
er

24
82

84
3.
4%

2.
9

84
3.
4%

5
84

3.
4%

5

cp
io

65
5

17
2.
6%

1.
1

19
2.
9%

<
1

19
2.
9%

<
1

lib
ex
if

59
7

19
3.
18
%

<
1

19
3.
18
%

<
1

19
3.
18
%

<
1

jb
ig
2d

ec
77
8

10
1.
29
%

<
1

14
1.
8%

<
1

14
1.
8%

<
1

sw
ft
oo

ls
82
53

23
3

2.
7%

11
.4

24
2

2.
9%

13
24
2

2.
9%

15

lin
ux

ke
rn
el

63
73
9

31
3

0.
5%

72
02

32
5

0.
5%

66
82

32
5

0.
5%

65
67

A
ve

ra
g
e

-
-

2%
-

-
2.
2%

-
-

2.
2%

-

Xu et al. Cybersecurity (2020) 3:18 Page 15 of 19

Table 8 Comparison between IO2BO and IO2IPBO sites

Programs IO2BO IO2IPBO Performance Comparison

#sites Analysis time(s) #sites Analysis time(s) Detection improvement Overhead in time(s)

gocr 24 3 30 3 25% 0

jasper 84 5 157 5 87% 0

cpio 19 < 1 41 2 116% 1X

libexif 19 < 1 40 2 110% 1X

jbig2dec 14 < 1 27 5 92.8% 4X

swftools 242 15 422 19 74.4% 0.27X

linux kernel 325 6567 348 7766 7% 0.18X

Average - - - - 73.2% 0.92X

known static tool that utilizes taint analysis and constraint
solving to locate and filter integer overflow. Contrary to
our work, KINT attempts to denote all integer errors in
a program and does not make a clear distinction between
classic IO errors and IO2BO errors that constitute vulner-
abilities.
To compare with KINT fairly, we annotate the same

taint source and taint sink for KINT and set the same
time threshold for SMT solver. Among the integer over-
flows reported by KINT, only those involving data from
an untrusted input (source) and being used in a sensitive
context (sink) are counted.
Table 10 summarizes the results of comparison. Col-

umn “Result” shows whether a tool reports the IO2BO
vulnerabilities, notation “�” means the corresponding
vulnerability is detected while notation “x” means not.
Column “Time1” and “Time2” in ELAID and LAID are
the time usages in seconds for taint analysis and for
constraint generation and solving, respectively. Column
“Analysis time” in KINT is the time usage of the whole
process.
The comparison experiment shows that ELAID suc-

cessfully detected all the 14 IO2BO vulnerabilities under
examination. LAID fails to detect CVE-2019-14283 and
CVE-2017-8924, because the BO sites in these two vul-
nerabilities are reachable from IO sites inter-procedurally,
and LAID does not consider this situation. In compar-
ison, KINT detected just 4 vulnerabilities. The reason
lies in that KINT’s support for implicit data streams
(such as memory-related operations load/store) and com-
plex data structures during the process of taint prop-
agation is not accurate enough. In this way, the vul-
nerable paths are missed when the taint propagation is
inaccurate.

Related work
Source Code Analysis. There has been a number of tools
proposed to detect integer overflow at the source code

level. These approaches can be classified into two broad
groups: instrumenting the source code with runtime inte-
ger overflow check (e.g. (Zhang et al. 2010; Dietz et al.
2012; Brumley et al. 2007)) and using static analysis to
detect integer overflow (e.g. (Wang et al. 2012)).
RICH (Brumley et al. 2007) is a compiler-based tool that

instruments programs to capture runtime overflows. It
protects against many kinds of integer errors, including
signedness error, integer overflow/underflow or trunca-
tion error. However, benign and unexpected overflows are
not distinguished.
IOC (Dietz et al. 2012) performs a compiler-time trans-

formation operating on the Abstract Syntax Tree (AST)
to add integer overflow check. Then a runtime library
is linked into the compiler’s output and handles integer
overflows as they occur.
IntPatch (Zhang et al. 2010) is built on top of LLVM

and detects vulnerabilities utilizing the type inference on
LLVM IR. If a variable involved in an arithmetic opera-
tion has an untrusted source and the respective sink may
overflow, IntPatch will insert a check statement after that
vulnerable arithmetic operation to catch vulnerability at
runtime. However, IntPatch would produce false positives
if sanitization routines are added by developers. Similar
to IntPatch, IntTracker (Sun et al. 2015) instruments inte-
ger arithmetic operations to monitor overflows at runtime
while integrates an efficient overflow tracking technique
to bypass the false positives caused by sanitization rou-
tines troubling IntPatch.
Using tools that instrument the source code with run-

time overflow check to find integer overflows requires
carefully chosen inputs to trigger them. Because integer
errors typically involve corner cases, these tools tend to
have low coverage.
KINT (Wang et al. 2012) performs three different anal-

yses including function-level analysis, range analysis and
taint analysis on LLVM IR to detect all integer errors
in a program. To avoid path explosion, KINT performs

Xu et al. Cybersecurity (2020) 3:18 Page 16 of 19

Ta
b
le

9
Pe
rfo

rm
an
ce

of
Vu

ln
er
ab

ili
ty
Fi
lte

r

P
ro
g
ra
m
s

V
u
ln
.I
d
en

ti
f.
b
y
LA

ID
V
u
ln
.F
ilt
er

w
it
h
o
n
e-
le
ve

li
n
te
r-
p
ro
ce
d
u
ra
lp

at
h
co

n
st
ra
in
t

V
u
ln
.F
ilt
er

w
it
h
w
h
o
le

p
ro
g
ra
m

p
at
h
co

n
st
ra
in
t

P
er
fo
rm

an
ce

C
o
m
p
ar
is
o
n

N
u
m
b
er

o
fr
em

ai
n
in
g
IO

2B
O
si
te
s

Fi
lt
er

ra
ti
o

Ti
m
e
(s
)

N
u
m
b
er

o
fr
em

ai
n
in
g
IO

2B
O
si
te
s

Fi
lt
er

ra
ti
o

Ti
m
e
(s
)

Fi
lt
er

ra
ti
o

Ti
m
e
(s
)

go
cr

23
10

56
.5
%

11
.8

7
69
.6
%

23
.3

13
.1
%

2X

ja
sp
er

84
51

39
.3
%

8.
4

37
56
%

25
.3

16
.7
%

3X

cp
io

17
13

23
.5
%

1.
1

9
47
.1
%

1.
7

23
.6
%

1.
5X

lib
ex
if

19
8

57
.9
%

2.
2

8
57
.9
%

9.
8

0%
4.
5X

jb
ig
2d

ec
10

5
50
.0
%

14
28

5
50
%

17
25
.2

10
%

1.
2X

sw
ft
oo

ls
23
3

75
67
.8
%

14
66

75
67
.8
%

18
36
9.
2

0%
12
.5
X

A
ve

ra
g
e

-
-

49
.2
%

-
-

58
%

-
8.
8%

4.
1X

Xu et al. Cybersecurity (2020) 3:18 Page 17 of 19

Ta
b
le

10
St
at
is
tic
s
of

co
m
pa

ris
on

ex
pe

rim
en

t

P
ro
g
ra
m
s

C
V
E
N
u
m
b
er
s

EL
A
ID

LA
ID

K
IN
T

R
es
u
lt

Ti
m
e1

(s
ec
)(
V
u
ln
.Id

en
ti
f.
)

Ti
m
e2

(s
ec
)(
V
u
ln
.F
ilt
er
)

R
es
u
lt

Ti
m
e1

(s
ec
)(
V
u
ln
.Id

en
ti
f.
)

Ti
m
e2

(s
ec
)(
V
u
ln
.F
ilt
er
)

R
es
u
lt

A
n
al
ys
is
ti
m
e(
s)

go
cr

20
05
-1
14
1

�
3

<
1

�
2.
1

11
.8

x
10
82

ja
sp
er

20
11
-4
51
7

�
5

33
�

2.
9

8.
4

x
76
8.
8

cp
io

20
14
-9
11
2

�
2

1
�

1.
1

1.
1

x
18
.5

lib
ex
if

20
16
-6
32
8

�
2

1
�

<
1

2.
2

x
6.
3

jb
ig
2d

ec
20
16
-9
60
1

�
5

10
8

�
<
1

14
28

x
19
0.
3

sw
ft
oo

ls
20
17
-1
68
68

�
19

36
3

�
11
.4

14
66

x
17
52

lin
ux

ke
rn
el

20
19
-1
42
83

�
77
66

32
10

x
65
67

33
53

x
55
63

20
18
-1
34
06

�
�

x

20
17
-8
92
4

�
x

x

20
16
-9
08
4

�
�

�
20
16
-3
13
5

�
�

x

20
14
-9
90
4

�
�

�
20
12
-6
70
3

�
�

�
20
12
-0
04
4

�
�

�

Xu et al. Cybersecurity (2020) 3:18 Page 18 of 19

constraint solving at the level of individual functions and
statically generates a single path constraint for each inte-
ger operation. Despite substantial effort, KINT reports a
large number of false positives. Compared with our sys-
tem, KINT attempts to find all integer errors in a program
not just IO2BO vulnerabilities. KINT only considers if the
overflow point can be triggered within a function and its
analysis for implicit data flow and complex data structures
is not accurate enough.
Binary Analysis. Many tools have been proposed to

detect overflow in binaries. Followings are some represen-
tative works.
IntFinder (Chen et al. 2009) recovers type informa-

tion from binaries and creates the suspect integer bug
set, then uses its implemented dynamic detection tool
that combined with taint analysis to rule out false pos-
itives. IntScope (Wang et al. 2009) performs a path
sensitive data flow analysis on its own IR by leverag-
ing symbolic execution and taint analysis to identify
the vulnerable point of integer overflow. To deal with
false positives, it relies on a dynamic vulnerability test
case generation tool to generate test cases which are
likely to cause integer overflows. Both IntFinder and
IntScope use static analysis to find suspicious integer
overflow vulnerabilities, then dynamically check each
suspicious vulnerability. However, this mechanism suf-
fer from low efficiency because of high positives of
static analysis and large time consumption of dynamically
checking.
INDIO (Zhang et al. 2015) is a static analysis based

framework to detect and validate integer overflow vul-
nerabilities in Windows binaries. INDIO integrates the
techniques of pattern-matching, vulnerability ranking,
and selective symbolic execution to detect integer over-
flow in x86 binaries. At the end of its analysis, INDIO
outputs the detected integer overflow vulnerabilities, as
well as example inputs to the binaries that expose these
vulnerabilities.
(Chen et al. 2012) chooses suitable instructions to

generate constraint dynamically with taint analysis and
loop analysis by launching target program. If the con-
straint expression is satisfiable, an overflow vulnerability is
reported. RICB (Wang et al. 2010) decompiles binaries to
assembly language, locates the overflow points and checks
run-time integer overflow via buffer overflow. Since RICB
and (Chen et al. 2012) are dynamic analysis tools with run-
time check, the effectiveness depends on the set of inputs
used to execute the program.
IO2BO can be considered as a special kind of heap

overflow, HOTracer (Jia et al. 2017) proposes a new
offline dynamic analysis solution to discover heap vul-
nerabilities. It selects useful testcases for programs to
generate execution traces. Then it reasons about the
path conditions and vulnerability conditions built by

tracking heap objects’ spatial and taint attributes dur-
ing execution traces to generate a PoC to find heap
vulnerabilities.

Conclusions
In this paper, we present a framework that utilizes static
analysis techniques to detect IO2BO vulnerabilities in
source code, while significantly reduces the number of
false positives being reported. It constructs a complete
and global call graph using a two-stage indirect call anal-
ysis approach, applies inter-procedural taint analysis to
accurately and quickly identify potential IO2BO vulner-
abilities and uses light-weight constraint generation and
solving to verify if an IO2BO vulnerability can be triggered
in the program’s execution.
A prototype tool named ELAID is implemented based

on LLVM. The results of our evaluation demonstrate that
our tool can work on real-world IO2BO vulnerabilities
and achieve a better performance compared with the pre-
liminary version of the tool LAID and the state-of-the-art
tool KINT.
In this paper we focus on IO2BO vulnerabilities, as inte-

ger overflows in the context of IO2BO can not be benign
(Zhang et al. 2010) and tend to be more exploitable. Note
that our framework can be generalized to detect other
types of vulnerabilities, by accordingly modifying the vul-
nerability condition. For example, for buffer overflow
vulnerabilities, the original data’s possible length must
be bigger than the targeted buffer’s real capacity, which
constructs the buffer overflow condition.
As of future work, with the analysis results of ELAID, we

plan to combine symbolic execution and fuzzing to verify
the authenticity of the suspicious IO2BO vulnerabilities
and construct a PoC (Proof of Concept) that can trig-
ger the corresponding IO2BO vulnerability. This would
improve the practicality of our tool and form a com-
plete tool chain that integrates identification, filtering and
verification for finding vulnerabilities.
Acknowledgments
The authors would like to thank Defang Bo for preparing partial experiments’
environment and conditions.

Authors’ contributions
LX proposed the technical route. LX and MX performed the experiments and
drafted the paper. FL and WHmade crucial contributions on the technical
route and revised the article. The author(s) read and approved the final
manuscript.

Funding
This research was supported in part by the National Natural Science
Foundation of China (Grant No. 61802394, U1836209), Foundation of Science
and Technology on Information Assurance Laboratory (No. KJ-17-110),
National Key Research and Development Program of China (2016QY071405),
Strategic Priority Research Program of the CAS (XDC02040100, XDC02030200,
XDC02020200).

Availability of data andmaterials
All public dataset sources are as described in the paper.

Xu et al. Cybersecurity (2020) 3:18 Page 19 of 19

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
China. 2School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China.

Received: 10 July 2020 Accepted: 17 August 2020

References
Brumley D, Song DX, Chiueh T, Johnson R, Lin H (2007) RICH: automatically

protecting against integer-based vulnerabilities. In: Proceedings of the
Network and Distributed System Security Symposium, NDSS 2007, 28th
February - 2nd March 2007. The Internet Society, San Diego

Brummayer R (2009) Efficient smt solving for bit-vectors and the extensional
theory of arrays. PhD thesis. Johannes Kepler University, Linz

Chen K, Feng D, Su P (2012) Dynamic overflow vulnerability detection method
based on finite csp(in chinese). In: Chinese Journal of Computers, vol 35.
Science Press, Beijing. pp 898–909

Chen P, Han H, Wang Y, Shen X, Yin X, Mao B, Xie L (2009) Intfinder:
Automatically detecting integer bugs in x86 binary program. In:
Information and Communications Security, 11th International Conference,
ICICS 2009, December 14-17, 2009. Proceedings. LNCS, vol 5927. Springer,
Beijing. pp 336–345

Chen S, Xu J, Sezer EC (2005) Non-control-data attacks are realistic threats. In:
McDaniel PD (ed). Proceedings of the 14th USENIX Security Symposium,
Baltimore, MD, USA, July 31 - August 5, 2005. USENIX Association, Baltimore

Christey S, Martin RA (2007) Vulnerability Type Distributions in CVE. http://cve.
mitre.org/docs/vuln-trends/vuln-trends.pdf

Common Vulnerabilities and Exposures (CVE) (2020). http://cve.mitre.org/
CWE-680: IO2BO Vulnerabilities (2020). http://cwe.mitre.org/data/definitions/

680.html
Dietz W, Li P, Regehr J, Adve VS (2012) Understanding integer overflow in

C/C++. In: Glinz M, Murphy GC, Pezzè M (eds). 34th International
Conference on Software Engineering, ICSE 2012, June 2-9, 2012. IEEE
Computer Society, Zurich. pp 760–770

Jia X, Zhang C, Su P, Yang Y, Huang H, Feng D (2017) Towards efficient heap
overflow discovery. In: Kirda E, Ristenpart T (eds). 26th USENIX Security
Symposium, USENIX Security 2017, August 16-18, 2017. USENIX
Association, Vancouver. pp 989–1006

Lattner C (2012) LLVM: An Infrastructure for Multi-Stage Optimization. http://
llvm.cs.uiuc.edu

Lattner C, Adve VS (2004) LLVM: A compilation framework for lifelong program
analysis & transformation. In: 2nd IEEE / ACM International Symposium on
Code Generation and Optimization (CGO 2004), 20-24 March 2004. IEEE
Computer Society, San Jose. pp 75–88

Lu K, Hu H (2019) Where does it go?: Refining indirect-call targets with
multi-layer type analysis. In: Cavallaro L, Kinder J, Wang X, Katz J (eds).
Proceedings of ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, London. pp 1867–1881

Mingjie X, Shengnan L, Lili X, Feng L, Wei H, Jing M, Xinhua L, Qingjia H (2018)
A Light-Weight and Accurate Method of Static
Integer-Overflow-to-Buffer-Overflow Vulnerability Detection. In: Fuchun
Guo, Xinyi Huang, Moti Yung (eds). Information Security and Cryptology -
14th International Conference, Inscrypt 2018, December 14-17, 2018,
Revised Selected Papers. Springer, Fuzhou Vol. 11449. pp 404–423

Moy Y, Bjørner N, Sielaff D (2009) Modular bug-finding for integer overflows in
the large: Sound, efficient, bit-precise static analysis. Technical report.
Technical Report MSR-TR-2009-57, Microsoft Research

(2017) National Institute of Standard and Technology (NIST). SAMATE-software
assurance metrics and tool evaluation. http://samate.nist.gov/SARD/
testsuite.php

National Vulnerability Database (2020). http://nvd.nist.gov/
Niu B, Tan G (2014) Modular control-flow integrity. In: O’Boyle MFP, Pingali K

(eds). ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14 - June 09 - 11, 2014. ACM, Edinburgh. pp 577–587

Sotirov A (2007) Heap feng shui in javascript. https://www.blackhat.com/
presentations/bh-usa-07/Sotirov/Whitepaper/bh-usa-07-sotirov-WP.pdf

Sun H, Zhang X, Su C, Zeng Q (2015) Efficient dynamic tracking technique for
detecting integer-overflow-to-buffer-overflow vulnerability. In: Bao F,

Miller S, Zhou J, Ahn G (eds). Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, ASIA CCS ’15, April
14-17, 2015. ACM, Singapore. pp 483–494

Sui Y, Xue J (2016) Svf: interprocedural static value-flow analysis in llvm. In:
Proceedings of the 25th International Conference on Compiler
Construction. Association for Computing Machinery, New York.
pp 265–266

Sun H, Zhang X, Su C, Zeng Q (2015) Efficient dynamic tracking technique for
detecting integer-overflow-to-buffer-overflow vulnerability. In: Bao F,
Miller S, Zhou J, Ahn G (eds). Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, ASIA CCS ’15, April
14-17, 2015. ACM, Singapore. pp 483–494

Tice C, Roeder T, Collingbourne P, Checkoway S, Erlingsson Ú, Lozano L, Pike G
(2014) Enforcing forward-edge control-flow integrity in GCC & LLVM. In: Fu
K, Jung J (eds). Proceedings of the 23rd USENIX Security Symposium,
August 20-22, 2014. USENIX Association, San Diego. pp 941–955

Vreugdenhil P (2020) Pwn2Own 2010 Windows 7 Internet Explorer 8 Exploit.
http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-
InternetExplorer8.pdf

Wang X, Chen H, Jia Z, Zeldovich N, Kaashoek MF (2012) Improving integer
security for systems with KINT. In: Thekkath C, Vahdat A (eds). 10th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2012, October 8-10, 2012. USENIX Association, Hollywood. pp 163–177

Wang Y, Gu D, Xu J, Wen M, Deng L (2010) RICB: integer overflow vulnerability
dynamic analysis via buffer overflow. In: Lai X, Gu D, Jin B, Wang Y, Li H
(eds). Forensics in Telecommunications, Information, and Multimedia -
Third International ICST Conference, e-Forensics 2010, November 11-12,
2010, Revised Selected Papers. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, vol 56.
Springer, Shanghai. pp 99–109

Wang T, Wei T, Lin Z, Zou W (2009) Intscope: Automatically detecting integer
overflow vulnerability in X86 binary using symbolic execution. In:
Proceedings of the Network and Distributed System Security Symposium,
NDSS 2009, 8th February - 11th February 2009. The Internet Society, San
Diego

Zhang Y, Sun X, Deng Y, Cheng L, Zeng S, Fu Y, Feng D (2015) Improving
accuracy of static integer overflow detection in binary. In: Bos H, Monrose
F, Blanc G (eds). Research in Attacks, Intrusions, and Defenses - 18th
International Symposium, RAID 2015, November 2-4, 2015, Proceedings.
LNCS, vol 9404. Springer, Kyoto. pp 247–269

Zhang C, Wang T, Wei T, Chen Y, Zou W (2010) Intpatch: Automatically fix
integer-overflow-to-buffer-overflow vulnerability at compile-time. In:
Gritzalis D, Preneel B, Theoharidou M (eds). Computer Security – ESORICS
2010. Springer, Berlin, Heidelberg. pp 71–86

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://cve.mitre.org/
http://cwe.mitre.org/data/definitions/680.html
http://cwe.mitre.org/data/definitions/680.html
http://llvm.cs.uiuc.edu
http://llvm.cs.uiuc.edu
http://samate.nist.gov/SARD/testsuite.php
http://samate.nist.gov/SARD/testsuite.php
http://nvd.nist.gov/
https://www.blackhat.com/presentations/bh-usa-07/Sotirov/Whitepaper/bh-usa-07-sotirov-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Sotirov/Whitepaper/bh-usa-07-sotirov-WP.pdf
http://vreugdenhilresearch. nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf
http://vreugdenhilresearch. nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf

	Abstract
	Keywords

	Introduction
	System overview
	Indirect call analysis
	Stage-1: definition-based analysis
	Stage-2: type-based analysis

	Identify potential iO2BO vulnerabilities
	Taint source initialization
	Taint propagation
	Vulnerability identification

	Vulnerability filter
	Overflow condition
	Path constraint

	Evaluation
	Experiments on juliet test suite
	Experiments on real iO2BOs

	Related work
	Conclusions
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

