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Transfer Learning for Image Segmentation by

Combining Image Weighting and Kernel Learning
Annegreet van Opbroek, Hakim C. Achterberg, Meike W. Vernooij, Marleen de Bruijne

Abstract—Many medical image segmentation methods are
based on supervised classification of voxels. Such methods gener-
ally perform well when provided with a training set that is repre-
sentative of the test images to segment. However, problems may
arise when training and test data follow different distributions,
for example due to differences in scanners, scanning protocols, or
patient groups. Under such conditions, weighting training images
according to distribution similarity has been shown to greatly
improve performance. However, this assumes that part of the
training data is representative of the test data; it does not make
unrepresentative data more similar.

We therefore investigate kernel learning as a way to reduce
differences between training and test data and explore the
added value of kernel learning for image weighting. We also
propose a new image weighting method that minimizes maximum
mean discrepancy (MMD) between training and test data, which
enables the joint optimization of image weights and kernel.
Experiments on brain tissue, white matter lesion, and hippocam-
pus segmentation show that both kernel learning and image
weighting, when used separately, greatly improve performance
on heterogeneous data. Here, MMD weighting obtains similar
performance to previously proposed image weighting methods.
Combining image weighting and kernel learning, optimized either
individually or jointly, can give a small additional improvement
in performance.

I. INTRODUCTION

The segmentation of biomedical images into the various

tissues and structures forms a crucial step for both med-

ical research and clinical practice. Automatic segmentation

is important because manually segmenting three-dimensional
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images is very time consuming and prone to inter- and intra-

observer variability. Many automatic segmentation methods

are based on voxelwise supervised classification. Here, per

voxel a decision is made as to the class it belongs to (which

tissue or structure) by a classifier trained on a manually

annotated training set. In brain MRI, such methods have for

example been applied to whole-brain segmentation [19], [23],

brain tissue segmentation [26], [9], [27], white matter lesion

segmentation [3], [10], [14], and brain structure segmenta-

tion [12], [39], [27].

However, a disadvantage of supervised learning methods is

a deterioration in performance in case of certain differences

between training and test data, such as use of different

scanners, imaging protocols, or differences in patient groups.

Human observers can easily adapt to such differences. Super-

vised learning methods however, can struggle with differences

between images, because they often result in a difference

between the distributions of training and test samples in the

feature space. Transfer learning1 methods are designed to han-

dle certain differences between training and test data, including

differences in sample distributions [30]. Many transfer learning

methods that have so far been presented in medical image

segmentation are based on weighting training samples. This

can be done by weighting individual samples (voxels) [40],

[41], [15] or complete training images [42], [5]. Compared

to sample weighting, image weighting has the advantage of

requiring no labeled training data from the test scanner to

handle differences between scanners.

These previously presented weighting methods only weight

training samples as is, no steps are taken to reduce differences

in the representation (the feature values) of training and test

samples. An image weighting method can only either use a

training image as is (give it a positive weight), or not use it

(give it a weight of zero). We therefore propose to combine

image weighting with a feature representation transfer step that

1) makes the data distributions more similar between training

and test data and 2) separates the different classes as well as

possible.

So far, few works have investigated explicit feature repre-

sentation transfer for medical image segmentation. In machine

learning and computer vision however, various methods have

been developed. Many of them seek a linear transformation

that minimizes distribution differences between training and

test samples [30]. Since linear transformations are often not

enough to overcome differences between datasets, transfor-

1sometimes called domain adaptation, although some give different defini-
tions for the two terms
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mations are often performed in a high- (possibly infinitely-)

dimensional kernel space (see for example the metric learning

methods of [32], [25]). Alternatively, one may directly learn

a kernel that reduces distribution differences. Pan et al. [29]

for example, propose an unsupervised framework to learn a

kernel that makes training and test distributions more similar

by minimizing maximum mean discrepancy (MMD) between

training and test samples. However, since the method is unsu-

pervised, the learned kernel is not optimized for classification.

Duan et al. [13] present a supervised method that learns a

kernel that minimizes MMD between training and test samples

while simultaneously minimizing a notion of classification

error on some labeled test samples in the learned kernel space.

Unfortunately, these two methods, as well as most kernel

learning and metric learning methods developed so far, are

computationally difficult to train on many samples (e.g. more

than 1 000). In voxelwise classification however, many more

samples are available for training and using them is likely to

result in a better performance. The image weighting method

of [42] for example, uses 50 000 samples per image.

In this paper, we propose two efficient kernel learning

methods that can be used in conjunction with image weighting.

Firstly, we discuss a multiple kernel learning (MKL) method

that minimizes within-class distances and maximizes between-

class distances. Secondly, we use this MKL method in the

framework of Duan et al. [13], which adds an MMD term. This

results in a kernel space that is suitable for classification and

additionally makes training and test distributions more similar.

Contrary to the methods of Pan et al. [29] and Duan et al. [13],

the proposed methods can be trained on ten thousands of train-

ing samples per image. We investigate whether these kernel

learning methods result in a better segmentation compared to

using a standard Gaussian kernel. We also investigate whether

these learned kernels improve performance when using image

weighting. Further, we show that the MMD measure can be

used to determine not only the kernel, but also the image

weights. This way, image weights and kernel can be optimized

jointly, which facilitates the optimization.

First, in Section II-B, we describe three image weighting

methods: two weighting methods of [42], which minimize the

Kullback-Leibler (KL) divergence and Bhatacharryya Distance

(BD), and a new image weighting method that minimizes

MMD. In Section II-C, we discuss the two MKL methods

used: centered kernel alignment [7], and the MMD MKL

framework of Duan et al. [13]. We also show in Section II-C2

how MMD image weighting and MMD MKL can be integrated

in a joint optimization framework. We investigated the perfor-

mance of image weighting, MKL, and the combination when

training and testing on data from different datasets, which

were acquired with different scanners and scanning protocols.

Three medical image segmentation tasks were studied: brain

tissue segmentation, white matter lesion segmentation, and

hippocampus segmentation.

II. METHODS

Image weighting is performed similar to Van Opbroek et

al. [42], where each training image is given a weight based on

minimizing a distance measure between the probability density

functions (PDFs) of the training images and the test image to

segment. Next, a training set is assembled based on the training

images and their determined weights, by sampling voxels

and their class labels according to the weight distribution of

all training images. Consecutively, a support vector machine

(SVM) classifier [8] is trained and test images are segmented

by voxelwise classification. Kernel learning is performed for

each test image individually and followed by classification

with a kernel SVM [34] with the learned kernel.

A. Notation

We denote column vectors with bold small letters, e.g. x,

matrices with capital letters, e.g. X , and scalar values with

small letters, e.g. m, θ. An exception is made for φ, which

denotes a mapping into kernel space and K , which denotes a

kernel (K(x,y) = φ(x)Tφ(y)) by means of the kernel trick).

Indices of vectors and matrices are denoted with subscripts,

e.g. xi, Mp,q. Superscripts are used for naming, e.g. nte for

the number of test samples and ntr for the number of training

samples per image.

A total of m training images are used, which may have

different scanning characteristics. Every training image mi

provides ntr randomly sampled training samples (voxels) xmi

j

(j = 1, 2, . . . , ntr), where xmi

j ∈ R
n denotes a vector

containing a value for each of the n features. The m · ntr ×n

matrix of all training samples is denoted by X tr. Each sample

xmi

j has a label ymi

j ∈ N. nte test samples (voxels) xte
j ,

(j = 1, 2, . . . , nte) are acquired from the test image, for which

we predict the label yte
j . The nte × n matrix of test samples

is denoted with X te. The training samples from image mi

follow the distribution Pmi
(x) and the test samples follow

distribution P te(x). Based on these distributions (or PDFs),

mi is given a weight wmi
, resulting in a weight vector for all

training images, w = [w1, w2, . . . , wm]T . These weights are

non-negative and normalized such that
∑m

mi=1
wmi

= |w| =
1.

B. Image Weighting

Giving each training image mi a weight wi results in a total

training PDF that is a weighted sum of each of the individual

training PDFs:

P tr(x) =

m
∑

mi

wmi
Pmi

(x). (1)

The optimal weights w∗ are chosen by minimizing a convex

distance criterion between this total training PDF and the test

PDF:

w∗ = argmin
w

DISTw(P tr, P te). (2)

1) PDF Weighting: The method presented by Van Opbroek

et al. [42] first explicitly estimates the PDFs Pmi
(and,

depending on the distance function, also P te) by kernel density

estimation and then uses a distance function on the estimated

PDFs. These PDFs are approximated from the samples by
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kernel density estimation with a Gaussian kernel, where the

kernel parameter σS is determined with Silverman’s rule [35]:

σS =
( 4

n+ 2

)
1

n+4

ntr
−1

n+4
σtr. (3)

Here, σtr equals the standard deviation of the training samples,

averaged over all features. The chosen σS minimizes the mean

integrated square error between the actual and the estimated

PDF for a multivariate Gaussian kernel [35].

There are various methods to measure the distance between

training and test PDFs. One of them, as presented in [42], is

the Kullback-Leibler divergence (KL):

KL(P te||P tr) =

∫

D

P te(x) log
(P te(x)

P tr(x)

)

dx (4)

≈
1

nte

nte

∑

j=1

logP te(xte
j ) (5)

−
1

nte

nte

∑

j=1

log
(

m
∑

mi=1

wmi
Pmi

(xte
j )

)

,

where D is the domain of P te and P tr.

Note that the first term of Equation 5 does not depend on

w. So the optimal weights w are determined by maximizing
∑nte

j=1
log

(

∑m

mi=1
wmi

Pmi
(xte

j )
)

under the constraints w ≥

0 and |w| = 1.

A second method to measure distances between PDFs that

performed well in [42] is the Bhattacharyya distance (BD):

BD(P te, P tr) = −

∫

D

√

P te(x)P tr(x)dx (6)

≈ −
1

ntr

∑

xi∈D

√

P te(xi) (7)

√

√

√

√

m
∑

mi=1

wmi
Pmi

(xi),

where the xi are randomly drawn from D. Similar to the

KL, the criterion in Equation 7 is minimized for w subject to

the constraints w ≥ 0 and |w| = 1.

2) MMD Weighting: We propose a new image weight-

ing method based on maximum mean discrepancy (MMD)

minimization. This method can determine the image weights

immediately from the samples and therefore does not require

a PDF estimation step. MMD image weighting is similar to

the MMD sample weighting method of Huang et al. [17],

but weights groups of samples (images) instead of separate

samples. The image weights w are determined by minimizing

the MMD between all training samples X tr and test samples

X te. The MMD between two datasets X and Y is defined as

the distance between the means of the samples x ∈ X and

y ∈ Y in a kernel space φ:

MMD(X,Y ) = ||
1

nX

nX

∑

i=1

φ(xi)−
1

nY

nY

∑

j=1

φ(yj)||
2, (8)

where nX and nY are the number of samples x and y

respectively.

The image weights are determined by minimizing the MMD

between the training set X tr, which are given a weight per

image and the test set X te:

MMD(X tr, X te) =

= ||
1

ntr

m
∑

mi=1

wmi

ntr

∑

j=1

φ(xmi

j )−
1

nte

nte

∑

i=1

φ(xte
i )||2

=
1

ntr2
wTKtr,trw −

2

ntrnte
wTktr,te +

1

nte2
kte,te.

(9)

Here, Ktr,tr is an m × m matrix of inner products between

training images, ktr,te denotes a vector of length m of inner

products between each of the training images and the test im-

age, and kte,te is a single value giving the inner product of the

test samples. Formulas for Ktr,tr, ktr,te, and kte,te are given

in the supplementary materials, Equations 1-3 (supplementary

materials are available in the supplementary files /multimedia

tab).

Equation 9 can be written as

MMD(X tr, X te) = ωTMω, (10)

where ωT = [wT , 1] and

M =

[

1

ntr2K
tr,tr − 1

ntrnte k
tr,te

− 1

ntrnte k
tr,teT 1

nte2
kte,te

]

. (11)

Given a kernel K , the optimal image weights can be found

by minimizing Equation 10 for ω under the constraints w ≥ 0,

|w| = 1.

C. Kernel Learning

We aim to find a kernel space that reduces differences

between datasets. When searching for a kernel matrix, we

would need to pose constraints to make sure that the found

matrix is symmetric and positive semidefinite, in order for it

to be a kernel (because of Mercer’s theorem). A relatively

easy way to find such a kernel matrix is with multiple kernel

learning (MKL), where we start with a set of nk pre-defined

base kernels Kb
k (k = 1, 2, . . . , nk). The searched kernel is

determined as the optimal linear combination of these base

kernels:

K =

nk

∑

k=1

vkK
b
k , (12)

where the kernel weights v = [v1, v2, . . . , vnk
]T ≥ 0. Since

K is a linear combination of kernels, it is guaranteed to be a

kernel as well.

We present two kernel learning methods: Centered Kernel

Alignment [7] in Section II-C1 and the MMD kernel learning

method that is similar to the method of Duan et al. [13] in

Section II-C2. This method can be efficiently combined with

MMD image weighting so that image and kernel weights can

be jointly optimized.
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1) Centered Kernel Alignment: Cortes et al. [7] presented a

kernel learning method that optimizes the kernel weights vk in

Equation 12 by maximizing centered kernel alignment (CKA)

between the learned kernel K and the ideal kernel KI. The

ideal kernel equals 1 if two samples have the same class label

and -1 if they have different class labels. This corresponds to

a situation in the kernel space φ where all samples with the

same class label are at the same location and samples with

different class labels are always a distance of 2 apart.2

First, the CKA method centers the distribution of samples

in kernel space for all base kernels, which sets the expectation

of the samples in the kernel space to zero. After obtaining the

centered base kernels Kbc
k (k = 1, 2, . . . , nk), the weights v

are chosen as to maximize the alignment between K and KI:

v∗ = argmax
v

〈
∑nk

k=1
vkK

bc
k ,KI〉F

||
∑nk

k=1
vkK

bc
k ||F

, (13)

where 〈·, ·〉F denotes the Frobenius product and || · ||F denotes

the Frobenius norm3. The expression in Equation 13 can be

seen as the cosine of the angle between the learned kernel K

and the ideal kernel KI and equals one if and only if the two

kernels are the same [16].

2) MMD Kernel Learning: Duan et al. [13] proposes to find

a kernel K that minimizes 1) the distance between a (possibly

weighted) training distribution and a test distribution, so that in

the learned kernel space training samples appear similar to test

samples, 2) some notion of classification error on the training

samples, so that the learned kernel is suitable for classification.

This results in the following optimization criterion:

K∗ = argmin
K

θ DISTK(P tr, P te) + fK(X tr,ytr), (14)

where DISTK is a PDF distance function in the kernel space

of K , fK measures classification error in the kernel space of

K , and θ is a trade-off parameter between the two terms.

For fK , Duan et al. [13] uses either structural risk functional

(used in support vector regression) or the Hinge loss (used in

SVM), both of which are computationally very expensive if

many training samples are used. CKA on the other hand, can

be calculated very efficiently for a large number of training

samples that consist of weighted subsets. We therefore use

the CKA value, multiplied by -1, since CKA is maximized

but Equation 14 is minimized. Similar to Duan et al. [13], we

use the MMD as the distance function DISTK in Equation 14.

From Equation 10 we can see how the MMD between train-

ing and test distributions can be calculated when the training

images are weighted (by setting ω = [wT , 1]T ) or when no

image weights are used (by setting ω = [ 1
m
, 1

m
, . . . , 1

m
, 1]T ).

Since the searched kernel K consists of a linear combination

of base kernels, as in Equation 12, we construct a matrix M

per base kernel, Mk, so that

2This can be seen by calculating dist(xi,xj) =
√

||φ(xi)− φ(xj)||2 =
√

Ki,i − 2Ki,j +Kj,j .
3〈x,y〉F = Trace(xT

y) and ||x||F =
√

〈x,x〉F

MMD(X tr, X te) =

nk

∑

k=1

vkω
TMkω. (15)

When combining MMD kernel learning and MMD image

weighting in this framework, we optimize

[w∗,v∗] = argmin
w,v

θ MMDw,v(P
tr, P te)

−CKAv(X
tr,ytr) (16)

= argmin
w,v

θ

nk

∑

k=1

vk

[

w

1

]T

Mk

[

w

1

]

−
〈
∑nk

k=1
vkK

bc
k ,KI〉F

||
∑nk

k=1
vkK

bc
k ||F

. (17)

Equation 17 follows from Equation 16 by plugging in the

MMD definition from Equation 15 and the CKA definition

from Equation 13.

For MMD kernel learning without MMD image weighting,

Equation 17 is optimized for the kernel weights v only.

In the supplementary materials we discuss three issues that

came up in the implementation and how these were solved

(supplementary materials are available in the supplementary

files /multimedia tab). The first considers numerical precision

in calculation of the MMD, the second considers kernel

normalization (which prevents the MKL from favoring kernels

that shrink the feature space), and the third presents an efficient

way to find the optimal value for θ.

III. EXPERIMENTS

We performed experiments on voxelwise classification on

three MRI brain segmentation tasks: brain tissue segmentation,

white matter lesion (WML) segmentation, and hippocampus

segmentation. For brain tissue segmentation, each voxel inside

a manually annotated brain mask was classified as either white

matter (WM), gray matter (GM), or cerebrospinal fluid (CSF).

For WML segmentation, each voxel inside an automatically

generated brain mask was classified as either WML or non-

WML. For hippocampus segmentation, a region of interest

(ROI) around the hippocampus was determined using multi

atlas registration. Inside this ROI, every voxel was classified

as hippocampus or non hippocampus. Classifications were

performed with an SVM classifier on intensity features. In an

extra experiment, we compared SVM performance with that

of a random forest (RF) classifier.

For all three applications, we used data from different

datasets, which were acquired with different scanners and

scanning parameters. Each image was segmented once in

leave-one-dataset-out cross validation, where the training data

consisted of all images from different datasets than the test

image.

This section describes the data, used features, and experi-

mental setup.
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Table I
OVERVIEW OF THE DATASETS USED FOR BRAIN TISSUE (BT), WML, AND HIPPOCAMPUS (HC) SEGMENTATION. FOR HIPPOCAMPUS SEGMENTATION, A

TOTAL OF 135 SCANS WERE USED, SEPARATED INTO 46 DATASETS OF IMAGES THAT WERE SCANNED WITH THE SAME SCANNER.

Dataset Source # images Sequences Field Strength Scanner Voxel size ( mm3)

BT1 RSS [20] 6 T1 1.5T GE 0.49× 0.49 × 0.80
BT2 RSS [21] 12 HASTE-Odd 1.5T Siemens 1.25× 1× 1
BT3 MRBrainS Challenge [26] 5 T1 3T Philips 0.958× 0.958× 3.0
BT4 IBSR [44] 18 T1 1.5T Unknown 0.84× 0.84× 1.5 to 1× 1× 1.5
BT5 IBSR [44] 20 T1 1.5T 10x Siemens, 10x GE 1× 3.1× 1

WML1 RSS [20] 20 T1,PD,FLAIR 1.5T GE 0.49× 0.49 × 0.80
WML2 MS Lesion Challenge [37] 20 T1,T2,FLAIR 3T Siemens 0.5× 0.5× 0.5
WML3 MS Lesion Challenge [37] 20 T1,T2,FLAIR 3T Siemens Allegra 0.5× 0.5× 0.5

HC1-27 ADNI 1 to 10 T1 1.5T Various 1× 1× 1
HC28-46 ADNI 1 to 10 T1 3T Various 1× 1× 1

A. Data

All data used for the experiments is summarized in Table I.

For brain tissue segmentation (BT), we used a total of

61 images from 5 datasets with corresponding manual seg-

mentations. Two datasets from the Rotterdam Scan Study

(RSS) [21], [20], one from the MRBrainS Challenge [26],

and two from the Internet Brain Segmentation Repository

(IBSR) [44]. The images of datasets BT1, BT2, and BT3 were

acquired with a single scanner, BT4 and BT5 were acquired

with multiple scanners (but which images are from the same

scanner is unknown). All images have a manual segmentation

of the brain mask and tissues. Images from BT3 and BT4

have the cerebellum included in the brain mask, images from

BT1, BT2, and BT5 do not. The images from BT2, which are

Haste-Odd images, have inverted intensities compared to the

T1 images from the other studies. Therefore, the voxel values

in the images in BT2 were inverted prior to calculation of the

features.

For WML segmentation, a total of 40 images with man-

ual segmentations from 3 datasets were used. One from

the RSS [20] and two from the MS Lesion Segmentation

Challenge of MICCAI 2008 [37]. The brain extraction tool

(BET) [36] was used to generate brain masks. For the calcu-

lation of features, we treated the PD images of WML1 to be

the same modality as the T2 images of WML2 and WML3,

since they are visually similar.

For the hippocampus experiments, we used MR images

from the Harmonized Protocol (HarP)4. This dataset con-

sists of 135 T1-weighted images of the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset [28]5 with manually

annotated hippocampi [1]. These 135 images were scanned at

34 sites, with a total of 46 different scanners. We split these

images up into datasets of images that were scanned with the

same scanner. All images were rigidly registered to MNI space

with 1× 1× 1 mm3 voxel size. We used the brain extraction

tool (BET) [36] to generate brain masks.

4http://www.hippocampal-protocol.net/
5The ADNI was launched in 2003 as a public-private partnership, led by

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For
up-to-date information, see http://www.adni-info.org.

1) Preprocessing: All images were corrected for intensity

non-uniformity with the N4 method [38]. Next, all image

intensities were normalized by rescaling the 4-96th percentile

to the 0-1 interval inside the brain mask.

B. Features

For each sequence and at each voxel, the following features

were calculated:

• Intensity

• Intensity after convolution with a Gaussian kernel with

varying σF

• The gradient magnitude of the intensity after convolution

with a Gaussian kernel with varying σF

• The Laplacian of the intensity after convolution with a

Gaussian kernel with varying σF

• Only for brain tissue: spatial features

For brain tissue segmentation σF = 1, 2, 4 mm3 was chosen,

for WML σF = 0.5, 1, 2 mm3 was chosen because of the

overall smaller voxel sizes, and for hippocampus segmen-

tation σF = 1, 2.2, and 5 mm3 was chosen, similar to the

hippocampus segmentation method of [39].

For brain tissue segmentation, spatial features were added.

For each voxel, cylindrical coordinates (R, θF , and z) were

calculated in the following way: first, every brain mask was

scaled to [−1, 1] in each direction and the origin O was set as

the middle of the brain mask. Here, R equals the distance of

the voxel to O, z indicates its position in the cranial-caudal

direction, and θF equals the positive angle (∈ [0, π]) between

the line through the voxel and O and the anterior-posterior

axis. For WML, no spatial features were used since lesions can

appear at different locations between training and test images.

For hippocampus segmentation, no spatial features were used

because spatial information is encoded in the selected ROI.

This resulted in a total of 13 features for the brain tissue

experiments, 30 features for the WML experiments, and 10

features for the hippocampus experiments. These features were

used for both the kernel learning and the image weighting.

For all applications, all features were normalized to zero

mean, unit variance per image. No feature reduction was used.

C. Experimental Setup

For each of the three applications, the images of each

dataset were segmented by leave-one-dataset-out cross vali-
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Table II
OVERVIEW OF COMPARED METHODS. ”KERNEL” INDICATES THE USED

KERNEL LEARNING METHOD (GAUSSIAN OR MKL WITH CKA
MAXIMIZATION OR MMD MINIMIZATION). ”WEIGHTING” INDICATES THE

USED IMAGE WEIGHTING METHOD (EQUAL WEIGHTING OR WEIGHTING

DETERMINED BY KL, BD, OR MMD MINIMIZATION). ”OPTIMIZATION”
INDICATES WHAT WAS OPTIMIZED (THE KERNEL K AND/OR THE IMAGE

WEIGHTS w) AND, FOR METHODS THAT USE BOTH KERNEL LEARNING

AND IMAGE WEIGHTING, WHETHER THE OPTIMIZATION WAS PERFORMED

SEPARATELY (SEP.) OR JOINTLY.

Cat. Method Kernel Weighting Optimization

0 K0 W0 Gaussian Equal -

W K0 W-KL Gaussian KL w

W K0 W-BD Gaussian BD w

W K0 W-MMD Gaussian MMD w

K K-CKA W0 CKA Equal K

K K-MMD W0 MMD Equal K

K&W K-CKA W-KL CKA KL K , w sep.

K&W K-CKA W-BD CKA BD K , w sep.

K&W K-CKA W-MMD CKA MMD K , w sep.

K&W KW-MMD MMD MMD K , w jointly

dation: by training on all images from different datasets. For

hippocampus segmentation, all voxels within an ROI around

the hippocampus were classified as either hippocampus or non-

hippocampus. For brain tissue and WML segmentation, voxels

within the brain mask were classified as white matter, gray

matter, CSF and as WML and non-WML respectively. The

sampling of voxels in train and test data is described in more

detail in Section III-C2.

1) Compared Methods: We compared the performance of

10 methods, which can be separated into four categories:

Cat. 0, a baseline method that uses neither image weighting

nor kernel learning; Cat. W, three image weighting methods,

KL, BD, and MMD; Cat. K, two multiple kernel learning

(MKL) methods, CKA, which corresponds to Equation 14

with θ = 0 and MMD, which corresponds to Equation 14

with θ 6= 0; Cat. K&W, four methods that combine MKL

and image weighting: CKA combined with KL, BD, and

MMD image weighting, and MMD kernel learning combined

with MMD image weighting, where the kernel and weight

optimization was performed jointly, as in Equation 16. All

compared methods are summarized in Table II. When no MKL

was used, a Gaussian kernel was used with kernel parameter

γG determined with cross validation.

For MKL, we used a total of 60 base kernels, consist-

ing of the 4 types of kernels used by Duan et al. [13]:

Gaussian kernel, Laplacian kernel, inverse square distance

kernel, and inverse distance kernel. For each kernel type,

we used 15 different values for the kernel parameter γ =
10ˆ[−8,−7, . . . , 5, 6].

Performance of all classifiers was measured in terms of

classification error for the brain tissue and WML experiments.

For the hippocampus experiments, performance was measured

in Dice overlap [11]. In all three applications, significance of

differences between two methods was measured with a paired

two-tailed t-test with the significance threshold at P = 0.05.

For the hippocampus experiments, we applied separate

classifiers for the left and right hippocampus, which outper-

formed a joint classifier. The performance on the hippocampus

segmentation was averaged over left and right hippocampus.

For all SVM classifiers, we used an implementation in

LibSVM [4]. The optimization of the kernel and image weights

was performed with the interior-reflective Newton method [6].

After the optimization, kernel weights and image weights

below 0.01 were set to zero.

We additionally performed experiments with a random

forest (RF) classifier instead of an SVM, since RF is more

commonly used in medical image segmentation than SVM.

Similar to previous work on image weighting for medical im-

age segmentation [5], we used 100 trees and otherwise default

parameters. We used the Matlab TreeBagger implementation.

Since RFs cannot handle kernels directly, we used Kernel

PCA [33] for the experiments in Categories K and K&W.

Here, the d principal components with the most variance

were extracted from kernel space and used as features for the

training and test datasets. We chose d equal to the number of

features in the original data (13 for brain tissue, 30 for WML,

and 10 for hippocampus).

2) Training and Test sets: For brain tissue segmentation,

training and test sets were composed by uniform random

selection of voxels within the brain mask.

For WML segmentation, only voxels with a normalized

FLAIR intensity above 0.75 were selected for training and

testing, since WMLs appear bright on the FLAIR images. The

threshold of 0.75 was chosen in a trade-off to discard non-

WML voxels while maintaining WML voxels. As a result,

most CSF voxels and some GM voxels were excluded, while

almost all WM and WML voxels were maintained. Next,

WML and non-WML voxels were sampled disproportionally

into the training and test sets, so that per dataset, 20% of the

selected voxels consisted of WML voxels. This adaptation was

chosen since the prior probability of a voxel being WML is

so low (1.61% for WML1, 1.31% for WML2, and 0.22% for

WML3) that classifiers would be likely to choose to classify

all voxels as non-WML voxels. Contrary to the classification,

the kernel learning and image weights were determined on an

proportionally sampled dataset.

For hippocampus segmentation, all training images from

different scanners were non-rigidly registered to the test image.

To select test samples, the atlases of the training images

were transformed accordingly and an ROI was constructed

consisting of all voxels for which at least 10% of the atlases

vote it to be hippocampus. Similarly, training samples were

selected by non-rigidly registering all training images to each

other and creating an ROI, of which the voxels were used

as training voxels. The registrations were performed with the

Elastix registration toolbox [24] by maximizing normalized

mutual information, using the registration settings of [2].

For all applications, the training sets for MKL and image

weighting consisted of 1 000 randomly sampled voxels per

image (for both the training images and the test image).

The training sets for the classifiers were constructed by

first setting all weights w < 0.01 to zero, followed by

randomly sampling 10 000 voxels from all training images

together, according to the weight vector w. For the unweighted

classifiers, all training images were weighted equally. For

hippocampus segmentation, the test set consisted of all voxels
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within the ROI. For brain tissue and WML segmentation, the

test sets consisted of 10 000 randomly selected voxels per test

image.

3) Parameter Settings: For the methods in category 0

and W, (no MKL), the kernel parameter γG and the SVM

parameter C needed to be set. For the CKA kernel learning

methods (both with and without image weighting), only the

SVM parameter C was needed. For the MMD MKL methods

(K-MMD W0 and KW-MMD) the MMD trade-off parameter

θ and the SVM parameter C were needed. These parameters

were optimized with leave-one-dataset-out grid search on all

training images. So for every test dataset, the optimal param-

eters were found by classifying the voxels of each training

image by a classifier trained on all other training images that

were from different datasets. For computational reasons, all

three parameters were tuned without image weighting.

IV. RESULTS
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Figure 1. Boxplot of the segmentation results in Table III. The x-axis shows
respectively the method category and the method used for image weighting
or kernel learning.(a) brain tissue segmentation, (b) WML segmentation, (c)
hippocampus segmentation.

Table III shows the performance of all 10 methods on

brain tissue, WML, and hippocampus segmentation by SVM

classification. Figure 1 shows an accompanying boxplot of the

results. For brain tissue and WML segmentation, a boxplot

of the results per dataset can be found in the supplementary

materials (supplementary materials are available in the sup-

plementary files /multimedia tab). Note that for hippocampus

Table III
PERFORMANCE OF ALL METHODS ON THE THREE APPLICATIONS WITH AN

SVM CLASSIFIER, AVERAGED OVER ALL IMAGES OF ALL DATASETS.
PERFORMANCE ON TISSUE AND WML SEGMENTATION IS IN

CLASSIFICATION ERROR (%), PERFORMANCE ON HIPPOCAMPUS

SEGMENTATION IS IN DICE OVERLAP (%). THE BEST METHOD AND ALL

METHODS THAT ARE NOT SIGNIFICANTLY WORSE, ARE IN BOLD. ∗
INDICATES A SIGNIFICANT DIFFERENCE BETWEEN K-CKA W-MMD AND

KW-MMD.

Cat. Method Brain Tissue WML Hippocampus

0 K0 W0 19.03 8.40 84.0

W K0 W-KL 13.36 7.01 83.8

W K0 W-BD 14.99 9.84 84.6

W K0 W-MMD 14.09 8.53 84.4

K K-CKA W0 17.31 7.58 83.4

K K-MMD W0 17.28 7.62 83.5

K&W K-CKA W-KL 12.86 6.84 83.9

K&W K-CKA W-BD 14.80 9.92 84.1

K&W K-CKA W-MMD 13.95∗ 8.42 84.1

K&W KW-MMD 14.32 8.13 84.6∗

segmentation, the differences between the methods were much

smaller than for the other two applications. This is probably

because the images are much more homogeneous between

datasets than for the other two applications, since ADNI aims

to acquire data at different sites with similar protocols.

We will first discuss the results on image weighting (Cat.

W), followed by kernel learning (Cat. K), and the combination

of the two (Cat. K&W).

A. Image Weighting

For all three applications, the baseline method was signifi-

cantly outperformed by a weighting method. Which weighting

method performed best differed between applications. For

WML segmentation, KL weighting performed considerably

better than other weighting methods, as was also observed

and discussed in [42]. This was likely caused by the very

small percentage of WML voxels, which caused the weighting

method to weight according to overall image similarity rather

than WML similarity. Note that WML voxels have very high

intensity in the FLAIR scan, while other voxels do not, so

the WML voxels are located in a location with low P (x).
KL weighting probably outperforms BD and MMD weighting

since it focuses more on parts of the distribution with a low

P (x), which is caused by the log in Equation 5 (differences

between training and test distributions in locations where Pmi

is small contribute more to the KL than in locations where Pmi

is large). For brain tissue and hippocampus segmentation, the

differences were smaller between the three weighting methods,

where KL performed best for brain tissue segmentation and

BD for hippocampus segmentation. MMD was second best in

both applications.

Figure 2 shows per weighting method and per application

the average distribution of weights over the training images.

The average number of training images equals 46 for tissue, 15

for WML, and 130 for hippocampus segmentation. By all three

methods, the majority of training images were given a weight

of zero, i.e. were not used in the training of the classifier.

The average number of non-zero image weights was about 9,
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Figure 2. Average distribution of weights over all training images on each
of the three applications. KL, BD, and MMD respectively give the weight
distributions for weighting according to W-KL, W-BD, and W-MMD.

Figure 3. Distribution of weights for KL, BD and MMD weighting on the
six images of BT1 by training on BT2-5. Rows indicate the 6 test images,
columns indicate the 55 training images, ordered by dataset. Lighter pixels
indicate higher weights (highest weight was 0.43).

3, and 10 for tissue, WML, and hippocampus segmentation

respectively. For brain tissue and hippocampus segmentation,

the KL and BD weighting methods seem to give a bit more

non-zero weights than the MMD method, which could be

beneficial since it has a regularization effect. For WML

segmentation, there seems to be a negative correlation between

the percentage of non-zero weights and the classification error.

This could be explained by the fact that lesions are only a

tiny percentage of the number of voxels, hence can hardly be

distinguished in the PDFs. Therefore, more regularization in

the form of small (non-zero) weights can be beneficial.

Figure 3 shows the distribution of weights for the three

weighting methods when testing on the six images of the BT1

dataset. All three weighting methods gave most weight to the

training images of BT2, but the specific images that were given

a non-zero weight differed per test image and per weighting

method. This can be seen from the correlation between the

weight vectors given by the three methods, which was 0.05

between KL and BD, 0.02 between KL and MMD and 0.07

between BD and MMD, which is rather low. When we look

at the correlation between total weights per training dataset

however, we find much higher correlation: 0.60, 0.15, and

0.71. Here, we see that the MMD weights resembled the BD

weights much better than the KL weights. Also note that the

KL and BD weighting method both found one or more training

images that were given a high weight for all six test images,

resulting in similar weight distributions between test images

(correlation between test images 0.62 for KL and 0.60 for

BD). The MMD weighting method on the other hand, gave

weight distributions that differ much more between test images

(correlation 0.05). This behavior difference between KL/BD

and MMD was also observed in the other experiments and

could indicate that MMD weights more according to specific

image characteristics (such as differences between subjects),

whereas KL and BD weights more according to appearance

differences between scanners. This point is discussed further

in the Discussion.

B. Kernel Learning

In brain tissue and WML segmentation, kernel learning

significantly outperformed the baseline method. For hippocam-

pus segmentation, it performed similar to the baseline. The

difference between the two kernel learning methods (CKA and

MMD) was quite small and not significantly different.
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Figure 4. Average distribution of kernel weights on the three applications
(top: tissue, middle: WML, bottom: hippocampus).

Figures 4(a) and (b) show the kernels that were selected

by the CKA and MMD kernel learning method respectively

for each of the three applications. Although performance was

similar, the distribution of kernel weights was quite different

between the two methods. Most kernels that were given a

high weight in K-CKA were also given a high weight in K-

MMD. K-MMD additionally gave high weights to kernels with

the highest kernel parameter (106), i.e. kernels that focus on

differences between samples that are very close by in feature

space. We think this is an artifact caused by the additional
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constraint that the samples need to be normalized in the result-

ing kernel space (Equation 10 of the supplementary material).

This point is discussed further in the supplementary material

(supplementary materials are available in the supplementary

files /multimedia tab). K-CKA on the other hand, gave an

additional low weight to almost all kernels. This might be

because of a premature stopping of the optimization. Although

these small weights hardly influenced the outcome, we set all

kernel weights below 0.01 to zero to speed up the calculation

of the kernels used for classification.

C. Combining Kernel Learning and Image Weighting

Image weighting generally outperformed kernel learning

when used individually, especially for brain tissue segmenta-

tion. Combining the two approaches overall gave a small ad-

ditional improvement in performance, except for hippocampus

segmentation, where performance was similar between image

weighting with and without kernel learning.

Jointly weighting kernels and images (KW-MMD) gave

no clear difference in performance compared to individual

kernel learning and MMD image weighting (K-CKA W-

MMD). Figures 4(b) and (c) show that for brain tissue and

WML segmentation, both methods selected the same base

kernels, although the weights were slightly different for WML

segmentation. For the hippocampus experiments, KW-MMD

gave high weights to low-parameter kernels (i.e. focuses

on differences between all samples). However, this behavior

appeared only in about one third of segmented images and did

not appear to significantly influence the performance. We think

this is because of a premature stopping in the optimization,

similarly as with K-CKA, discussed above. We also studied

the distribution of W-MMD image weights when combining

image weighting and MKL; these were very similar to those

calculated without MKL for all three applications.

D. Random Forest Classification

Table IV
PERFORMANCE OF ALL METHODS ON THE THREE APPLICATIONS WITH A

RF CLASSIFIER, AVERAGED OVER ALL IMAGES OF ALL DATASETS.
PERFORMANCE ON TISSUE AND WML SEGMENTATION IS IN

CLASSIFICATION ERROR (%), PERFORMANCE ON HIPPOCAMPUS

SEGMENTATION IS IN DICE OVERLAP (%). THE BEST METHOD AND ALL

METHODS THAT ARE NOT SIGNIFICANTLY WORSE, ARE IN BOLD. ∗
INDICATES A SIGNIFICANT DIFFERENCE BETWEEN K-CKA W-MMD AND

KW-MMD.

Cat. Method Brain Tissue WML Hippocampus

0 K0 W0 19.87 8.05 84.8

W K0 W-KL 14.48 7.31 84.2

W K0 W-BD 16.60 11.79 84.2

W K0 W-MMD 15.74 9.41 84.0

K K-CKA W0 20.82 7.79 79.3

K K-MMD W0 20.90 8.00 79.6

K&W K-CKA W-KL 16.19 7.22 85.0

K&W K-CKA W-BD 18.04 10.37 85.2

K&W K-CKA W-MMD 17.60 8.33 85.2

K&W KW-MMD 17.11∗ 8.43 85.2

Table IV shows the results when using a random forest (RF)

classifier instead of an SVM. When comparing Table IV with

Table III, we see no large differences between the baseline for

both classifiers. The supplementary material gives a side-by-

side table (Table II) of performance with the two classifiers,

to facilitate comparison (supplementary materials are available

in the supplementary files /multimedia tab). Image weighting

generally brought some more improvement for SVM than

for RF. For both classifiers, KL image weighting generally

performed best, which for RF gave a significant improvement

for tissue segmentation and a non-significant improvement

for WML segmentation. For hippocampus, no increase in

performance was found, which is not remarkable, since the

differences between the different methods with SVM were

also very small for this application. Kernel learning performed

much worse for RF than for SVM for tissue and hippocampus

segmentation. This is probably because we applied Kernel

PCA to extract features for RF, while SVM works directly

in the kernel space. Ideally, one would like to extract enough

features to describe almost all the variance (e.g. 99%), but

in our experiments, the variance in the learned kernel spaces

equals 1 in every direction (Equation 11 of the supplementary

material). As a result, around 1 000 features were needed

(depending on the application and dataset) to describe 99% of

the variance. RF performed poorly for such high numbers of

features. For tissue segmentation, the combination of kernel

learning and image weighting also performed much worse

with RF than SVM, because of this same effect. For the other

experiments, RF and SVM performed similarly.

E. Computational Requirements

All experiments were performed as single-core jobs on a

Linux cluster from 2014 with AMD Opteron 6376 (2.3GHz)

CPUs. The methods without kernel learning required 2 to

3GB of memory, the kernel learning methods required about

6GB. Table 1 of the supplementary material gives the average

computation time for SVM classification of one test image for

each of the applications and methods (supplementary materials

are available in the supplementary files /multimedia tab). On

average, the baseline method took about 8 to 14 seconds to

classify one test image, for both SVM and RF. The different

weighting methods W-KL, W-BD, W-MMD ranged from 16

seconds to just over 4 minutes, depending on the application

and the dataset, where larger training datasets required more

computation time. These methods all use gradient descent and

the calculation time is therefore dependent on the difficulty of

finding the optimal solution. BD was the overall fasted method,

followed by MMD, and KL.

All methods that incorporate kernel learning took much

more calculation time. Here, calculation time scales quadrati-

cally with the number of training images used. For the WML

experiments (20 to 30 training images), the kernel learning

took about 45 minutes. For brain tissue segmentation (41 to

56 training images) it took about 2 hours and 40 minutes. For

hippocampus segmentation (128 to 134 training images) this

was about 73 hours and 10 minutes. Calculation of the 60

base kernels per training image is what makes these methods

so expensive, so using fewer base kernels would speed them

up considerably. Using Kernel PCA to extract 10, 13, or 30
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features took between 10 and 30 seconds and depends heavily

on the number of extracted features.

V. DISCUSSION AND CONCLUSION

Image weighting significantly improved performance over

weighting all training images equally for all three studied ap-

plications: voxelwise brain tissue, white matter lesion (WML),

and hippocampus segmentation. This convincing benefit of

image weighting corresponds to previous findings [42], [5].

For WML segmentation, which had highly unbalanced classes,

Kullback-Leibler (KL) weighting performed much better than

other weighting methods, which was also observed in [42].

Here, KL weighting presumably outperformed other weighting

methods since it gives more importance parts of the distri-

bution with small prior distribution P (x). For brain tissue

and hippocampus segmentation, the best methods differed

and differences between the three weighting methods were

relatively small.

The new maximum mean discrepancy (MMD) image

weighting has the advantage over KL and Bhattacharyya dis-

tance (BD) weighting that no intermediate PDF estimation is

required. This is especially beneficial when many features are

used, as the complexity of PDF estimation scales quadratically

with the number of features. On the other hand, in the current

implementation of MMD image weighting, calculation time

scales quadratically (O(n2)) with the number of training

samples used for the optimization (because of calculation

of the MMD matrix M in Equation 11), whereas KL and

BD weighting are O(n). It might therefore be worthwhile to

investigate a method to speed up MMD calculation, such as

[45], which is O(n).
We noticed that for different test images of the same

scanner, training images were assigned similar weight vectors

by KL and BD image weighting, but quite different weight

vectors by MMD weighting. Both KL and BD measure

density differences in feature space. MMD on the other hand,

measures distances between all samples, which corresponds to

the work that is required to shift samples (in feature space) to

transform a training distribution into the test distribution. KL

and BD do not take this distance between shifted samples into

account. This could result in KL and BD often finding some

training images (presumably with average tissue class sizes)

that are given a high weight for all test images. MMD on the

other hand, is likely more influenced by the sizes of the dif-

ferent distribution peaks (in our examples, the three different

brain tissues) and therefore might weight more according to

subject differences than KL and BD.

MKL with any of the two presented methods significantly

improved performance over the baseline (a Gaussian kernel)

for brain tissue and WML segmentation and performed similar

to the baseline for hippocampus segmentation. For all three

applications, image weighting resulted in a larger improvement

than MKL, although this increase was not significant for WML

segmentation. The proposed combination of image weighting

and MKL overall gave an additional improvement over image

weighting alone, except for hippocampus segmentation, where

it performed similarly.

We found no clear difference in performance between MKL

with only the centered kernel alignment (CKA) method of

Cortes et al. [7] and using and additional MMD term. Note

that CKA MKL is determined on training data only, hence,

finds a kernel space that discriminates between classes and

generalizes well between the training datasets. Adding the

MMD term should give a kernel space that additionally

reduces differences between training and test distributions.

We showed that the two MKL methods do indeed generate

a different kernel space by selecting different kernel weights,

but classification performance using the two methods was very

similar. Note that for both methods there is no guarantee that

the resulting kernel space and image weights are suitable for

classification of the test samples, since no labeled samples

from the test distribution were available for training. The

additional MMD term might therefore give a kernel space that

reduces distribution differences between datasets compared to

CKA MKL, but has more class overlap. Adding the MMD

term does have the advantage of enabling joint optimization

of kernel and image weights, by using MMD image weight-

ing. Besides being more efficient, this has the advantage of

resulting in a joint optimum for kernel and image weights. On

the other hand, the MMD term would require to additionally

set the trade-off parameter θ (Equation 16). But it might be

possible to use a set value (e.g. θ̃ = 1 in Equation 11 of the

supplementary material), since we found performance to be

stable over a large range of values for θ.

Overall, our results on a variety of different tasks con-

vincingly show that combining kernel learning and image

weighting is beneficial for across-scanner segmentation. The

proposed method requires a set of training images (we used

20 to 134 training images) with different characteristics, so

the image weighting method can select the most useful im-

ages. We experimented with voxelwise classification, but the

proposed methods might as well be applied to classification

of super voxels or patches. It can also be applied to image

classification problems such as computer-aided diagnosis by

determining image weights based on the voxel distributions. In

the presented experiments, only a small number of classes was

predicted (two or three), but the methods can also be applied to

problems with a larger number of classes, such as separation

of different brain structures or subfields. This likely results

in similar image weights as segmentation of the same image

into other classes, since the weighting is unsupervised and

weights according to similarity between complete images. For

cases where classes are small (for example in segmentation of

brain structures, subfields, or WMLs), it might be interesting

to investigate whether it is possible to give more importance

to similarity of specific classes or class boundaries.

Our method is easily applicable in practice, for example in

multi-center studies, since it requires no labeled data from the

test distribution. As shown in [42], image weighting can be

beneficial even if some manually annotated images from the

test scanner are available. Although this setting was not tested

in this paper, we believe the combination of kernel learning

and image weighting can also be beneficial here. In this case,

the labeled test data can additionally be used to ensure that the

learned kernel is suitable for classification of test samples, by
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maximizing CKA on the test samples rather than the training

samples.

We compared the added value for image weighting and ker-

nel learning only for SVM classification with Gaussian scale

space features. However, both image weighting and kernel

learning can also be applied to other segmentation approaches,

using different features, different classifiers, and different pre-

and post-processing. Image weighting can straightforwardly be

applied into other frameworks, especially in the form used in

this paper, where training samples are selected based on the

image weights. Decreasing train-test PDF distances could also

be translated into a deep learning framework, by incorporation

of KL, BD or MMD between training and test data in the

loss function. The added value of image weighting has also

been shown in other types of methods, such as in multi-atlas

selection and in patch-based fusion schemes such as [43],

which performs atlas selection per voxel based on minimiz-

ing KL between training and test patches around the voxel.

As shown, kernel learning could be extended to non-kernel

classifiers (such as random forest) with Kernel PCA [33].

However, in our experiments, performance was not always

good, probably because of a variance normalization constraint

in the learned kernel spaces, which resulted in very many

components needing to be extracted to describe the data well.

How to solve this issue (for example with a different constraint

in kernel space, or a different way to extract features from

the kernel space) would be an interesting direction for further

research. Investigating other methods for feature representation

transfer and the combination with image weighting would also

be interesting. Transforming feature representations could for

example also be performed by a contrast synthesis method

such as [31], [18]. For deep learning, one could for example

think of transferring representation between different datasets

by generating a joint representation layer (see [22] for an

example on how this can be done).

To conclude, the combination of image weighting and

feature representation transfer through kernel learning appears

to be a promising method for supervised segmentation using

heterogeneous training data different from the test dataset. The

good results on different tasks indicates that the proposed

methods can be applied to a wide range of medical image

segmentation tasks.
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