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Abstract. We present the first specification-compliant constant-time FPGA imple-
mentation of the Classic McEliece cryptosystem from the third-round of NIST’s
Post-Quantum Cryptography standardization process. In particular, we present the
first complete implementation including encapsulation and decapsulation modules as
well as key generation with seed expansion. All the hardware modules are parametriz-
able, at compile time, with security level and performance parameters. We show
that our complete Classic McEliece design for example can perform key generation
in 5.2ms to 20 ms, encapsulation in 0.1 ms to 0.5 ms, and decapsulation in 0.7 ms to
1.5ms for all security levels on an Xlilinx Artix 7 FPGA. The performance can be
increased even further at the cost of resources by increasing the level of parallelization
using the performance parameters of our design.
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1 Introduction

In 2016 NIST started a standardization process' with the goal to standardize cryptographic
primitives that are secure against attacks aided by quantum computers. There are
several families of post-quantum cryptography: hash-based, code-based, lattice-based,
multivariate, and isogeny-based cryptography. One of the “finalists” in the third round
of the standardization process is the code-based key encapsulation mechanism (KEM)
Classic McEliece [ABCT20]. Classic McEliece is generally considered a conservative choice:
Its security properties are relatively well understood, but its public key size ranges from
0.25 to 1.3 megabytes. Despite its name honoring Robert J. McEliece as the founder of
code-based cryptography, Classic McEliece uses the syndrome-based dual variant of the
McEliece cryptosystem [McE78] introduced by Harald Niederreiter [Nie86].

An important aspect of the NIST standardization process is the performance of the
submissions both in software and in hardware, and there have been many publications
providing software and hardware optimizations. Optimized software implementations
of Classic McEliece for x86 systems are described, e.g., in [BCS13, Chol7] and an im-
plementation for a Cortex M4 system in [CC21]. There have been several hardware

Ihttps://csrc.nist.gov/projects/post-quantum-cryptography
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implementations of McEliece and Niederreiter cryptosystems. For example, Eisenbarth
et. al. [EGHP09] describe a hardware design for the McEliece cryptosystem including en-
cryption and decryption; the design by Shoufan et. al. [SWM™*10] includes key generation,
encryption, and decryption. Gosh et. al. [GDUV12] as well as Massolino et. al. [MBR15]
target decryption only. A hardware implementation of encryption and decryption for the
Niederreiter variant is provided by Heyse et. al. in [HG13]. Lopez-Garcia et. al. [LGCN20]
describe a hardware-software co-design for the McEliece cryptosystem. These hardware
publications do not target the exact parameter sets and algorithmic specifications of the
Classic McEliece submission since they either pre-date the Classic McEliece specification
or implement different variants of the original cryptosystems of McEliece and Niederreiter.

The hardware implementation accompanying the specification of Classic McEliece is
described in [WSN17, WSN18]. This hardware implementation does not implement the
complete KEM specification but only its Niederreiter core. Hence, all currently existing
hardware implementations are not fully specification-compliant.

To address the need, our work presents the first fully specification-compliant hardware
design. Our key generation module implements the systematic variants of key generation.
It has been shown that the semi-systematic variants significantly speed up key generation
in software implementations [ABC'20, Sect. 2.2.1]. However, we expect that a hardware
module for key generation for the semi-systematic public key generation will be more
complex than one for the systematic variants, so we consider this as a future work. Since
the public key is oblivious of the key generation variants, our encapsulation module works
for all variants. Our decapsulation module, for now, only works with the systematic
variants, but it can be adapted for the semi-systematic variants with some small changes.

Contribution. Our contributions are as follows:

« Based on the improved designs for public-key generation described in [CCD*22] and
on the hardware implementation of [WSN17, WSN18] of the core cryptographic func-
tionalities of Classic McEliece, we provide the first complete specification-compliant
FPGA implementation of Classic McEliece including seeded key generation, encapsu-
lation, and decapsulation, as well as a joint design of all three operations, adherent
to the latest (third-round) Classic McEliece specification.

 Similar to [WSN17, WSN18], our designs are constant time (i.e., the runtime does
not depend on any secret information) and provide compile-time parameters for
selecting the desired security level and performance.

o We evaluate the resource requirements of our designs on an Xilinx Artix 7 FPGA as
recommended by NIST for the evaluation of PQC hardware designs.

e The source code of our hardware designs is available under an open source license at
https://caslab.csl.yale.edu/code/pqc-classic-mceliece/.

Structure of this paper. We give a brief introduction to code-based cryptography and the
relevant algorithms of the Classic McEliece specification in Section 2. The modifications
and extensions to [WSN17, WSN18] in order to obtain a complete Classic McEliece
implementation are described in Section 3. Finally, in Section 4 we describe the overall
joint design of the entire Classic McEliece cryptosystem, compare its performance to
selected code-based designs, and conclude the paper.

2 Classic McEliece

Code-based cryptography was introduced by McEliece in 1978 [McE78]. The McEliece
cryptosystem uses as public key a generator matrix G' € IF];X” with code length n and code
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Table 1: Parameter sets of Classic McEliece [ABCT20].

Parameter Set Parameters
systematic semi-systematic m n t n—k
mceliece348864 mceliece348864f 12 3488 64 768
mceliece460896 mceliece460896f 13 4608 96 1248
mceliece6688128 mceliece6688128f 13 6688 128 1664
mceliece6960119 mceliece6960119f 13 6960 119 1677
mceliece8192128 mceliece8192128f 13 8192 128 1664

rank k of a binary Goppa code G that can correct up to ¢ errors. Goppa codes are defined
using a binary field Iy, with ¢ = 2™ and an irreducible Goppa polynomial g of degree t.
The sender encrypts a message by converting it into a vector m’ € F5 and computes the
ciphertext ¢ € F} as erroneous code word ¢ = m'G + e where e € F} is an error vector
of weight ¢t. The receiver then uses the secret code structure of the code G to correct the
errors and decode the codeword back to the message m/'.

In 1986, Niederreiter proposed a dual-variant of the McEliece scheme [Nie86]: In his
version, a parity check matrix H € Fénfk)xn is used as public key and the sender encodes
the message as an error vector e € 'y of weight ¢ and encrypts it to a ciphertext ¢ € Fg_k
as the syndrome ¢ = He. Again, the receiver uses the secret code structure in order to
recover the error positions in the syndrome and hence the plaintext. In his proposal,
Niederreiter used a code family that later was broken; however, the overall scheme remains
secure with binary Goppa codes.

The Classic McEliece submission to NIST [ABC™20] is using the variant by Niederreiter
with binary Goppa codes as proposed by McEliece. The parameter sets of Classic McEliece
from the third round of the standardization process are shown in Table 1.

Algorithm 1 shows the key generation from a secret random seed as specified in the
submission. The function FIELDORDERING returns a random permutation of the filed
elements from a seed as the secret support as, . . ., a,; for details see [ABCT20, Sect. 2.4.2].
The function IRREDUCIBLE returns a random irreducible Goppa polynomial g; for details
see [ABCT20, Sect. 2.4.1]. Both the support aq,...,a, and the Goppa polynomial g are
part of the secret key. The public key is generated from the private key using the function
MATGEN shown in Algorithm 2. It computes a binary matrix H from ai,...,0n and g
and then reduces H to its systematic form (I—|T). This operation typically is the most
expensive operation of the key generation. Reduction of the quasi-random binary matrix
H might fail; in that case, key generation is repeated with a new seed.

In Classic McEliece, the OW-CPA secure public key encryption (PKE) schemes from
McEliece and Niederreiter are converted into an IND-CCA2 secure KEM. Encapsulation
is shown in Algorithm 3. First, the function FIXEDWEIGHT (see Algorithm 4) is used
to generate an error vector e € Fy of weight ¢t. Then this error vector is encoded into a
syndrome Cj using the function ENCODE shown in Algorithm 5 as described above. The
complete parity check matrix is obtained by appending the public key T to the identity
matrix I,_. The error vector is then hashed to obtain C; = H(2,e) and the ciphertext
C = (Cy, Cy). The session key is obtained by hashing the error vector e and the ciphertext
C; both hash operations use domain separation.

Decapsulation is shown in Algorithm 6. First, the ciphertext C is split into Cy and C}.
Then, the function DECODE (see Algorithm 7) is used to obtain the error vector e from Cy
and to verify that Cy = He. After the hash of e has been compared to C7, the shared
session key K is computed and returned.
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Algorithm 1 SEEDEDKEYGEN(S) algorithm (using PRNG G) [ABC'20, Sect. 2.4.3].

Compute E = G(0), a string of n + g2q + o1t + ¢ bits.

Define ¢’ as the last ¢ bits of E.

Define s as the first n bits of E.

Compute ayq,. .., a, from the next o2q bits of E' by the FIELDORDERING algorithm.
If this fails, set § < ¢’ and restart the algorithm.

Compute g from the next o1t bits of E by the IRREDUCIBLE algorithm.

If this fails, set 0 < ¢’ and restart the algorithm.

Define I' = (g, 1, v, . . ., & ). (Note that ay,11,...,aq are not used here.)

7. Compute (T, ¢p—p—p+1,---»Cn—k,I") < MATGEN(T).

If this fails, set § < ¢’ and restart the algorithm.
Write I as (g,04, 0%, ...,aL).
Output T as public key and (6, ¢, g, o, s) as private key, where ¢ = (¢r—g—p+1s- -+ Cn—k)

— / /!
and a = (af,..., 0, i1, ..., Q).

Algorithm 2 MATGEN(T") algorithm (systematic form) [ABC*20, Sect. 2.2.2].

1:

2:

4:

Compute the ¢ x n matrix H = {h, ;} over F,, where h; ; = a;_l/g(aj) fori=1,...,t
and j=1,...,n.

Form an mt x n matrix H over Fy by replacing each entry ug +u1z + -+ Up—12
of H with a column of m bits ug, ULy oy Upp—1-

Reduce H to systematic form (I,,_j | T) where I,y is an (n — k) x (n — k) identity
matrix.

If this fails, return L.

Return (7,T).

m—1

Algorithm 3 ENCAP(T) algorithm with hash-function H [ABC™20, Sect. 2.4.5].

Use FIXEDWEIGHT to generate a vector e € Fy of weight .
Compute Cy = ENCODE(e, T').

Compute C; = H(2,e). Put C = (Cy, C1).

Compute K = H(1,e,C).

Output ciphertext C and session key K.

Algorithm 4 FIXEDWEIGHT algorithm [ABC™20, Sect. 2.4.4].

1: Generate 17 uniform random bits bg, b1, ..., b5 r—1-

2: Define d; = Z?;Bl boyj+i2 for each j € {0,1,...,7 —1}.

3: Define ag,a1,...,a;—1 as the first ¢ entries in dy,d;,...,d._1 in the range
{0,1,...,n — 1}. If there are fewer than ¢ such entries, restart the algorithm.

4: If ap,aq,...,a;—1 are not all distinct, restart the algorithm.

5: Define e = (eg, e1,...,en—1) € FY as the weight-t vector such that e,, = 1 for each 1.

6: Return e.

Algorithm 5 ENCODE(e, T') algorithm [ABCT20, Sect. 2.2.3].

1:
2:

Define H = (I, | T).
Compute and return Cy = He € F;’_k.
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Algorithm 6 DEcaP ((4,c, g, a, s),C) algorithm [ABCT20, Sect. 2.3.3].

Split the ciphertext C as (Cy, C1) with Cy € F3~" and C; € F5.
Set b+ 1.
Extract s € F§ and I = (g, &}, &b, ..., af,) from the private key.

Compute e < DECODE(Cy,I). If e = L, set e + s and b + 0.
Compute Cf = H(2,e).

If C1 # C4, set e < s and b + 0.

Compute K = H(b,e,C).

Output session key K.

Algorithm 7 DECODE(Cy, ") algorithm [ABCT20, Sect. 2.2.4].
1: Extend Cy to v = (Cy,0,...,0) € Fy by appending k zeros.
2: Find the unique codeword c in the Goppa code defined by IV that is at distance <t
from v. If there is no such codeword, return L.
3: Sete=v+ec.
4: If wt(e) =t and Cy = He, return e. Otherwise return L.

3 Encapsulation, Decapsulation, and Key Generation

Classic McEliece KEM consists of three primitives: Key Generation (SEEDEDKEYGEN),
Encapsulation (ENCAP), and Decapsulation (DECAP). The algorithms for each primitive
are shown in Algorithm 1, Algorithm 3, and Algorithm 6 respectively. In this work, using
the Classic McEliece PKE code from [WSN18], we design and implement novel hardware
designs for all three primitives of Classic McEliece KEM. In the following sub-sections we
discuss the hardware design for each primitive on a high level by briefly elaborating on the
building blocks involved in their construction. The main building blocks for each primitive
are as follows:

o Encapr: SHAKE256, FIXEDWEIGHT, and ENCODE;
e DecApP: SHAKE256, DECODE, and FIELDORDERING;
o SEEDEDKEYGEN: SHAKE256, KEYGEN, and Fy systemizer.

In our hardware design, we re-use the hardware modules implementing FIELDORDERING
and DECODE from [WSN18]. Besides that, we tailor and improve the hardware module
implementing SHAKE256 from [WTJ"20] to cater our needs. We also use the improved
Fy systemizer designs discussed in [CCD 22, Sect. 4] to optimize the KeyGen hardware
module from [WSN18] that we use in the implementation of SEEDEDKEYGEN. We
design the remaining hardware modules for FIXEDWEIGHT, ENCODE, ENCcAP, DECAP
and SEEDEDKEYGEN from scratch. We make our hardware modules parameterizable such
that performance parameters can be set based on the targeted time-area trade off.

In the following sections we give a high-level overview of the implementation of our
modules. For each of the building blocks and the hardware designs of ENCAP, DECAP,
and SEEDEDKEYGEN we provide time and area comparison for exemplary performance
parameters and a comparison with related work wherever possible.

3.1 SHAKE256

Classic McEliece uses SHAKE256 for several purposes, e.g., for pseudo-random seed
expansion in key generation and for hashing in encapsulation in decapsulation. We are
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Table 2: Comparison of the time and area for our SHAKE256 module targeting Xilinx
Artix 7 (xc7a200t) FPGA.

Resources
parallel_slices Area Memory Cycles Freq. Time TimexArea
(LUTY) (LUTM) (FF) (cyc.) (MHz) (us)

1 739 25 482 5,010 150 33.40 24.68 x 103

2 878 50 455 2,306 146 15.79 13.86 x 103

4 920 100 360 1,086 147 7.39 6.799 x 103

8 1,169 200 270 542 148 3.66 4.279 x 103

16 1,817 400 226 270 150 1.80 3.271 x 103

LUTL = LUT as logic, LUTM = LUT as memory, FF = flip-flop

also using SHAKE256 as pseudorandom number generator (PRNG) in encapsulation.

We use the keccak module from [WTJ"20] to perform SHAKE256 operations in our
Classic McEliece design. This module was originally designed as a complete keccak module
that can perform all configurations of SHAKE and ¢cSHAKE. We tailor the existing keccak
hardware module as per the requirement of our hardware design. The modifications we
perform are as follows:

e Since our design only requires SHAKFE256, we removed all surplus logic and further
optimized the design for a more efficient area usage.

o We note that the keccak hardware design in [WTJT20] is functionally designed
only for 32-bit input data blocks; in our work, we extend its capability to process
byte-sized blocks.

o We added a forced exit signal (triggering this signal brings the control back to the
loading state and sets all the counters to their initial state) to the control logic of the
SHAKE256 module to support the parallel processing of seed expansion (described in
the FixedWeight module in Section 3.3.1) and § expansion (described in the seeded
key-generation module in Section 3.2).

The original design presented in [WTJ"20] provides a performance parameter to
control time-area trade-offs using parallelization. In our optimized design, we use a similar
parameter called parallel_slices that provides five different time-area trade-offs as
shown in Table 2. The SHAKE256 design has a 32-bit input interface (for all the variants
controlled by parallel_slices) that works on a simple valid-ready protocol.

The results targeting a Xilinx Artix 7 xc7a200t FPGA for all the variants are shown
in Table 2. The clock cycles shown in Table 2 include the cycles required for processing
one block of input (where the block size is 1088 bits) and generating a maximum of
1088 bits output. Currently, the design is limited to a maximum parallel_slices of
16 due to the structure of the round function of SHAKE256. In all our designs we use
parallel_slices = 16 as that provides the best time area product.

3.2 Seeded Key Generation

Our hardware design for seeded key generation (described in Algorithm 1) is shown
in Figure 1. From Algorithm 1, the seeded key-generation operation can be broken down
in to four main components:

1. Expanding § using a PRNG.
2. Generating permutation using the FIELDORDERING.
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Figure 1: Hardware design of SeededKeyGen module interfaced with SHAKE256 module.

3. Generating an IRREDUCIBLE polynomial.
4. Matrix generation using MATGEN.

To perform components two, three and four, we are using the key-generation module
KeyGen from [WSN18]. However, we replace corresponding components from [WSN1§]
with our optimizations for public key generation and our optimized systemizer modules.

The [WSN18] implementation does not include the first component, i.e., the expansion
of 6 using a PRNG to the inputs for private key generation (s, a, 8, and §’). Therefore, we
extend the existing key generator by adding a wrapper around the KeyGen module. The
wrapper consists of a distribution network that stores the secret seed s in a single ported
RAM (RAM_s), distributes the o and § values to the FieldOrdering and Irreducible
modules inside key generation respectively, and stores the §’ value (deltaprime in Figure 1)
in a single ported RAM (RAM_delta in Figure 1). The wrapper also provides an interface
for the connection to the SHAKE256 module described in Section 3.1.

It is possible that the operations IRREDUCIBLE, FIELDORDERING, or MATGEN in Al-
gorithm 1 may fail, in which case the key-generation operation needs to be rerun using ¢’ as
new §. We optimize our design by expanding the §’ values in advance for a potential next
iteration of key generation in case of a failure. The process of reseeding and expanding
0" works in parallel with the KeyGen module, which hides the time overhead required for
expanding 0’ in the next attempt of key generation.

The default secret key format in the specification includes 5 components (9, ¢, g, «, s),
where « is stored as control bits of a Benés network. Our module for key generation does
compute « (as a list of Fom elements) and s, but it does not use the control bits and hence
does not generate them to save time and area. In Section 3.4 we will explain that our
decapsulation module simply takes (9, ¢, g) as input. This is not the default secret key
format, but it is explicitly mentioned in the specification as a choice to compress secret
keys. We note that using (9, ¢, g) reduces the key size by a very large factor.

Table 3 shows the time and area results for our SeededKeyGen hardware module.
Reported clock cycles are the average cycles for a successful key generation including
unsuccessful attempts computed similar to as described in [CCDT22, Table 4] and using
s =t (here parameter s is the size of the processor array for Gaussian systemization and ¢
as in Table 1)..

The area estimates shown in the Table 3 do not include the area of the SHAKE256
module, since the SHAKE256 module is common in the SEEDEDKEYGEN, ENCAP, and
DEcAP modules. Hence, we provide the flexibility of either choosing a common SHAKE256
module for all operations in an area optimized target or choosing multiple SHAKE256 modules
for parallel processing in a performance optimized target. The first two (comparatively
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Table 3: Comparison of the time and area for our SeededKeyGen module targeting Xilinx
Artix 7 (xc7a200t) and Xilinx Zynq UltraScale+ (xczu49dr) FPGAs.

Resources

Param. Set Area Memory ACC Fpax Time TxA
(LUTY) (LUTM™) (FF) (BR) (DSP) (Mcyc.) (MHz.) (ms)

Xilinx Artix 7 (xc7a200t)

mceliece348864 25,532 290 37,185 165.0 4 1.0 142 6.8 0.17
mceliece460896 44,644 515 66,869 271.5 4 1.7 147 11.8 0.53
Xilinx Zynq UltraScale+ (xczu49dr)
mceliece348864 25,119 344 37,245 112.5 4 1.0 186 5.2 0.13

mceliece460896 44,631 577 66,894 234.5
mceliece6688128 58,881 408 89,174 365.0 2.8 164 174 1.02
mceliece6960119 55,489 579 85,662 369.0 2.7 155 17.2  0.95
mceliece8192128 59,127 407 89,200 425.0 4 3.1 158 19.3 1.14

LUTY = LUT as logic, LUTM = LUT as memory, FF = flip-flop, BR = BRAM, ACC = average clock
cycles, TXA = TimeXxArea

1.7 178 9.7 043

=~

smaller) parameter sets, mceliece348864 and mceliece460896 were able to fit on the
Xilinx Artix 7 xc7a200t FPGA. However, for the other three parameter sets the Block
RAM requirement for storing the public key is higher than the memory capacity of target
FPGA. Consequently, we use the Xilinx Zynq UltraScale+ ZCU216 evaluation platform
xczud9dr (which provides more Block RAM resources) as the target.

A noticeable resource difference can be seen between Xilinx Artix 7 and Xilinx Zynq
UltraScale+ FPGAs in terms of Block RAM utilization. This is caused by the synthesis
tool (Xilinx Vivado), which synthesises some part of memory using LUTs as memory
(distributed RAM) instead of Block RAM on the Zynq UltraScale+ FPGA.

The reported frequency in Table 3 is the maximum clock frequency for the SeededKeyGen
module standalone. The frequency value is reduced after interfacing it with the SHAKE256
module since the critical path of the design lies in the SHAKE256 module. We also observe
an improvement in maximum clock frequency, time, and time-area product for the Zynq
UltraScale+ (xczu49dr) FPGA when compared to the Artix 7 (xc7a200t) FPGA due to
their different manufacturing processes.

3.3 Encapsulation

As shown in Algorithm 3, the encapsulation function of Classic McEliece uses the func-
tions FIXEDWEIGHT and ENCODE. In this section we first describe how we use the
SHAKE256 module from Section 3.1 to generate a fixed-weight error vector implementing
the FIXEDWEIGHT function. Then we describe our re-implementation of the ENCODE
function, replacing the existing implementation from [WSN18]. Finally, we describe how
we implement the complete encapsulation function as specified in [ABCT20] using these
building blocks.

3.3.1 Fixed-Weight Vector Generation

The FIXEDWEIGHT function (Algorithm 4) generates a uniform random n-bit error vector
e of weight ¢t. The function assumes that there is a random number generator (RNG) that
can be used to generate uniformly distributed random bits. The FIXEDWEIGHT function
first generates a string of 707 random bits (where 7 = ¢ for mceliece8192128 and 7 = 2¢
for other parameter sets as specified in [ABCT20]). These random bits are arranged into
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7 m-bit integers. Out of these 7 integers, the first ¢ integers of value smaller than n are
selected. The selected t integers then indicate the indices of 1’s in e. If the number of
m-bit integers in the right range (i.e., < n) is less than ¢ or if there exist any duplicates
among the ¢ selected integers, the whole process needs to start over by generating another
string of 7o; random bits.

In our hardware implementation, we use a PRNG to generate these uniform random
bits from input seeds of length 512 bits. Our hardware module for FIXEDWEIGHT includes
this PRNG, and we assume that the seed will be initialized by another hardware module
implementing a true random number generator (TRNG). In our design we use SHAKE256
as a PRNG. To support regeneration of the next 701 random bits, our hardware design
actually generates 512 extra bits in addition to the 7o; random bits using the PRNG.
These 512 bits form a new seed that can be used when the process needs to start over in
case the current error-vector generation attempt fails. We note that this specific way of
generating random bits for FIXEDWEIGHT is an implementation choice we made and is
not a part of the specification.

The hardware design for the FixedWeight module is shown in the Figure 2a. We use
the SHAKE256 module described in Section 3.1 to expand a 512-bit seed to a (701 +512)-bit
string. Since the SHAKE256 module has a 32-bit interface, we load the new seed in chunks
of 32 bits and store it in a single port RAM (seed_RAM) as shown in Figure 2a. The
seed_RAM is updated each time a new seed is generated internally.

We use the module RangeCheck to ensure that there are ¢ integers in the right range
(i.e., < m). The integer values that pass the range checking are stored in a single-ported
RAM (int_RAM). Then the OneGen module is used to detect potential duplicates among
the integer values stored in int_RAM while it sets the error positions in the error vector e
stored in a dual ported RAM (e_RAM). The word width of the e_RAM is parameterizable
and can be chosen based on the desired time-area trade-off. This word width also defines
the output width of the error port of the OneGen module (shown in 2a).

To reduce the time penalty due to a potential failure during the FIXEDWEIGHT
computation, we reseed and expand the next seed values in advance for the next iteration
of FIXEDWEIGHT in parallel to an ongoing FIXEDWEIGHT computation. Since the process
of reseeding works in parallel to the OneGen module, we are effectively able to hide all
the clock cycles required for expanding the seed for the next attempt of FIXEDWEIGHT
error vector generation. Our design is constant-time for successful attempts of error vector
generation.

Table 4 shows the results for the FixedWeight hardware module for output widths
32 bits and 160 bits targeting an Xilinx Artix 7 xc7a200t FPGA. With an increasing
output width, the required number of BRAMs increases as well, because for a larger output
width more BRAMs need to be used for our e_RAM. Also, with the increase in output width,
the maximum clock frequency is reduced, because of some combinatorial logic overhead
from the address decoder in the OneGen module (shown in Figure 2a). The clock cycles
shown in Table 4 are the average cycles computed based on the success probability of
the FIXEDWEIGHT error vector generation process. We obtain the success probabilities
(provided in column “Prob.” of Table 4) for each parameter set using the methodology
described in [ABC*20, Sect. 4.4, p. 31].

The area estimates shown in the Table 4 do not include the area of the SHAKE256
module for the same reasons as described in Section 3.2. The reported frequency values
from Table 4 shows the maximum clock frequency for the FixedWeight module standalone.
The overall frequency when combining the FixedWeight module and the SHAKE256 module
is limited by the SHAKE256 module as described in Section 3.2.
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Table 4: Comparison of the time and area for our FixedWeight hardware module with
output word sizes 32-bits and 160-bits targeting Xilinx Artix 7 (xc7a200t) FPGA.

Resources

Param. Set Area Memory ACC Fpax Time TxA Prob.
(LUTY) (LUTM™) (FF) (BR) (kcyc.) (MHz)  (ps)

FixedWeight with output word size - 32 bit

mceliece348864 265 44 148 2.0 1.0 261 3.9 1.02 0.56
mceliece460896 291 58 157 2.0 2.2 261 84 245 0.36
mceliece6688128 287 58 158 2.0 3.5 259 13.6  3.90 0.29
mceliece6960119 310 84 157 2.0 2.7 262 104  3.24 0.36
mceliece8192128 272 32 148 2.0 1.9 262 7.1 194 0.37
FixedWeight with output word size - 160 bit
mceliece348864 488 44 152 5.5 1.0 170 59 288 0.56
mceliece460896 554 58 156 5.5 2.2 153 144 798 0.36
mceliece6688128 542 58 159 5.5 3.5 148 23.8 1292 0.29
mceliece6960119 566 84 158 5.5 2.7 152 18.0 10.18 0.36
mceliece8192128 509 58 158 5.5 1.9 151 124 6.30 0.37

LUTL = LUT as logic, LUTM = LUT as memory, FF = flip-flop, BR = BRAM, ACC = average clock
cycles, TxA = TimexArea, Prob. = Success Probability

3.3.2 Encoding Function

The ENCODE function (Algorithm 5) takes a weight-t error vector e € F} generated by

the FIXEDWEIGHT function and a public key T € Fén_k)Xk as an input and generates a
ciphertext Co = (I,_x | T)eT € Fy~*. We first analyzed the hardware implementation of
the encoding module provided in [WSN18]. Although that design of the encoding module
performs well in terms of cycles and frequency as shown in Table 5, the module requires
inputs of the full length of public key columns per clock cycle. This results in a significant
resource cost. Furthermore, [WSN18] stores the public key in column major format, which
introduces additional effort to import and export a key adherent to the specification, since
the specification requires the public key to be represented in row major format.

We address these issues by implementing a sequential Encode module. The hardware
design for our sequential Encode module is shown in Figure 2b. We follow a RAM-based
approach in order to avoid the usage of large registers as in [WSN18]. Since the first n — k
columns of the public key matrix H are always the identity matrix, we efficiently perform
the multiplication of the error vector e with this sub-matrix by copying the first n — k
elements (i.e., bits) of e directly to the RAM_Encode with the help of a shift register (shown
in Figure 2b).

We are using the same storage format for the right part T of the public key matrix
as for the generation of the public key by storing the matrix in column blocks. On the
one hand, this simplifies loading the public key in row-major format into the memory and
on the other hand, this simplifies to share the large memory of the public key between
key generation and encoding for a joint design. Hence, for processing the right side of
the matrix H, we load the rows of the public key in chunks of the width of the column
blocks in each clock cycle. The column-block size for the computation is parameterizable
and can be chosen freely depending on the targeted time-area trade-off (or according
to the choice made for key generation in a joint design). However, in our design, the
ciphertext is always consolidated in 32-bit words and stored in “RAM_Encode” irrespective
of the block size chosen for the public key matrix. Our hardware design is constant-time,
compatible with all recommended parameter sets given in the third-round specification
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Figure 2: Hardware designs of the FixedWeight error-vector generation module and the
sequential Encode module.

document [ABC'20], and is parameterizable in terms of the column-block size for the
public key matrix and the error vector input width.

Table 5 shows performance results for our sequential Encode module for the column-
block sizes 32-bits and 160-bits in comparison to the reference implementation of [WSN18§]
targeting an Xilinx Artix 7 xc7a200t FPGA for all the recommended parameter sets.
From the area results shown in Table 5 it can be seen that our sequential implementation is
highly optimized in terms of area, while the full-width module from [WSN18] requires much
fewer cycles at a significant cost in resources. However, when increasing the column-block
size, the efficiency of our design improves in regard to both clock cycles and time-area
product. We also observe that as the column-block size is increased the maximum clock
frequency decreases because the depth of the combinatorial logic performing addition and
multiplication increases in the Encode module (shown in Figure 2b).

3.3.3 H(2,e) and H(b, e, C) Functions

As specified in [ABCT20] we use SHAKE256 as the hash function H in Algorithm 3. For
H(2,e), we prepend the byte 0x02 to the most significant part of the error vector e and
calculate the hash value as directed in the specification [ABCT20]. For H(b,e,C), we
prepend the byte 0x0b to the most significant part of the error vector e and append the
ciphertext C. The resulting bit vector is sent to the hash function and a hash value is
calculated as directed in the specification [ABC*20]. To compute the aforementioned
hash values efficiently, we design a Hash_Processor. In this design, we interface a block
RAM (which we refer to as Hash_RAM) with the SHAKE256 module such that the specified
number of bytes are fetched from the block RAM and the hash computation is performed
on them afterwards. We use this approach to eliminate complex multiplexing logic at
the input of the SHAKE256 module that would potentially impose negative effects on the
overall maximum clock frequency.
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Table 5: Comparison of the time and area for our sequential Encode module with two
exemplary column-block widths of 32 and 160 bit vs. the full-width hardware design
from [WSN18] targeting a Xilinx Artix 7 xc7a200t FPGA.

Resources
Param. Set Area Memory  Cycles Freq. Time TimexArea
(LUTY) (FF) (BR) (MHz) (us)

32-bit design (Our Design)
mceliece348864 139 167 1 66,053 337 195.9 15.87 x 103
mceliece460896 144 173 1 132,293 329 401.9 35.37 x 103
mceliece6688128 150 175 1 262,917 337 780.3 71.01 x 103
mceliece6960119 160 196 1 264,542 319 828.6 72.08 x 103
mceliece8192128 145 176 1 341,125 335 1,019 83.55 x 103

160-bit design (Our Design)
mceliece348864 313 321 1 13,289 197 67.46 10.55 x 103
mceliece460896 313 326 1 27,461 201 136.5 21.02 x 103

mceliece6688128 322 393 1 54,917 196 279.9 47.03 x 103
mceliece6960119 333 350 1 54,150 190 284.6 47.24 x 103
mceliece8192128 320 394 1 69,893 199 351.8 54.89 x 103

Full-width implementation [WSN18]

mceliece348864 4,267 3,504 0 2,720 312 8.718 37.20 x 103
mceliece460896 5,866 4,624 0 3,360 330 10.18  59.73 x 103
mceliece6688128 8,365 6,705 0 5,024 322 15.60 130.5 x 103
mceliece6960119 8,519 6,977 0 5413 310 17.46  148.8 x 103
mceliece8192128 9,869 8,209 0 6,528 321 20.33 200.7 x 103

LUTY = LUT as logic, FF = flip-flop, BR = BRAM

3.3.4 Complete Encapsulation Module

The hardware design for the complete encapsulation module implementing Algorithm 3 is
shown in Figure 3. We are using the FixedWeight, Encode, and Hash_Processor modules
described in the previous paragraphs as building blocks in the implementation. In order
to be able to share the SHAKE256 module with other Classic McEliece functions (e.g.,
key generation), we are using a 32-bit interface that is compatible with the SHAKE256
module and multiplex all inputs going to SHAKE256 module via this interface. We start
with computing the FIXEDWEIGHT error vector. Then, we compute ENCODE and H(2,e)
operations (to generate ciphertext Cy and Cj respectively) in parallel completely hiding
the cycles taken for C;. We achieve this by storing e inside a dual-port RAM in the OneGen
module (within FixedWeight module, described in Section 3.3.1). Then we compute
H(1,e,C) to generate the session key K.

Our design is constant-time and parameterizable across all the recommended parameter
sets described in the third-round specification [ABC*20]. We take advantage of the param-
eterizable column-block width of the Encode module (described in Section 3.3.2) and the
parameterizable error-vector output width of the FixedWeight (described in Section 3.3.1)
and add a similar parameterizable capability to our Encap hardware module. Since the
Encap module has the public key as an input, our design allows a free choice of the key
column-block size depending upon on the desired time-area trade-off. Based on the choice
of the column-block size, the error vector output width from FixedWeight is adjusted
internally to support the ENCODE operation.

Table 6 shows the area and time utilization results for our Encap hardware module
for key column-block widths of 32-bits and 160-bits targeting a Xilinx Artix 7 xc7a200t
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Figure 3: Hardware design of Encap module interfaced with SHAKE256.

FPGA. The clock cycles in Table 6 include the average cycles taken by FixedWeight error
vector generation module (computed based on the success probability as described in
Section 3.3.1), cycles taken by Encode module and hash computation for K. The area
estimates shown in Table 6 do not include the area of the SHAKE256 module. The reported
frequency in Table 6 shows the maximum clock frequency of Encap module standalone for
all the parameter sets. As discussed before, the frequency is lower when the Encap module
is interfaced with the SHAKE256. Across all the parameter sets we observe that as the
column-block size is increased, the efficiency of our design improves. This can be observed
in terms of a decrease in the number of clock cycles for the encapsulation operation and a
better time-area product.

3.4 Decapsulation

In this section, we present our efficient, modular, and constant-time hardware implementa-
tion of the DECAP operation defined in Algorithm 6. Our implementation uses the Decode
module from [WSN18] as building block. An overview of our Decap hardware module is
shown in Figure 4.

The DEcAP function takes a ciphertext C' (Cpy,Cy) and a secret key as inputs and
outputs the session key K (see Algorithm 6). The default secret key format includes 5
components (4, ¢, g, a, s), but our decapsulation module takes (9, ¢, g) as input. Therefore,
our decapsulation module regenerates « (as a list of Fom elements) and s by expanding ¢
so that decapsulation can be carried out. The corresponding decapsulation process can
thus be broken down into four main components:

1. Expand § (the secret seed) using the PRNG into n + o2q bits, use the most significant
n bits as S, and rest of the bits (i.e. oaq bits) will be used to generate a.

2. Compute « as a list of field elements from the oyq bits using FIELDORDERING.

3. DECODE the fixed-weight error vector from the permutation output and Cj.

4. Compute the H.

We perform the § expansion using the SHAKE256 module described in Section 3.1 and
generate a total of n 4+ g2q pseudorandom bits. As described in Section 3.1, the SHAKE256
module has a 32-bit interface and therefore generates 32-bits of output per cycle. We
build a distribution network to distribute the generated psuedorandom bits to appropriate
modules (as shown in Figure 4). Out of the generated n + go¢-bits, the first n-bits are
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Table 6: Comparison of the time and area for our Encap hardware module for column-block
sizes 32-bits and 160-bits targeting Xilinx Artix 7 (xc7a200t) FPGA.

Resources

Parameter Set  Area Memory Cycles Freq. Time TxA
(LUTY) (LUTM) (FF) (BR) (kcyc.) (MHz)  (us)

Encap with column-block size = 32-bits

mceliece348864 679 76 423 4 67.98 215 316.2  214.7 x 103
mceliece460896 713 64 427 4 135.6 219 619.1  441.4 x 10?
mceliece6688128 731 90 446 4 267.9 204 1,313 959.9 x 103
mceliece6960119 809 116 482 4 268.9 217 1,239 1,002 x 103
mceliece8192128 718 90 414 4 344.8 204 1,690 1,214 x 103
Encap with column-block size = 160-bits
mceliece348864 1,110 76 577 7.5 1575 174 90.52  100.5 x 10?
mceliece460896 1,209 90 591 7.5 28.19 144 195.8  236.7 x 103

mceliece6688128 1,190 90 664 7.5  32.55 142 229.2 272.8 x 103
mceliece6960119 1,240 116 636 7.5 58.50 147 398.0 493.5 x 103
mceliece8192128 1,181 90 677 7.5 70.02 146 479.6 566.4 x 103

LUTL = LUT as logic, LUTM = LUT as memory, FF = flip-flop, BR = BRAM, TxA = Timex Area

stored as s in the Block RAM (RAM_s as shown in Figure 4). The word size of RAM_s is
32-bits. The following o2¢-bits are broken down into two 16-bit numbers. From each 16-bit
number j; the m least significant bits are used as input for the FieldOrdering module.

The FieldOrdering module computes the ¢ field elements of the support a. After
the FIELDORDERING step is completed, we the use permutation output, the polynomial g
(poly_g in Figure 4), and the first part of the ciphertext (i.e., C1) to decode the error
vector using the Decode module (shown in Figure 4). We use the FieldOrdering and
Decode hardware modules from the implementations provided in [WSN18]. After the error
vector has been decoded, the error vector is loaded into the Hash_RAM and the functions
H(2,e) and H(b, e, C) are computed as described in Section 3.3.3. In case of a decoding
failure, we load s into the Hash_Processor instead of the error vector as described in
Algorithm 6 and perform the same steps as above.

We use a 32-bit interface that is compatible with the SHAKE256 module to multi-
plex inputs from ¢ expansion and H calculation into the SHAKE256 module. The Decode
module from [WSN18] uses the number of multipliers inside the Berlekamp-Massey de-
coder as a performance parameter, which is defined using parameters ‘mul_sec_BM’ and
‘mul_sec_BM_step’. We set both these parameters to 20 to obtain a good time-area balance.

Within the Decode module, after the error vector is recovered, a ReEncrypt module gets
triggered to check the validity of the recovered error. Specifically, as shown in Algorithm 7,
a validity check ensures that the hamming weight of e is t and Hv = He. The first step
within re-encryption is to scan the error vector e to extract its hamming weight. This step
also packs the indexes of the ¢ nonzero bits of e to a vector error_bits_indexes.

A direct check of Hv = He requires the parity check matrix H and hence the large
public key, which is actually not necessary. As described in the specification [ABC™20,
Sect. 2.2.4], we use the double-size parity check matrix H (2) as the parity check matrix and
compare H®v with H®e in our design. Since the computation of the double-size syndrome
H®)y [WSN18] is already a sub-module within the Decode module, the computation of
H®@e can directly reuse this sub-module with the error_bits_indexes signal provided
as input. Since error_bits_indexes always encodes the information of ¢ indexes of e, it
is ensured that the re-encryption step is constant-time. Using this approach, the overhead
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Figure 4: Hardware design of Decap module interfaced with SHAKE256 module.

Table 7: Comparison of the time and area for our Decap hardware module targeting Xilinx
Artix 7 (xc7a200t) FPGA.

Resources

Parameter Set Area Memory Cycles Freq. Time TxA
(LUTY) (LUTM) (FF) (BR) (kcyc.) (MHz) (ms)
mceliece348864 15,557 314 29,984 34.5 100.2 180  0.56  8.711 x 103
mceliece460896 24,698 540 46,509 70.5 201.7 176 1.15 28.36 x 103
mceliece6688128 25,848 330 54,527 52.5 216.0 175  1.24 31.96 x 10°
mceliece6960119 29,546 546 58,126 70.5 210.9 171 1.23 36.36 x 103
mceliece8192128 26,633 330 59,048 52.5 219.1 174  1.26 33.43 x 103

LUTL = LUT as logic, LUTM = LUT as memory, FF = flip-flop, BR = BRAM, TxA = Timex Area

for re-encryption is very small, both in terms of area utilization and clock cycles.

Table 7 shows results for the Decap hardware module for all the parameter sets. The
area estimates shown in Table 7 do not include the area of the SHAKE256 module. We
observe that more than 80% of the cycles for the DECAP operation are taken by the ¢§
expansion and FIELDORDERING steps. This overhead can be reduced by buffering «
between consecutive decoding operations that using the same private key. The frequency
values reported in Table 7 are the maximum clock frequency of our Decap module standalone.
However, the maximum clock frequency is limited by the SHAKE256 module when interfaced
with our Decap module as explained before.

4 Classic McEliece KEM — Joint Design

In this section, we present our hardware design of a joint Classic McEliece design combining
our Encap, Decap, and SeededKeyGen modules described in Section 3 into one overall
design. In order to build a resource-efficient joint design we start with identifying the
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Table 8: Comparison of the time and area for our joint hardware design of Classic McEliece
with other code-based schemes (as there is no other complete hardware implementation of
Classic McEliece KEM to compare with) targeting Xilinx Artix 7 (xc7a200t) FPGA.

Resources

Design Logic Memory F Encap Decap KeyGen
(LUT) (DSP) (FF) (BR) (MHz) (Mcyc.) (ms) (Mcyc.) (ms) (Mcyc.) (ms)
mceliece348864 (our design)

Lw 23,890 5 45,658 138.5 112 0.13 1.1 0.17 1.5 888 79.2
HS 40,018 4 61,881 1775 113 0.03 0.3 0.10 0.9 0.97 8.6

BIKE - L1 [RBMG20]
LW 12,868 7 5354 17.0 121 020 1.2 162 133 267 219
HS 52,967 13 7,035 490 96 001 01 019 19 026 26

HQC - L1 (HLS design) [AAB*20]
LW 8,900 0 6,400 14.0 132 1.50 114 210 159 0.63 4.7
HS 20,000 0 16,000 12.5 148 0.09 0.6 0.19 1.3 0.04 0.3
LW = LightWeight, HS — HighSpeed, FF = flip-flop, F = Fiax, BR = BRAM

sub-modules that can be shared among these three primitives:

1. SHAKE256: As discussed in Sections 3.2 to 3.4, the SHAKE256 module is common
among all three primitives key generation, encapsulation, and decapsulation. The
resource utilization for the SHAKE256 module is reported in Table 2.

2. FIELDORDERING: The FIELDORDERING operation is common among the DECAP
and SEEDEDKEYGEN algorithms as described in Section 3.4. For the parameter set
mceliece348864, the FieldOrdering hardware module takes up 94% and 14% of
the Block RAM resources of the Decap and SeededKeyGen modules respectively.

3. Additive FFT: The KeyGen and Decode modules described in [WSN18] use similar
AdditiveFFT modules. For the parameter set mceliece348864, the AdditiveFFT
module takes up to 17% of the resources of Decap and up to 28% of SeededKeyGen.

4. Public Key Memory: As discussed in Section 3.2, the public key memory has huge
impact on the Block RAM usage in the SeededKeyGen module. Duplicating it for
ENcAP would double the number of required Block RAM resources.

To save the resource overhead that would result from duplicating these hardware
components, we decided to share them between the corresponding modules. To differen-
tiate between the three operations SEEDEDKEYGEN, DECAP, or ENCAP, we add a 2-bit
instruction port to our joint hardware design to indicate which of the three operations
should be performed.

Table 8 shows the time and area results for our joint Classic McEliece design in two
flavors, lightweight (L) and high-speed (H.S). Since there exists no other Classic McEliece
hardware design to compare to, we compare our design to existing hardware designs of the
code-based cryptography KEM schemes BIKE from [RBMG20] and HQC from [AAB™20)
(high-level synthesis from C code) at NIST security level 1. For our HS design we choose
the modules and performance parameters as described in Section 3, whereas for our LW
design, we select the KeyGen module with DPEA systemizer (described in [CCDT22, Sect.
4]) with s = 12, the Encap module with column-block size = 12 (Section 3.3.4), and
we choose the smallest possible performance parameters for the Decode module (from
[WSN18]), i.e., mul_sec_BM = 1 and mul_sec_BM_step = 1.

We observe that the area footprint for our HS Classic McEliece hardware design is
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smaller than that of the HS BIKE design in terms of logic utilization and lies in between
BIKE and HQC. Time taken by our Encap module is faster in all the cases except in case
of HS implementation of BIKE. Our HS and LW Decap module is 9x and 2x faster than
HS and LW BIKE implementation and 11x and 1.5x faster than the HS and LW HLS
implementation of HQC respectively, even though our design includes re-computation of
the support a. We also observe that the overall maximum clock frequency of our LW and
HS joint designs is limited due to the SHAKE256 module as described in Section 3.

Conclusion. Overall, our design has a relatively high resource cost for the LW variant
but shows overall a very good performance at a good cost for the HS variant. Hence, in
regard to hardware implementation Classic McEliece competes well with other code-based
schemes. In particular the relatively high cost of key generation can be compensated well
using optimized systemizer designs if sufficient resources are available.
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A Appendix

Algorithm 8 Hybrid Early-Abort Systemizer (HEA)

IHPUt: E[ = (H:L | H:R), where ﬁL < anik)x(nik) and ﬁR c ]an’fk)Xk

Output: T € Fg"_k)m such that (In,;C | T) is the systematic form of ﬁ, or L
1: A<+ IfL
2: fori=0ton—k—1do
3: forj=i+1ton—k—1do

4: if Ai,i =0 and A]';i =1 then

5: forc=iton—k—1do

6: swap A; . with A4; .

7 end for

8: elseif A;; =1and A;; =1 then
9: forc=iton—k—1do

10: Aj,c — A]}c + Ai,c

11: end for

12: end if

13: end for

14: if Ai,i 7& 1 then

15: return | > H is not systemizable.
16: end if

17: end for

18: B+ H

19: fori=0ton—k—1do
20: forj=i+1ton—k—1do

21: if Bi,i =0 and Bj,i =1 then
22: forc=iton—1do

23: swap B; . with B; .

24: end for

25: else if B;; =1 and B;; =1 then
26: forc=iton—1do

27: Bj,c — Bj,c + Bi,c

28: end for

20: end if

30: end for

31: for j=0toi—1do

32: if Bj,i =1 then

33: forc=iton—1do

34: Bj,c — Bj,c + Bi,c

35: end for

36: end if

37 end for

38: end for

39: return the matrix formed by the last k& columns of B
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Algorithm 9 Single-Pass Early-Abort Systemizer (SPEA)

Input: H = (ffL | }fR), where HL € IE‘én_k)X("_k) and HE € Fén—k)xk

Output: T € Fénik)x}c such that (In_k | T) is the systematic form of H, or L
1: for{=0ton—k—1do

2: Pe = 12
3: end for
4: A+ HL
5: fori=0ton—k—1do
6: for j=i+1ton—k—1do
7 if Az,z =0 and Ajﬂ' =1 then
8: forc=iton—k—1do
9: swap A; . with A4; .
10: end for
11: pi+J
12: elseif A;; =1and A;; =1 then
13: forc=i+1ton—k—1do
14: Aj,c — Aj,c + Ai,c
15: end for
16: end if
17: end for
18: if Ai,i ;é 1 then
19: return L
20: end if
21: for j=0toi—1do
22: if Aj,i =1 then
23: forc=i+1ton—k—1do
24: Aj,c — Aj,c + Ai,c
25: end for
26: end if
27: end for
28: end for
29: B+ HE
30: fori=0ton—k—1do
31: forj=i+1ton—k—1do
32: if p;, = j then
33: forc=1itok—1do
34: swap B; . with Bj .
35: end for
36: else if HL;; =1 then
37 forc=1itok—1do
38: add Bi,c to Bj,c
39: end for
40: end if
41: end for
42: for j=0toi—1do
43: if Aj,i =1 then
44: forc=itok—1do
45: add Bi,c to Bj7c
46: end for
47: end if
48: end for
49: end for

50: return B

> H is not systemizable.
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Algorithm 10 Dual-Pass Early-Abort Systemizer (DPEA)

Input: H = (ffL | }fR), where HE € Fé”_k)x("_k) and HE ¢ Féﬂ—k)xk
Output: T € F;nfk)m such that (I,—x | T) is the systematic form of H, or L

1: for{=0ton—k—1do

2: pe =1
3: end for
4: A« HE
5: fori=0ton—k—1do
6: for j=i+1ton—k—1do
T if Alﬂ =0 and Ajﬂ; =1 then
8: forc=iton—k—1do
9: swap A; . with A; .
10: end for
11: piJ
12: elseif A;; =1and A;; =1 then
13: forc=i+1ton—k—1do
14: Aj,c — Aj,c + Ai,c
15: end for
16: end if
17: end for
18: if Aiﬂ' 7£ 1 then
19: return |
20: end if
21: end for
22: B« HFE
23: fori=0ton—k—1do
24: forj=i+1ton—k—1do
25: if p;, = 7 then
26: forc=1ito k—1do
27: swap B; . with B; .
28: end for
29: else if A;; =1 then
30: forc=itok—1do
31: add Bi,c to Bj,c
32: end for
33: end if
34: end for
35: end for
36: fori=n—k—1to0do
37: for j=i—1to0do
38: if Aj,i =1 then
39: forc=itok—1do
40: add Bi,c to ij
41: end for
42: end if
43: end for
44: end for
45: return B

> H is not systemizable.
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