
LITE Kernel RDMA Support for Datacenter
Applications

Shin-Yeh Tsai
Purdue University
tsai46@purdue.edu

Yiying Zhang
Purdue University
yiying@purdue.edu

ABSTRACT
Recently, there is an increasing interest in building data-
center applications with RDMA because of its low-latency,
high-throughput, and low-CPU-utilization benefits. How-
ever, RDMA is not readily suitable for datacenter applications.
It lacks a flexible, high-level abstraction; its performance
does not scale; and it does not provide resource sharing or
flexible protection. Because of these issues, it is difficult to
build RDMA-based applications and to exploit RDMA’s per-
formance benefits.
To solve these issues, we built LITE, a Local Indirection

TiEr for RDMA in the Linux kernel that virtualizes native
RDMA into a flexible, high-level, easy-to-use abstraction
and allows applications to safely share resources. Despite
the widely-held belief that kernel bypassing is essential to
RDMA’s low-latency performance, we show that using a
kernel-level indirection can achieve both flexibility and low-
latency, scalable performance at the same time. To demon-
strate the benefits of LITE, we developed several popular
datacenter applications on LITE, including a graph engine, a
MapReduce system, a Distributed Shared Memory system,
and a distributed atomic logging system. These systems are
easy to build and deliver good performance. For example, our
implementation of PowerGraph uses only 20 lines of LITE
code, while outperforming PowerGraph by 3.5× to 5.6×.

CCS CONCEPTS
• Networks → Network design principles; Program-
ming interfaces; Data center networks; • Software and
its engineering → Operating systems; Message pass-
ing;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5085-3/17/10. . . $15.00
https://doi.org/10.1145/3132747.3132762

KEYWORDS
RDMA, indirection, network stack, low-latency network

ACM Reference Format:
Shin-Yeh Tsai and Yiying Zhang. 2017. LITE Kernel RDMA Support
for Datacenter Applications. In Proceedings of SOSP ’17, Shanghai,
China, October 28, 2017, 19 pages.
https://doi.org/10.1145/3132747.3132762

1 INTRODUCTION
Remote Direct Memory Access (RDMA) is the ability of di-
rectly accessing memory on a remote machine through net-
work. RDMA provides low latency, high bandwidth, and low
CPU utilization, and has been widely adopted in High Perfor-
mance Computing environments for many years [32, 51, 55].
Because of datacenter applications’ need for low-latency

network communication and because of the more mature
hardware support for RDMA [12, 17, 28, 41, 42, 54, 57, 60],
there has been increasing interest from both academia and
industry in recent years to build RDMA-based datacenter
applications [6, 11, 19, 20, 37–39, 52, 58, 69, 70, 77, 78, 81, 82].
Although many design choices in RDMA suit a confined,

single-purpose environment like HPC well, native RDMA
(i.e., unmodified RDMA hardware, driver, and default li-
braries) is not a good fit for the more general-purposed,
heterogeneous, and large-scale datacenter environments be-
cause of the following three reasons.
First, there is a fundamental mismatch between the ab-

straction native RDMA provides and what datacenter appli-
cations desire. Datacenter applications usually build on high-
level abstractions, but native RDMA provides a low-level ab-
straction that is close to hardware primitives. As a result, it is
not easy for datacenter applications to use RDMA and even
more difficult for them to exploit all the performance ben-
efits of RDMA. Most RDMA-based datacenter applications
require customized RDMA software stacks [19, 20, 37–39, 58],
significant amount of application adaptation [6, 70, 81], or
changes in RDMA drivers [19, 39].
The second reason why native RDMA does not fit dat-

acenter usages is because there is no software to manage
or protect RDMA resources. RDMA manages and protects
resources at the hardware level, and it lets user-level appli-
cations directly issue requests to RDMA NICs (called RNICs)

306

https://doi.org/10.1145/3132747.3132762
https://doi.org/10.1145/3132747.3132762

SOSP ’17, October 28, 2017, Shanghai, China Shin-Yeh Tsai and Yiying Zhang

bypassing kernel. This design causes at least three draw-
backs for datacenter applications: lack of resource sharing,
insufficient performance isolation, and inflexible protection.

The third issue of native RDMA is that the current architec-
ture of RDMA cannot provide performance that scales with
datacenter applications’ memory usage. When bypassing
kernel, RDMA inevitably adds burden to RNICs by moving
privileged operations and metadata to hardware. For exam-
ple, RNICs store protection keys and cache page table entries
for user memory regions in its SRAM. It is essentially difficult
for this architecture to meet datacenter applications’ mem-
ory usage demand, since the increase of on-RNIC memory
capacity is slow and is cost- and energy-inefficient.
The root cause of all the above issues is RDMA’s design

of letting applications directly access hardware RNICs. Al-
though this design minimizes software overhead, the issues
it causes will largely limit RDMA’s adoption in datacenters.
We propose to virtualize the low-level, inflexible native

RDMA abstraction into a flexible and easy-to-use one that
can better support datacenter applications, and to build this
virtualization layer in the kernel space to manage and safely
share RDMA resources across applications.

We built LITE, a Local Indirection TiEr in the kernel space
to virtualize and manage RDMA for datacenter applications.
LITE organizes memory as virtualized memory regions and
supports a rich set of APIs including various memory op-
erations, RPC, messaging, and synchronization primitives.
Being in the kernel space, LITE safely manages privileged re-
sources, provides flexible protection, and guarantees perfor-
mance isolation across applications. Figures 1 and 2 illustrate
the architecture of native RDMA and LITE.

Our approach of onloading [68] functionalities into kernel
is the opposite to RDMA and many other recent networking
systems’ [16, 40, 71] approach of offloading functionalities
into hardware. It is widely held that RDMA achieves its low-
latency performance by directly accessing remote memory,
bypassing kernel, and zero memory copy. We revisited these
three techniques and found that with a good design, using a
kernel-level indirection layer can preserve RDMA’s perfor-
mance benefits and avoid the drawbacks of native RDMA
caused by kernel bypassing.
First, we add a level of indirection only at the local node

and still ensure that one-sided RDMA operations directly
access remote memory. Second, we onload only the man-
agement of privileged resources from hardware to kernel
and leave the rest of the network stack at hardware. Doing
so not only preserves native RDMA’s performance but also
solves the performance scalability issues caused by limited
on-RNIC SRAM. Third, we avoid memory copy between user
and kernel spaces by addressing user memory directly with
physical addresses. Finally, we designed several optimization
techniques to minimize system call overhead.

Internally, LITE consists of an RDMA stack and an RPC
stack. The RDMA stack manages LITE’s memory abstrac-
tion by performing its own address mapping and permission
checking. With this level of indirection, we safely remove
these two functionalities and the resulting scalability bottle-
necks from RNICs without any changes in RNICs or drivers.
LITE implements RPC with a new mechanism based on two-
sided RDMA and it achieves flexibility, good performance,
low CPU utilization, and efficient memory space usage at the
same time. On top of these two stacks, we implement a set of
extended higher-level functionalities and QoS mechanisms.
Our evaluation shows that compared to native RDMA

and existing solutions that are customized to certain applica-
tions [38, 39], LITE delivers similar latency and throughput,
while improving flexibility, performance scalability, CPU
utilization, resource sharing, and quality of service.
We further demonstrate the ease-of-use, flexibility, and

performance benefits of LITE by building four distributed
applications on LITE: an atomic logging system, a MapRe-
duce system, a graph engine, and a kernel-level Distributed
Shared Memory (DSM) system. These systems are easy to
build and perform well. For example, our implementation of
graph engine has only 20 lines of LITE code, which encapsu-
late all the network communication functionalities. While
using the same design as PowerGraph [25], this LITE-based
graph engine outperforms PowerGraph by 3.5× to 5.6×. Our
LITE-based MapReduce is ported from a single-node MapRe-
duce implementation [65] with 49 lines of LITE code, and it
outperforms Hadoop [1] by 4.3× to 5.3×.

Overall, this paper makes the following key contributions:

• We identify three main issues of using native RDMA in
datacenter environments and the root cause of them.
• We are the first to propose virtualizing RDMA with
a generic kernel-level indirection layer for datacenter
RDMA applications.
• We designed a set of mechanisms to minimize the
performance overhead of kernel-level indirection and
demonstrated the possibility of virtualizing RDMA
while preserving (or even improving) its performance.
• We built the LITE system which solves all the three
issues of native RDMA for datacenter applications. Dat-
acenter applications can easily use LITE to perform
low-latency network communication and distributed
operations. RNICs can decrease its hardware complex-
ity and on-RNIC memory by relying on LITE to man-
age and protect its resources.
• We developed four datacenter applications on LITE,
evaluated their performance, and summarized our ap-
plication programming experience.

Our implementation of LITE and LITE-based applications
is publicly available at https://github.com/Wuklab/LITE.

307

https://github.com/Wuklab/LITE

LITE Kernel RDMA Support for Datacenter Applications SOSP ’17, October 28, 2017, Shanghai, China

OS RNIC Driver

User-Level RDMA
App

Verbs
Abstraction

RNIC

node,
lkey,
rkey
addr

Cluter
Mgmt

Connections
Queues, Threads

Send/Recv Buffers

User-Level Messaging
App

Permission check
Address mapping

lkey 1

lkey n

rkey 1

rkey n

Connections
Queues, Threads
Keys, Mem Space

… …

send

recv

Connections
Queues

Library

Conn &
Buffer
Mgmt

Conn
Mgmt

Conn
Mgmt

Buffer
Mgmt

Mem
Mgmt

send
recv

Cached
PTEs

Page Table

Figure 1: Traditional RDMA Stack.

OS

RNIC Driver

LITE 1-Sided
RDMA

User-Level
App

Kernel App

global rkey

LITE
Abstraction

Verbs
Abstraction

Permission check
Address mapping

RNIC

addr1 addr2

global lkey

LITE
RPC

LITE APIs

Mgmt

lh1 lh2

mgmt mem RPC

Connections
Queues

RPC
Client

msgingsynch

User-Level
App

global rkey

global lkey
send poll recv

User-Level RPC
Function

RPC
Server

RDMA
Buffer
Mgmt

Figure 2: LITE Architecture.

2 BACKGROUND AND ISSUES OF RDMA
This section provides a brief background of RDMA, its usage
in datacenters, and its limitations for datacenter applications.
Figure 1 illustrates the architecture of native RDMA and how
applications work with it.

2.1 Background on RDMA
RDMA allows user-space applications to directly read or
write remote memory without kernel interference or mem-
ory copying. RDMA supports both one-sided and two-sided
communication. One-sided RDMA operations directly ac-
cess memory at a remote node without involving the remote
node’s CPU. Two-sided RDMA operations inform the remote
node of a delivered message.
RDMA supports reliable and unreliable connections (RC

and UC) and unreliable datagram (UD). The standard inter-
face of native RDMA is a set of operations collectively called
Verbs. Native RDMA allows accesses from both user space
and kernel space using Verbs.
RDMA communication is implemented using various

types of queues. RC communication is established by building
a pair of queues between two nodes, called a queue pair (QP).
To perform a one-sided RDMA operation, an application pro-
cess at a remote node needs to first register a memory region
(MR), obtain a remote protection key (called rkey) for the
MR, and convey the virtual address of the MR and its rkey to
the local node. The local host also needs to register a local
MR for the read/write buffer and can then perform RDMA
operations by posting requests on a send queue (SQ). The
RDMA read/write operation returns as soon as the request
is sent to RNIC. Applications have to separately poll a send
completion queue (CQ) to know when the remote data has
been read or written. To perform a two-sided RDMA opera-
tion, the remote host needs to pre-post receive buffers to a
receive queue (RQ) before the local host can send a message.
The remote host polls the receive CQ to identify a received
message coming.

There are three implementations of RDMA: InfiniBand
(IB) [34], RoCE [33], and iWARP [67]. IB is a switched net-
work that is specifically designed for RDMA. RoCE and
iWARP are two Ethernet-based technologies that also offer
the RDMA Verbs interface. Since LITE builds on top of the
Verbs interface, it is applicable to all these implementations
of RDMA.

2.2 RDMA in Datacenter Applications
The past two decades have seen a growing usage of RDMA
in HPC environments [32, 51, 55]. In recent years, there is an
emerging trend in using RDMA in datacenter environments
from both industry and academia [2, 7, 15, 27]. Recent RDMA-
based applications include key-value store systems [19, 37–
39, 58], DSM systems [19, 59], database and transactional
systems [6, 11, 20, 78, 81], graph store system [70], consensus
system [77], and distributed NVM systems [52, 69, 82].

We believe that the use of RDMA in datacenters will con-
tinue increasing in the future because of application needs
and of hardware support. Many modern datacenter applica-
tions demand fast access to vast amount of data, most con-
veniently and efficiently as in-memory data. With memory
on a single machine facing its wall [31], these applications
can largely benefit from fast, direct access to remote mem-
ory [27, 59, 61]. At the same time, more hardware in datacen-
ters are adding the support for direct RDMA accesses, such as
NVMe over Fabrics [12, 57] and GPU Direct [17, 41, 54, 60].

Many design choices of RDMA work well in a controlled,
specialized environment like HPC. However, datacenter en-
vironments are different in that they need to support hetero-
geneous, large-scale, fast-evolving applications. There are
several issues in using native RDMA for datacenter applica-
tions as we will discuss in §2.3, §2.4, and §2.5.

2.3 Issue 1: Mismatch in Abstractions
Amajor reason why RDMA is not easy to use is the mismatch
between its abstraction and what datacenter applications
desire. Unlike the HPC environment where developers can

308

SOSP ’17, October 28, 2017, Shanghai, China Shin-Yeh Tsai and Yiying Zhang

carefully tune one or very few applications to dedicated hard-
ware, datacenter application developers desire a high-level,
easy-to-use, flexible abstraction for network communication
so that they can focus on application-specific development.
Originally designed for the HPC environment, native RDMA
uses a low-level abstraction that is close to hardware prim-
itives and is difficult to use [38]. Applications have to ex-
plicitly manage various types of resources and go through
several non-intuitive steps to perform an RDMA operation,
as explained in §2.1. It is even more difficult to optimize
RDMA performance. Users need to properly choose from
different RDMA operation options and tune various config-
urations, sometimes even to adopt low-level optimization
techniques [19, 38, 39].
An API wrapper on top of the native RDMA interface

such as Rsocket [30] can translate certain RDMA APIs into
high-level ones. However, such a simple wrapper is far from
enough for datacenter applications. For example, RDMA
memory regions are created and accessed using virtual mem-
ory addresses in application process address spaces. The use
of virtual memory addresses requires RNICs to store page
table entries (PTEs) for address mapping (§2.4), makes it
hard to share resources across processes (§2.5), and does not
sustain process crashes. API wrappers cannot solve any of
these issues since they do not change the way RNICs use
virtual memory addresses.

2.4 Issue 2: Unscalable Performance
When bypassing kernel, privileged operations and data struc-
tures are offloaded to the hardware RNIC. With limited on-
RNIC SRAM, it is fundamentally hard for RDMA perfor-
mance to scale with respect to three factors: the amount of
MRs, the total size of MRs, and the total number of QPs.
First, RNICs store lkeys, rkeys, and virtual memory ad-

dresses for all registered MRs. As the number of MRs in-
creases, RNICs will soon (above 100 MRs in our experiments)
face memory pressure (Figure 4). Since each MR is a con-
secutive virtual memory range and supports only one per-
mission, not being able to use many MRs largely limits the
flexibility of RDMA. For example, many key-value store sys-
tems use non-consecutive memory regions to store data.
Memcached [21] performs on-demand memory allocation in
1MB units and optimizes memory allocation using 64MB
pre-allocated memory blocks. It would require at least 1000
MRs for 64GB data even with pre-allocation. Masstree [53]
uses a separate memory region for each value and can take
up to 140 million memory regions. These scenarios use MRs
far more than what an RNIC can handle without losing per-
formance. Using bigger MRs can reduce the total number of
MRs, but requires substantial application changes and can
cause memory space waste [49].

Second, RNIC caches PTEs for MRs to obtain the DMA
address of an RDMA request from its virtual memory ad-
dress. When there is a PTE miss in the RNIC, the RNIC will
fetch the PTE from the host OS. When the total size of regis-
tered MRs exceeds what an RNIC can handle (above 4MB
in our experiments in Figure 5), thrashing will happen and
degrade performance. Unfortunately, most datacenter appli-
cations use large amount of memory. For example, perform-
ing PageRank [45] on a 1.3GB dataset using GraphX [26]
and Spark [80] will need 12GB and 16GB memory heaps re-
spectively [27]. FaRM [19] uses 2 GB huge pages to mitigate
the scalability issue of MR size. However, using huge pages
will result in increased memory footprints, physical memory
fragmentation, false memory sharing, and degraded NUMA
performance [22, 44, 75].
Finally, RNIC stores metadata for each QP in its mem-

ory. RDMA performance drops when the number of QPs in-
creases [19], largely limiting the total number of nodes that
can be connected through RC in an RDMA cluster. FaSST [39]
used UD to reduce the number of QPs. But UD is unreliable
and does not support one-sided RDMA.
Datacenter applications often require the above three

types of scalability. Even if a single application’s scale is
small, the combination of multiple applications will likely
cause scalability issues. The speed of on-RNIC memory in-
crease falls behind the increasing scalability of datacenter
applications. Moreover, large on-RNIC memory is cost- and
energy-inefficient [68]. We believe that offloading all priv-
iledged functionalities and metadata to hardware is not and
will not be a viable way to use RDMA for datacenter applica-
tions. Rather, the RDMA software and hardware stacks need
to be restructured.

2.5 Issue 3: Lack of Resource Sharing,
Isolation, and Protection

Native RDMA does not provide any mechanisms to safely
share resources such as QPs, CQs, memory buffers, polling
threads across different applications; it only provides a mech-
anism to share receive queues (called SRQ) within a process.
Each application process has to build and manage its own
set of resources.

The lack of resource sharing makes the performance scal-
ability issue described above even worse. For example, each
pair of processes on two nodes need to build at least one QP
to perform RC operations. To perform polling for two-sided
RDMA, each node needs at least one thread per process to
busy poll separate receive CQs. Sharing resources within a
process [19] improves scalability, but has limited scope.
Without global management of resources, it is also hard

to isolate performance and deliver quality of service (QoS)
to different applications. For example, an application can

309

LITE Kernel RDMA Support for Datacenter Applications SOSP ’17, October 28, 2017, Shanghai, China

simply register a huge amount of MRs to fill RNIC’s internal
memory and impact the performance of all other applications
using the RNIC.

RDMA protects MR with lkeys and rkeys. However, such
protection is not flexible. Each MR can only be registered
with one permission, which is used by all applications to
access the MR. To change the permission of an MR, it needs
to be de-registered and registered again. Moreover, native
RDMA relies on user applications to pass rkeys and memory
addresses of MRs between nodes. Unencrypted rkeys and
addresses can cause security vulnerability [46].

3 VIRTUALIZING RDMA IN KERNEL: A
DESIGN OVERVIEW

“All problems in computer science can be solved by another level of
indirection” — often attributed to Butler Lampson, who attributes
it to David Wheeler

The issues of native RDMA outlined in the previous sec-
tion, namely 1) no high-level abstraction, 2) unscalable per-
formance due to easily-overloaded on-RNIC memory, and 3)
lack of resource management, are orthogonal to each other.
However, they all point to the same solution: a virtualization
and management layer for RDMA. Such a layer is crucial
to make RDMA practical for datacenter applications. This
section discusses why and how we add a kernel-level indi-
rection, the challenges of adding such an indirection layer,
and an overview of the design and architecture of LITE.

3.1 Kernel-Level Indirection
Many of RDMA’s issues discussed in §2 have been explored
decades ago, with different types of hardware resources.
Hardware devices such as DRAM and disks expose low-
level hardware primitives that are difficult and unsafe to
use directly by applications. Virtual memory systems and
file systems solve these issues by virtualize, protect, and man-
age these hardware resources in the kernel space. We believe
that we can use the same classic wisdom of indirection and
virtualization to make native RDMA ready for datacenter
application usage.
We propose to virtualize RDMA using a level of indirec-

tion in the kernel space. An indirection layer can transform
native RDMA’s low-level abstraction into a high-level, easy-
to-use abstraction for datacenter applications. A kernel-level
indirection layer can safely manage all privileged resources.
It can thus move metadata and operations from hardware to
software. Doing so largely reduces the memory pressure of
RNICs and improves the scalability of RDMA-based datacen-
ter applications that is currently bottlenecked by on-RNIC
SRAM size. Moreover, a kernel indirection layer can serve
both kernel-level applications and user-level applications.

3.2 Challenges
Building an efficient, flexible kernel-level RDMA indirection
layer for datacenter applications is not easy. There are at
least three unique challenges.
The biggest challenge is how to preserve the performance

benefits of RDMA while adding the indirection needed to sup-
port datacenter applications?
Next, how can we make LITE generic and flexible while

delivering good performance? Both LITE’s abstraction and its
implementation need to support a wide range of datacenter
applications. LITE also needs to let applications safely and
efficiently share resources. Unlike previous works [19, 20, 37–
39], we cannot use abstractions or optimization techniques
that are tailored towards a specific type of application.

Finally, can we add kernel-level indirection without chang-
ing existing hardware, driver, or OS? Tomake it easier to adopt
LITE, LITE should not require changes to existing system
software or hardware. Ideally, it should be contained in a
stand-alone kernel loadable module.

3.3 LITE Overall Architecture
LITE uses a level of indirection in the kernel space to virtu-
alize RDMA. It manages and virtualizes RDMA resources for
all applications that use LITE (applications that do not want
to use LITE can still access native RDMA directly on the
same machine). LITE talks to RDMA drivers and RNICs us-
ing the standard Verbs abstraction. Figure 2 presents LITE’s
overall architecture. We implemented LITE as a loadable
kernel module in the 3.11.1 Linux kernel with around 15K
lines of code.

Overall, LITE achieves the following design goals.

• LITE provides a flexible and easy-to-use abstraction to a
wide range of datacenter applications.
• LITE preserves RDMA’s three performance benefits: low
latency, high bandwidth, and low CPU utilization.
• LITE’s performance scales better than native RDMA.
• LITE offers fine-grained and flexible protection.
• It is efficient to share RDMA resources and easy to isolate
performance with LITE.
• LITE needs no hardware, driver, or OS changes.

LITE supports three types of interfaces: memory-like oper-
ations, RPC and messaging, and synchronization primitives,
and it supports both kernel-level and user-level applications.
We selected these semantics because they are familiar to dat-
acenter application programmers. Most of LITE APIs have
their counterparts in existing memory, distributed, and net-
working systems. Table 1 lists LITE’s major APIs.

Internally, LITE consists of two main software stacks: a
customized implementation of one-sided RDMA operations
(§4), and a stack for RPC functions and messaging based on

310

SOSP ’17, October 28, 2017, Shanghai, China Shin-Yeh Tsai and Yiying Zhang

API Explanation Analogy
LT_join Start LITE and join cluster

M
em

or
y

LT_read RDMA read from space in an LMR mem load
LT_write RDMA write to space in an LMR mem store
LT_malloc allocate an LMR at node(s) malloc
LT_free free an LMR and notify others free
LT_(un)map open/close an LMR with name m(un)map
LT_memset set space in an LMR with value memset
LT_memcpy copy content from LMR to LMR memcpy
LT_memmove move data from LMR to LMR memmove

RP
C/
M
sg

LT_regRPC register an RPC func with an ID RPC register
LT_RPC calls a remote RPC function with ID RPC call
LT_recvRPC receives next RPC call with RPC ID RPC receive
LT_replyRPC replies an RPC call with retsults RPC return
LT_send send data to a remote node send msg

Sy
nc

LT_(un)lock lock/unlock a distributed lock pthread_lock
LT_barrier wait until a set of nodes reach barrier pthread_barrier
LT_fetch-add atomically fetch data and add value fetch&add
LT_test-set atomically test data and set value test&set

Table 1: Major LITE APIs. Only the APIs in bold have their
counterparts in native Verbs.

two-sided RDMA operations (§5). These parts share many
resources, such as QPs, CQs, and LITE internal threads (§6).
Our security model is to trust LITE and not any users of

LITE. For example, LITE disallows users from passing MR
information themselves and thus avoids the security vulner-
ability of passing rkeys in plain text (§2.5). Improvement to
our current security model is possible, for example, by re-
ducing the physical memory space LITE controls or utilizing
techniques like MPK [14]. We leave it for future work.
A LITE cluster consists of a set of LITE nodes, each run-

ning one instance of LITE. We provide a management library
that manages the LITE cluster membership. It can run on
one node or a high-availability node pair, and all the states
it maintains can be easily reconstructed upon failure restart.

3.4 LITE Design Principles
Before our detailed discussion of LITE internals, we outline
the design principles that help us achieve our design goals.
Generic layer with a virtualized, flexible abstraction. LITE pro-
vides a flexible, high-level abstraction that can be easily used
by a wide range of applications. We designed LITE APIs to
be a set of common APIs that datacenter applications can
further build their customized APIs on top of. Specifically, we
offload memory, connection, and queue management from
applications to LITE. This minimal set of LITE APIs incor-
porate protection and moving them to the user space can
cause security vulnerabilities or require hardware-assisted
mechanisms that are not flexible [5, 63].
Avoid redundant indirection in hardware by onloading
software-efficient functionalities. Using a kernel-level indi-
rection does not necessarily mean adding one level of indi-
rection. We remove the indirection that currently exists in
hardware RNIC to avoid redundant indirection. Specifically,
we onload two functionalities from hardware to LITE: mem-
ory address mapping and protection. We leave the rest of the
RDMA stack such as hardware queues at RNIC. Removing

these two functionalities from hardware not only eliminates
the overhead of redundant indirection, but also minimizes
hardware memory pressure, which in turn improves RDMA’s
scalability with respect to applications’ memory usage (§2.4).
Meanwhile, onloading only these two functionalities does
not add much burden to the host machine and preserves
RDMA’s good performance, as we will see in §4.2.
Only adding indirection at the local side for one-sided
operations. Direct remote memory accesses with one-sided
RDMA eliminates CPU utilization at the remote node com-
pletely. To retain this benefit, we propose to only add an
indirection layer at a local node. As we will show in §4, the
local indirection layer is all that is needed to solve the issue
of native one-sided RDMA operations.
Avoid hardware or driver changes. Removing hardware-level
indirection without changing hardware is desired but is not
easy. Fortunately, we identified a way to interact with RNIC
with physical memory addresses. Based on this mechanism,
we propose a new technique to minimize hardware indirec-
tion without changing hardware (§4.1).
Hide kernel cost. We design several techniques to hide sys-
tem call overhead by moving most of the overhead off
performance-critical paths (§5.2). Unlike previous light-
weight system call solutions [73], our approach does not
require any change in existing OS. LITE avoids memory
copy using address remapping and scatter-gather lists. Fi-
nally, LITE lets the sending-side application threads run to
the end to avoid any thread scheduling costs.

The next few sections are organized as follows. §4 and §5
describe in detail LITE’s one-sided RDMA and RPC stacks.
§4 also presents a new virtualized memory abstraction LITE
uses. §6 discusses LITE’s resource sharing and QoS mecha-
nisms. §7 briefly describes several extended functionalities
we add on top of the RDMA and the RPC stacks in LITE.

All our experiments throughout the rest of the paper were
carried out in a cluster of 10 machines, each equipped with
two Intel Xeon E5-2620 2.40GHz CPUs, 128 GB DRAM, and
one 40Gbps Mellanox ConnectX-3 NIC. A 40Gbps Mellanox
InfiniBand Switch connects these machines’ IB links.

4 LITE MEMORY ABSTRACTION AND
RDMA

This section presents LITE’s memory abstraction and its
mechanism to support flexible one-sided RDMA operations.
LITE manages address mapping and permission checking
in the kernel and exposes a flexible, virtualized memory
abstraction to applications. LITE adds a level of indirection
only at the request sending side. Like native RDMA, one-
sided RDMA operations with LITE does not involve any
remote CPU, kernel, or LITE. But with the indirection layer

311

LITE Kernel RDMA Support for Datacenter Applications SOSP ’17, October 28, 2017, Shanghai, China

Node
1

Node
2

Node
3

lh3: read
 node2,
 addrA

lh1

LITE

User
Space

addrA

lh3

LITE_malloc

LITE_maplh1: master
 node2, addrA
 registered@node 3

LITE_malloc(node2,size,name)
LITE_map(name,master)

Figure 3: LITE lh Example. Node1 allocates an LMR from
node2 and is the master of it. Node3 maps the LMR with read permis-
sion by contacting Node1.

at the local side, LITE can support more flexible, transparent,
and efficient memory region management and access control.

4.1 LITE Memory Abstraction and
Management

LITE’s memory abstraction is based on the concept of LITE
Memory Regions (LMRs), virtual memory regions that LITE
manages and exposes to applications. An LMR can be of
arbitrary size and can have different permissions to different
users. Internally, an LMR can map to one or more physical
memory address ranges. An LMR can even spread across
different machines. This flexible physical location mapping
can be useful for load balancing needs.
LMR handler. LITE hides the low-level information of an
LMR (e.g., its location) from users and only exposes one
entity — the LITE handler, or lh. lh can be viewed as a ca-
pability [48, 66] to an LMR that encapsulates both permis-
sion and address mapping. LITE allows users to set different
types of permissions to different users, such as read, write,
and master (we will explain master soon). In using lh, LITE
provides the transparency that RDMA lacks. Native RDMA
operations require senders to specify the target node, virtual
address, and rkey of an MR. LITE hides all these details from
senders behind the lh abstraction. Only an LMR’s master
knows which node(s) an LMR is on. lh is all that users need
to perform LITE operations. However, an lh is meaningless
without LITE and users cannot use lhs to directly access
native MRs.

We let users associate their own “name” with an LMR, for
example, a global memory address in a DSM system or a key
in a key-value store system. Names need to be unique within
a distributed application. Other users can acquire an lh of the
LMR from LITE using this name via LT_map. This naming
mechanism gives applications full flexibility to impose any
semantics they choose on top of LITE’s memory abstraction.
lh mapping and maintenance. LITE manages the map-
ping from an lh to its physical memory address(es) and

performs permission checking for each LMR before issu-
ing native RDMA operations to RNICs. LITE maintains lh
mappings and permissions at the node that accesses this
LMR instead of at where the LMR resides, since we want to
avoid any indirection at the remote node and retain RDMA’s
direct remote access. Figure 3 shows an example of using
and managing lhs for an LMR.
An lh of an LMR is local to a process on a node; it is

invalid for other processes or on other nodes. Unlike native
RDMA which lets users pass rkey and MR virtual memory
address across nodes to access an MR, LITE prevents users
from directly passing lhs to improve security and to simplify
LMR’s usage model. All lh acquisition has to go through
LITE using LT_map. LITE always generates a new lh for a
new acquisition.
Master role. Although LITE hides most details of LMR such
as its physical location(s) from users, it opens certain LMR
management functionalities to a special role called master.
The user that creates an LMR is its master. A master can
choose which node(s) to allocate an LMR during LT_malloc.
We also allow a master to register already-allocated memory
as an LMR.

Master can move an existing LMR to another node. Master
maintains a list of nodes that have mapped the LMR, so that
when the master moves or frees (LT_free) the LMR, LITE at
these nodes will be notified. The master role can use these
functionalities to easily perform resource management and
load balancing.
Only a master can grant permissions to other users. To

avoid the allocator of an LMR being the performance bottle-
neck or the single point of failure, LITE supports more than
one master of an LMR. A master role can grant the master
permission to any other user.
Non-master map and unmap LMR. A user who wants to
access an LMR first needs to acquire an lh by asking a master
using LT_map. At the master node, LITE checks permission
and replies the requesting node with the location of the LMR.
LITE at the requesting node then generates a new lh and
establishes its mapping and permissions. LITE stores all the
metadata of an lh at the requesting node to avoid extra RTTs
to master when users access LITE. After LT_map, users can
perform LITE memory APIs in Table 1 using the lh and an
offset. To unmap an LMR, LITE removes the user’s lh and all
its associated metadata and informs the master.
Avoiding RNIC indirection.With LITE managing LMR’s
address mapping and permission checking, we want to re-
move the redundant indirection in RNICs and reduce its
memory pressure. However, without changing hardware,
LITE can only perform native RDMA operations with real
MRs, which are mapped and protected in RNICs.

Fortunately, there is an infrequently used API that RDMA
Verbs supports — the kernel space can register MRs with

312

SOSP ’17, October 28, 2017, Shanghai, China Shin-Yeh Tsai and Yiying Zhang

Number of MRs
10 100 1K 10K 100K

L
a
t
e
n
c
y

(
u
s
)

0

1

2

3

4
LITE_write

Verbs write

Figure 4: RDMA Write Latency
against Num of (L)MRs. Each (L)MR
is 4 KB. Each write is 64B and its location is
randomly chosen from all (L)MRs.

Total Size (MB)
1 4 16 64 256 1024

R
e
q
u
e
s
t
s
/
u
s

0

1

2

3

4

5

6

LITE_write−1K

Verbs write−1K

LITE_write−64B

Verbs write−64B

Figure 5: RDMA Write Throughput
against (L)MR Size. Each run uses one
MR. Each RDMA operation randomly writes
64B or 1KB.

RDMA Size (B)
8 64 512 4K 32K

L
a
t
e
n
c
y

(
u
s
)

0

5

10

15

20

25

30

35
TCP/IP

LITE_write

LITE_write KL

Verbs write

Figure 6: LITE and Native RDMA
Write Latency. KL denotes kernel-level in-
vocation. Lines without KL denotes user-level.

RNICs directly using physical memory addresses. LITE lever-
ages this API to register only one MR with RNIC that covers
the whole physical main memory. Using this global MR in-
ternally offers several benefits.
First, it eliminates the need for RNICs to fetch or cache

PTEs. With native RDMA, an RNIC needs to map user-level
virtual memory addresses to physical ones using their PTEs
before performing an DMA operation. Since LITE registers
the global MR with physical memory addresses, RNICs can
directly use physical addresses without any PTEs. This tech-
nique largely improves LITE’s performance scalability with
LMR size (§4.2).
Second, for the global MR, LITE registers only one lkey

and one rkey with RNIC and uses the global lkey and rkey
to issue all RDMA operations to RNIC. With only one global
lkey and rkey at the RNIC, LITE has no scalability issue with
the amount of LMRs (§4.2).
Finally, a subtle effect of using physical addresses is the

avoidance of a costly memory pinning process during the
creation of LMR. When an MR is created, native RDMA
goes through all its memory pages and pins them in main
memory to prevent them from being swapped out during
RDMA operations [47, 56]. In contrast, LITE does not need
to go through this process since it allocates physical memory
regions for LMRs.
However, using physical addresses to register a global

MR with RNIC has one potential problem. LITE has to is-
sue RDMA operations to the RNIC using physical memory
addresses, and the memory region in an RDMA operation
needs to be physically consecutive. These two constraints
imply that each LMR also has to be physically consecutive.
But allocating large physically consecutive memory regions
can cause external fragmentation.

To solve this problem, we utilize the flexibility of the LMR
indirection and spread large LMRs into smaller physically-
consecutive memory regions. When a user performs a LITE
read or write operation to such an LMR, LITE will issue
several RDMA operations at the different physical memory
regions. In our experiments, this technique scales well and

has only less than 2% performance overhead compared to
performing an RDMA operation on a huge physically con-
secutive region (e.g., 128MB), while the latter will cause
external fragmentation. When an LMR is small, LITE still
allocates just one consecutive physical memory.

4.2 LITE RDMA Benefits and Performance
LITE executes one-sided LT_read and LT_write by issuing
native one-sided RDMA read or write to RNICs after per-
forming address translation and permission checking. Since
LITE directly uses physical memory addresses to perform
native RDMA operations, there is no need for any memory
copy and LITE retains RDMA’s zero copy benefit. LITE lets
the requesting application thread run to the end and incurs
no scheduling costs. Different from native RDMA read and
write, LT_read and LT_write return only when the data has
been read or written successfully. So users do not need to sep-
arately poll the completion status. LITE’s one-sided RDMA
achieves several benefits.
First, LITE’s memory abstraction allows more flexibility

in LMR’s physical location(s), naming, and permissions. The
LMR indirection also adds a high-degree of transparency, yet
still letting masters perform memory resource management
and load balancing.
Second, unlike previous solutions [19], LITE does not re-

quire any change in RDMA drivers or the OS and is imple-
mented completely in a loadable kernel module.
Finally, LITE solves the performance scalability issues of

native RDMA in §2.4, while still delivering close-to-raw-
RDMA performance when the scale is small. We expect dat-
acenter environments to have large scale, making LITE a
better performant choice than native RDMA.

Figure 4 presents the latency of LT_write and native RDMA
write as the number of LMRs or MRs increases. Figure 5
shows the throughput of LT_write and native RDMA write
as the size of an LMR or MR increases. Read performance has
similar results. Native RDMA’s performance drops quickly
with the amount and the size of MRs, while LITE scales well

313

LITE Kernel RDMA Support for Datacenter Applications SOSP ’17, October 28, 2017, Shanghai, China

Write Size (KB)
0 10 20 30 40 50 60 70

T
h
r
o
u
g
h
p
u
t

(
G
B
/
s
)

0

1

2

3

4

LITE−8

Verbs−8

RDMA−CM−8

Verbs−1

RDMA−CM−1

LITE−1

TCP/IP

Figure 7: LITE RDMA Throughput. The number at the end
of each line label represents the level of parallelism in request issuing.
TCP/IP uses 1 thread with tcp_bw test in qperf.

Size (KB)
1 4 16 64 256 1024

L
a
t
e
n
c
y

(
u
s
)

1

10

100

1000
Verbs register

Verbs deregister

LITE_unmap

LITE_map

Figure 8: (De)Registering (L)MR Latency under LITE
and native RDMA. This LT_map targets to a local LMR.

with both the number of LMRs and the total size of LMR and
outperforms native RDMA when the scale is big.

Figure 6 and Figure 7 take a closer look at the latency and
throughput comparison of LITE, native RDMA write, and
TCP/IP. We use qperf [23] to measure the performance of
TCP/IP on InfiniBand (via IPoIB). Even with a small scale,
LITE’s performance is close and sometimes better than native
RDMA. LITE’s kernel-level RDMA performance is almost
identical to native RDMA, and its user-level RDMA has only
a slight overhead over native RDMA. With more threads,
LITE’s throughput is slightly better than native RDMA’s.
TCP/IP’s latency is always higher than both native RDMA
and LITE, and TCP/IP’s throughput is mostly lower than
them.When request size is between 128 B and 1 KB, TCP/IP’s
throughput is slightly higher than RDMA, because qperf
executes requests in a non-blocking way, while our RDMA
experiments run in a blocking way.
LITE’s LMR register and de-register processes are also

much faster and scale better with respect to MR size than
native RDMA, as shown in Figure 8. As explained earlier in
this section, native RDMA pins (unpins) each memory page
of anMR inmain memory during registering (de-registering),
while LITE avoids this costly process.

5 LITE RPC
The previous section describes LITE’s memory abstraction
and basic memory-like operations in Table 1. In addition
to one-sided RDMA and memory-like operations, LITE still
supports traditional two-sided messaging. But the main type
of two-sided operations we focus on is RPC. This section
discusses LITE’s RPC implementation and evaluation (second
part of Table 1).

We believe that RPC is useful in many distributed applica-
tions, for example, to implement a distributed protocol, to
perform a remote function, or simply to send a message and
get a reply. We propose a new two-sided RDMA-based RPC
mechanism and a set of optimization techniques to reduce

the cost of kernel crossings during RPC. The LITE RPC in-
terface is similar to traditional RPC [9]. Each RPC function
is associated with an ID which multiple RPC clients can bind
to and multiple RPC server threads can execute.

5.1 LITE RPC Mechanism
RDMA-write-imm-based Communication. We propose
a new method to build RDMA-based RPC communication:
using two RDMA write-imm operations. Write-imm is a Verb
that is similar to RDMA write. But in addition to performing
a direct write into remote memory, it also sends a 32-bit
immediate (IMM) value and notifies the remote CPU of the
completion of the write by placing an IMM entry in the
remote node’s receive CQ.
LITE performs one write-imm for sending the RPC call

input and another write-imm for sending the reply back.
LITE writes RPC inputs and outputs in LMRs and uses the 32-
bit IMM value to pass certain internal metadata. To achieve
low latency and low CPU utilization, LITE uses one shared
polling thread to busy poll a global receive CQ for all RPC
requests. LITE periodically posts IMM buffers in the receive
queue in the background.
LITE RPC Process.When an RPC client node first requests
to bind with an RPC function, LITE allocates a new internal
LMR (e.g., of 16MB) at the RPC server node. A header pointer
and a tail pointer indicate the used space in this LMR. The
client node writes to the LMR and manages the tail pointer,
while the server node reads from the LMR and manages the
header pointer.

Figure 9 illustrates the process of an LT_RPC call. The RPC
client calls LT_RPC with function input and a memory space
address for the return value 1 . LITE uses write-imm to write
the input data and the address of the return memory space
to the tail pointer position of the LMR at the server node 2 .
LITE uses the IMM value to include the RPC function ID and
the offset where the data starts in the LMR.
At the server node, a user thread calls LT_recvRPC to re-

ceive the next RPC call request. When the server node polls a

314

SOSP ’17, October 28, 2017, Shanghai, China Shin-Yeh Tsai and Yiying Zhang

3

RPC Client Node RPC Server Node

App lib
Kernel
Space

User Space Kernel Space User Space
lib App

RPC func

1 a

2

6
78

e

cd

LMR

Time

f
5

b

4

Figure 9: LITE RPC Mechanism. Red arrows represent the
performance critical path of LT_RPC.

RPC Return Size (B)
8 64 512 4096

L
a
t
e
n
c
y

(
u
s
)

0

2

4

6

8
LITE_RPC

LITE_RPC KL

2 Verbs writes

HERD

FaSST

Figure 10: RPC Latency Comparison. The RPC input size
is always 8B. FaRM uses two RDMA writes to implement message
passing primitive. Sender uses one RDMA write to write to a buffer,
and receiver polls the buffer to get message. We use two RDMAwrites
to emulate a RPC call in FaRM.

new received request from the CQ, it parses the IMM value to
obtain the RPC function ID and data offset in the correspond-
ing LMR 3 . LITE moves the data from the LMR to the user
memory space specified in the LT_recvRPC call and returns
the LT_recvRPC call 4 . The LMR header pointer is adjusted
at this time and another background thread sends the new
header pointer to the client node f . The RPC server thread
performs the RPC function after 4 and calls LT_replyRPC
with the function return value 5 . LITE writes this value
to the client node at the address specified in LT_RPC using
write-imm 6 . The client node LITE returns the LT_RPC call
8 when it polls the completion of the write 7 .
To improve LT_RPC throughput and reduce CPU utiliza-

tion, we do not poll the sending state of any write-imm. LITE
relies on the RPC reply (7) to detect any failure in the RPC
process including write-imm errors; if LITE does not receive
a reply within a certain period of time, it will return a time-
out error to user. Thus, we can safely remove the check of
sending states.

5.2 Optimizations between User-Space and
Kernel

A straightforward implementation of the above LITE RPC
process would involve three system call overhead (LT_RPC,
LT_recvRPC, and LT_replyRPC) and six user-kernel-space
crossings, costing around 0.9 µs . We proposed a set of opti-
mization techniques to reduce this overhead for LITE RPC.
The resulting RPC process only incurs two user-to-kernel
crossings 1 5 , or around 0.17 µs in our experiments.
LITE hides the cost of returning a system call from the

kernel space to the user space by removing this kernel-to-
user crossing from the performance critical path. When LITE
receives an LT_RPC or LT_recvRPC system call, it immedi-
ately returns to the user space without waiting for the results
b d . But instead of returning the thread to the user, LITE
returns it to a LITE user-level library.

We use a small memory space (one page) that is shared
between kernel and an application process to indicate the
ready state of a system call result, similar to the shared mem-
ory space used in previous light-weight system calls [13, 73].
When the LITE user-level library finds the result of a system
call being ready, it returns the system call to the user 4 8 .
To further improve throughput, we provide an optional

LITE API to send a reply and wait for the next received
request. This API combines LT_replyRPC and LT_recvRPC in
order to remove steps a and b . This interface is useful for
RPC servers that continuously receives RPC requests.
LITE minimizes CPU utilization when performing the

above optimizations. Unlike previous solutions that require
multiple kernel threads to reduce system call overhead [73]
or require changes in system call interface [29, 73], LITE
does not need any additional kernel (or user-level) threads
or any interface changes. Furthermore, the LITE library uses
an adaptive way to manage threads. It first tries to busy
check the shared state. If it does not get any ready state
shortly, LITE library will put the user thread to sleep and
lazily checks the ready state (c e).

In addition to minimizing system call overhead, LITE also
minimizes the cost of memory copying between user and
kernel spaces. LITE avoids almost all memory copying by
directly addressing a user-level memory buffer using its phys-
ical address (1 5 8). LITE only does one memory move
to move data from the LMR at the server node to the user-
specified receive buffer. From our experimental results, doing
so largely improves RPC throughput by releasing the internal
LMR space as soon as possible.

5.3 LITE RPC Performance and CPU
Utilization

LITE provides a general layer that supports RPC operations
of different applications. LITE RPC offers low-latency, high-
throughput, scalable performance, efficient memory usage,

315

LITE Kernel RDMA Support for Datacenter Applications SOSP ’17, October 28, 2017, Shanghai, China

RPC Return Size (KB)
0 1 2 3 4

T
h
r
o
u
g
h
p
u
t

G
B
/
s

0

1

2

3

4 LITE−16

HERD−16

FaSST−16

HERD−1

FaSST−1

LITE−1

Figure 11: RPC Throughput. RPC throughputs using 16 and
1 concurrent RPC clients and servers. RPC input size is always 8 bytes.

1RQ 2RQ 3RQ 4RQ LITE

M
e
m
o
r
y

U
t
i
l
i
z
a
t
i
o
n

25%

50%

75%

100%
key value

Figure 12: LITE RPC Memory Utilization. The first 4 set
of bars represent send-based RPC with different number of varying-
sized RQs.

and low CPU utilization. Figures 10 and 11 demonstrate
LT_RPC’s latency and throughput and how they compare to
other systems.

The user-level LT_RPC has only a very small overhead over
the kernel-level one. To further understand the performance
implications of LITE RPC, we break down the total latency
of one LITE RPC call. Of the total 6.95 µs spent on sending
8B key and return a 4 KB page in an LT_RPC call, metadata
handling including mapping and protection checking takes
less than 0.3 µs . The kernel software stacks of LT_recvRPC
and LT_replyRPC take 0.3 µs and 0.2 µs respectively. The cost
of user-kernel-space crossings is 0.17 µs .
To compare LITE with related efforts, we quantitatively

and qualitatively compare it with several existing RDMA-
based systems and their RPC implementations. FaRM [19]
uses RDMA write as their message-passing mechanism. RPC
could be implemented on top of FaRM with two RDMA
writes. Since FaRM is not open-source, we directly compare
LITE’s RPC latency to the summation of two native RDMA
writes’ latency which is a lower bound but is not enough to
build a real RPC operation. LITE has only a slight overhead
over two native RDMA writes.
Next, we compare LITE with two open-source RDMA-

based RPC systems, HERD [38] and FaSST [39], using their
open-source implementations. HERD implements RPC with
a one-sided RDMA write for RPC call and one UD send for
RPC return. HERD’s RPC server threads busy check RDMA
regions to know when a new RPC request has arrived. In
comparison, LITE uses write-imm and polls the IMM value to
receive an RPC request. The latency of checking one RDMA
region is slightly faster than LITE’s IMM-based polling (as
with the microbenchmark results in Figure 10). However, in
practice, HERD’s mechanism does not work for our purpose
of serving datacenter applications, since it needs to busy
check different RDMA regions for all RPC clients, causing
high CPU or performance overhead. LITE only checks one
receive CQwhich contains the IMM values for all RPC clients.

FaSST is another RPC implementation using two UD sends.
LITE has better throughput than FaSST and better latency
when RPC size is big. FaSST uses a master thread (called

coroutine) to both poll the receive CQ for incoming RPC
requests and execute RPC functions. Our evaluation uses
FaSST’s benchmark which performs a dummy zero-length
RPC function. In practice, executing an arbitrary RPC func-
tion in the polling thread is not safe and will cause through-
put bottlenecks. LITE lets user threads execute RPC functions
and ensures that the polling thread is lightweight.
Moreover, LITE is more space efficient than send-based

RPC implementations. To use send, the receiving node needs
to pre-post receive buffers that are big enough to accommo-
date the maximum size of all RPC data, causing huge amount
of wasted memory space [72]. In comparison, with write-
imm, LITE does not need receive buffers for any RPC data.
Figure 12 presents the memory space utilization with LITE
RPC and send under the Facebook key-value store distribu-
tions [3]. For the send-based RPC in comparison, we already
use a memory space optimization technique that posts re-
ceive buffers of different sizes on different RQs and chooses
the most space-efficient RQ to send the data to [72]. Still,
LITE is significantly more space-efficient than send-based
RPC, especially for sending big data (values in the Facebook
key-value store workload).

Finally, we evaluate the CPU utilization of LITE and com-
pare it with HERD and FaSST. We first use a simple workload
of sending 1000 RPC requests per second using 8 threads
between two nodes. LITE’s total CPU time is 4.3 seconds,
while HERD and FaSST use 8.7 and 8.8 seconds.

We then implemented a macrobenchmark that performs
RPC calls with inter-arrival time, input and return value sizes
following the Facebook key-value store distribution [3]. In
order to evaluate CPU utilization under different load, we
multiply the inter-arrival time of the original distribution
with a factor of 1× to 8×. Figure 13 plots the average CPU
time per request of LITE, HERD, and FaSSTwhen performing
100,000 RPC calls. When the workload is light (i.e., larger
inter-arrival time), LITE uses less CPU than both HERD and
FaSST, mainly because of LITE’s adaptive thread model that
lets threads sleep. When the workload is heavy, LITE’s CPU
utilization is better than FaSST and is similar to HERD.

316

SOSP ’17, October 28, 2017, Shanghai, China Shin-Yeh Tsai and Yiying Zhang

Inter−Arrival Time Amplification Factor

1 2 4 8

C
P
U

T
i
m
e

(
u
s
e
c
)

0

50

100

150

200
HERD FaSST LITE

Figure 13: CPU Usage with Facebook
Distribution. Average CPU time per request
when changing the Facebook distribution inter-
arrival time with an amplification factor.

Cluster Size
2 4 6 8

R
e
q
u
e
s
t
s
/
u
s

0

5

10

15

20
LITE_write

LITE_RPC

Figure 14: Scalability of LITE
RDMA and RPC. Each node runs
8 threads. LT_write writes 64B. LT_RPC
sends 64B and gets 8B reply.

LITE−Log LITE−Graph

P
e
r
f
o
r
m
a
n
c
e

0

0.5

1

1.5

2

2.5
No b/g traffic

SW−Pri

HW−Sep

No QoS

Figure 15: LITE QoS with Real Appli-
cations. No b/g traffic represents running LITE-
Graph and LITE-Log without low-priority back-
ground traffic. No QoS is used as a baseline of
performance (higher is better).

6 RESOURCE SHARING AND QOS
This section discusses how LITE shares resources and guar-
antees quality of service (QoS) across different applications.
Our emphasis is to demonstrate the possibility and flexibility
of using LITE to share resources and to perform QoS, but
not to find the best policy of resource sharing or QoS.

6.1 Resource Sharing
LITE shares many types of resources across user applications
and between LITE’s one-sided RDMA and RPC components.
In total, LITE uses K×N QPs and one busy polling thread for
a shared receive CQ per node, where N is the total number
of nodes. K is a configurable factor to control the tradeoff
between total system bandwidth and total number of QPs;
from our experiments 1≤K≤4 gives best performance. Being
able to share resources largely improves the scalability of
LITE and minimizes hardware burden. In comparison, a non-
sharing implementation on Verbs would need 2×N×T QPs,
whereT is number of threads per node. FaRM [19] shares QPs
within an application and requires 2×N×T /q QPs, where q
is a sharing factor. FaSST [39] uses T UD QPs; UD is un-
reliable and does not support one-sided RDMA operations.
None of these schemes share QPs or polling threads across
applications. Figure 14 shows that LITE one-sided RDMA
and LT_RPC both scale well with number of nodes.

6.2 Resource Isolation and QoS
When sharing resources, LITE ensures that user data is prop-
erly protected and that different users’ performance is iso-
lated from each other.We explored two approaches of deliver-
ing QoS. The first way (HW-Sep) relies on hardware resource
isolation to achieve QoS. Specifically, HW-Sep reserves dif-
ferent QPs and CQs for different priority levels, e.g., three
QPs for high-priority requests and one QP for low-priority
ones. Jobs under a specific priority can only use resources
reserved for that priority.
The second approach (SW-Pri) performs priority-based

flow and congestion control at the sending side using a

combination of three software policies: 1) when the load
of high-priority jobs is high, rate limit low-priority jobs
(i.e., reducing their sending speed); 2) when there is no or
very light high-priority jobs, do not rate limit low-priority
jobs; and 3) when the RTT of high-priority jobs increases,
rate limit low-priority jobs. We chose these three policies to
demonstrate that it is easy and flexible to implement various
flow-control policies with LITE; the first two policies are
based on sending-side information and the last one leverages
receiver-side information.
We evaluated HW-Sep and SW-Pri first with a synthetic

workload that has a mixture of high-priority and low-priority
jobs performing LT_write and LT_read of different request
sizes. Figure 16 details this workload and plots the perfor-
mance of HW-Sep, SW-Pri, and no QoS over time. As ex-
pected, without QoS, high-priority jobs can only use the
same amount of resources as low-priority jobs, and thus
are only able to achieve half of the total bandwidth. SW-Pri
achieves high aggregated bandwidth that is close to the “no
QoS” results, while being able to guarantee the superior per-
formance of high-priority jobs. HW-Sep’s QoS is worse than
SW-Pri and its aggregated performance is the worst among
the three. This is because low-priority jobs cannot use the
resources HW-Sep reserves for high-priority jobs even when
there is no high-priority jobs, thus limiting the total band-
width achievable by HW-Sep. This result hints that a pure
hardware-based QoS mechanism (HW-Sep) cannot provide
the flexibility and performance that a software mechanism
like SW-Pri offers.
Next, we evaluated LITE’s QoS with real applications.

We ran two applications that we built, LITE-Graph (§8.3)
and LITE-Log (§8.1), with high priority, and a low-priority
background task of constantly writing data to four nodes.
Figure 15 compares the performance of LITE-Graph and
LITE-Log under HW-Sep, SW-Pri, and no QoS. Similar to our
findings from synthetic workloads, SW-Pri achieves better
QoS than HW-Sep with real applications as well. Compared
to LITE-Log, LITE-Graph is less affected by QoS because it
is more CPU-intensive than LITE-Log.

317

LITE Kernel RDMA Support for Datacenter Applications SOSP ’17, October 28, 2017, Shanghai, China

Time (sec)
0 5 10 15 20

T
h
r
o
u
g
h
p
u
t

(
G
B
/
s
)

0

2

4

6

SW−Pri−Total

SW−Pri−High

HW−Sep−Total

HW−Sep−High

NO QoS−Total NO QoS−High

Figure 16: LITE QoS under Synthetic Workload. 20 low-priority
threads start from time 0, each running 600K requests (5 doing 4 KB LT_write,
5 doing 8 KB LT_write, 5 doing 4 KB LT_read, and 5 doing 4 KB LT_read). After 2
seconds, 20 high-priority threads join the system, each running 200K requests (10
doing 4 KB LT_write and 10 doing 4 KB LT_read). After finishing 200K requests, 8
of these 20 high-priority threads will sleep for 2 seconds and start running another
100K high-priority requests.

Size (KB)
1 4 16 64 256 1024

L
a
t
e
n
c
y

(
u
s
)

1

10

100

1000
Verbs write

LITE_memcpy

LITE_memcpy (local)

LITE_memset

LITE_malloc

Figure 17: LITE Memory Operations La-
tency. LT_memcpy (local) represents LT_memcpy be-
tween two LMRs on the same node. LT_memmove is the
same as LT_memcpy.

7 EXTENDED FUNCTIONALITIES
This section presents the implementation and evaluation
of LITE’s extended functionalities that we built on top of
LITE’s RDMA and RPC stacks. These functionalities include
memory-like operations that we did not cover in §4 (rest of
the Memory part of Table 1) and synchronization operations
(the Sync part of Table 1).

7.1 Memory-Like Operations
In addition to RDMA read and write, LITE supports a rich
set of memory-like APIs that have similar interfaces as tra-
ditional single-node memory operations, including memory
(de)allocation, set, copy, and move. To minimize network
traffic, LITE internally uses its RPC interface to implement
most LITE memory APIs. Figure 17 presents the latency of
LT_malloc, LT_memset, LT_memcpy, and LT_memmove (Ta-
ble 1) as LMR size grows.
Applications call these memory-like APIs using lhs, in

a similar way as how they call POSIX memory APIs
using virtual memory addresses. For example, applica-
tions specify a source lh and a destination lh to per-
form LT_memcpy and LT_memmove. LITE implements
LT_memcpy and LT_memmove by sending an LT_RPC to
the node that stores the source LMR. This node will per-
form a local memcpy or memmov if the destinate LMR is at
the same node. Otherwise, it will perform an LT_write to
the destinate LMR which is at a different node. Afterwards,
this node will reply to the requesting node, completing the
application call.
LITE implements LT_memset by sending a command to

the remote node that stores the LMR, which performs a
local memset and replies. An alternative way to implement
LT_memset is to perform an LT_write to the MR with the
value to be set. This alternative approach is worse than our

implementation of LT_memset when the LMR size grows,
since it sends more data over the network.

7.2 Synchronization and Atomic
Primitives

LITE provides a set of synchronization and atomic primi-
tives, including LT_lock, LT_unlock, LT_barrier, LT_fetch-add,
and LT_test-set (Table 1). The last two are direct wrappers
of their corresponding native Verbs. We added distributed
locking and distributed barrier interfaces to assist LITE users
in performing distributed coordination.

We used an efficient implementation of LITE locking that
balances lock operation latency and network traffic overhead.
A LITE lock is simply a 64-bit integer value in an internal
LMR and each lock has an owner node. The LT_lock opera-
tion first uses one LT_fetch-add to try to acquire the lock. If a
lock is available, this acquiring process is very fast (2.2 µs in
our experiment). Otherwise, LITE will send an LT_RPC to the
owner of the lock who maintains a FIFO queue of all users
waiting on the lock. By maintaining a FIFO wait queue, LITE
minimizes network traffic by only waking up and granting
a lock to one waiting user once the lock is available. Our
experiment shows that LITE lock scales well with number
of contending threads and nodes.

8 LITE APPLICATIONS
To demonstrate the ease-of-use, flexibility, and superior per-
formance of LITE, we developed four datacenter applications
on top of LITE. This section describes how we built or ported
these applications and their performance evaluation results.
We summarize our experience in building applications on
LITE at the end of this section.

318

SOSP ’17, October 28, 2017, Shanghai, China Shin-Yeh Tsai and Yiying Zhang

Phoenix 2−node 4−node 8−nodeR
u
n

T
i
m
e

(
s
e
c
)

0

2

4

6

8
24.6 21.6 21.3

Map Reduce Merge Hadoop

Figure 18: MapReduce Performance. The left bars in the
2,4,8-node groups are LITE-MR.

4Node 7Node

R
u
n

T
i
m
e

(
m
i
n
)

0

2

4

6

8

10
LITE−Graph

LITE−Graph−DSM

Grappa

PowerGraph

Figure 19: PageRank Performance. Each node runs four
threads.

8.1 Distributed Atomic Logging
LITE-Log is a simple distributed atomic logging system that
we built using LITE’s memory APIs. With LITE-Log, we
push the “one-sided” concept to an extreme: the creation,
maintenance, and access of a global log are performed all from
remote. This one-sided LITE-Log has complete transparency
to its users and is very easy to use.
An allocator creates a global log as an LMR and several

metadata variables also as LMRs using LT_malloc. A set of
writers commit transactions to the log, and a log cleaner
periodically cleans the log. The same node can run more
than one role.

Writes to the log (log entries) are buffered at a local node
until a commit time. At commit time, the writer first reserves
a consecutive space in the log for its transaction data by
testing and adjusting metadata of the log using LT_fetch-add.
The writer then writes the transaction with LT_write to the
reserved log space. The log cleaner runs in thebackground
to clean up the global log with the help of LT_read, LT_fetch-
add, and LT_test-set.
Our experiments show that LITE-Log can achieve 833K

transaction commit per secondwhen two nodes concurrently
commit single-entry (of 16B) transactions and LITE-Log’s
transaction commit throughput scales with number of nodes
and size of transaction.

8.2 MapReduce
LITE-MR is our implementation of MapReduce [18] on LITE.
We ported LITE-MR from Phoenix [65], a single-node multi-
threaded implementation of MapReduce. We spread the origi-
nal Phoenix mapper and reducer threads onto a set of worker
nodes and use a separate node as themaster node. Themaster
enforces the original Phoenix job splitting policy but splits
tasks to multiple worker nodes. We implemented LITE-MR’s
network communication using LT_read and LT_RPC.
Same as MapReduce, LITE-MR uses three phases: map,

reduce, and merge. In the map phase, each worker thread
performs map tasks assigned by the master. After completing
all map tasks, a worker thread combines all the intermediate
results into a set of finalized buffers. It then registers one

LMR per finalized buffer with an identifier and sends all the
identifiers to the master.
In the reduce phase, the master sends the identifiers col-

lected in the map phase to the reduce worker threads. The
worker threads use these identifiers to directly read the map
results from the mapper nodes using LT_read. After complet-
ing all reduce tasks, a reduce worker thread combines the
results of all its tasks. It registers the combined buffer with
one LMR and reports its associated identifier to the master.
The merge phase works in a similar way as the reduce phase;
each merge worker threads read reduce results with LT_read.
At the end of Merge phase, the master node reads the final
results with LT_read and reports the results to the user.

Figure 18 presents theWordCount run time of theWikime-
dia workloads [79] using Phoenix, LITE-MR, and Hadoop [1].
For all the schemes, we use the same number of total threads.
Phoenix uses a single node, while LITE-MR and Hadoop use
2, 4, and 8 nodes. LITE-MR outperforms Hadoop by 4.3× to
5.3×. We run Hadoop on IPoIB, which performs much worse
than LITE’s RDMA stack.

Surprisingly, with the same amount of total threads, LITE-
MR also outperforms Phoenix even though LITE involves
network communication and Phoenix only accesses shared
memory on a single node. We break down Phoenix and LITE-
MR’s run time into different phases and found that LITE-
MR’s map and reduce phases are shorter than Phoenix’s.
In these phases, only reducers read data from mappers.
We made a simple change to modify Phoenix’s global tree-
structured index to a per-node index to run LITE-MR on
distributed nodes. The gain of this change is larger than the
cost of network communication in LITE. However, using
the same split index in Phoenix affects Phoenix’s multicore
optimizations for local threads. LITE-MR’s merge phase per-
forms worse than Phoenix’s because all data to be merged
is on a single node with Phoenix while they are on differ-
ent nodes with LITE-MR. Both LITE-MR and Phoenix use
2-way merge and requires multiple rounds of reading and
writing data. However, this cost is the result of perform-
ing distributed merging, not because of using LITE. Finally,
LITE-MR performs better with more nodes, because the total

319

LITE Kernel RDMA Support for Datacenter Applications SOSP ’17, October 28, 2017, Shanghai, China

number of LMRs stay the same but the cost of mapping and
unmapping LMRs is amortized across more nodes.

8.3 Graph Engine
We implemented a new graph engine, LITE-Graph, based
on the design of PowerGraph [25]. Like PowerGraph, it or-
ganizes graphs with vertex-centric representation. It stores
the global graph data in a set of LMRs and distributes graph
processing load to multiple threads across LITE nodes. Each
thread performs graph algorithms on a set of vertices in
three steps: gather, apply, and scatter, with the optimization
of delta caching [25].

After each step, we perform an LT_barrier to only start the
next stepwhen all LITE nodes have finished the previous step.
At the scatter step, LITE-Graph uses LT_read and LT_write
to read and update the global data stored in LMRs. To ensure
consistency of the global data, we can only allow one write
at a time. LITE-Graph uses LT_lock to protect the update
to each LMR. With this implementation, splitting the global
data into more LMRs can increase parallelism and the total
throughput of LITE-Graph.
We perform PageRank [45] on the Twitter dataset (1M

vertices, 1 B directed edges) [43] using LITE-Graph, Power-
Graph, and Grappa [59]. Grappa is a DSM system that uses
a customized IB-based network stack to aggregates network
requests. PowerGraph uses IPoIB on InfiniBand. Figure 19
shows the total run time of these systems using four nodes
and seven nodes, each node running four threads. Compared
to PowerGraph and Grappa, LITE-Graph performs signifi-
cantly better, mostly due to the performance advantage of
LITE’s stack over IPoIB and Grappa’s networking stack.

8.4 Kernel-Level DSM
LITE-DSM is a kernel-level DSM system that we built in
Linux on LITE. It supports multiple concurrent readers and
a single writer (MRSW) and the release consistency level
(using two operations to acquire and release a set of data
for writing). LITE-DSM designates a home node for each
memory page like HLRC DSM systems [50, 83]. Currently,
it assigns home node in a round robin fashion. At releasing
time, dirty data is pushed to the home node, which informs
all nodes that have a cached copy to invalidate the data.

LITE-DSM hides all its operation and the globally shared
memory space from users by intercepting the kernel page
fault handler to perform remote operations if needed. Users
on a set of nodes open LITE-DSM by first agreeing on a range
of reserved global virtual addresses that are the same on all
nodes using LT_RPC.

A remote page read in LITE-DSM does not need to inform
the home node, since multiple readers can read at the same
time. Thus, LITE-DSMuses the one-sided LT_read to perform

Application LOC LOC using LITE Student Days
LITE-Log 330 36 1
LITE-MR 600* 49 4
LITE-Graph 1400 20 7
LITE-DSM 3000 45 26
LITE-Graph-DSM 1300 0 5

Figure 20: LITE Application Implementation Effort.
*LITE-MR ports from the 3000-LOC Phoenix with 600 lines of change
or addtion.

a remote page read. The acquire and release operations both
involve distributed protocols to invalidate or update data and
metadata. Thus, we use LT_RPC to implement LITE-DSM
protocols to exchange as much information as possible in a
single round trip.

In building these distributed protocols, we found the need
of a multicast function [4, 7, 8]. We extended LITE APIs to
include a new API that sends RPC to multiple RPC server
machines. Since multicast is not our focus, we use a simple
implementation by generating concurrent LT_RPC requests
to the destinations and replying to the RPC client after all
the desinations reply.

We evaluated LITE-DSMwith sequential and random read,
write, and sync operations on four machines. As expected,
reads have the lowest latency, 12.6 µs and 17.2 µs for random
and sequential 4 KB read. Sync is more costly, taking 9.2 µs
and 74.3 µs to begin and commit 10 dirty 4 KB pages.
We further built a user-space graph engine, LITE-Graph-

DSM, on top of LITE-DSM using a similar design as LITE-
Graph. LITE-Graph-DSM performs native memory loads and
stores in the distributed shared memory space provided by
LITE-DSM instead of LITE memory operations. As shown
in Figure 19, LITE-Graph-DSM’s performance is worse than
LITE-Graph because of the overhead caused by the additional
DSM layer. LITE-Graph-DSM still outperforms PowerGraph
significantly and is similar or better than Grappa.

8.5 Programming Experience
Overall, we find LITE very simple to use and it provides all
the network functionalities that our applications need. Fig-
ure 20 lists the lines of code (LOC) and graduate student days
to implement the applications on LITE. Most of the code and
implementation efforts are on the applications themselves
instead of on LITE. There is no need for any other network-
ing code apart from the use of LITE APIs. In comparison, we
spent 4 months and 4500 LOC building an RDMA stack and
optimizing it for our previous in-house DSM system.

Using LITE requires no expert knowledge in RDMA. LITE-
Log and LITE-MR were built by the same student that built
LITE, while the rest were built by one who has no knowledge
about LITE internals. They were able to build applications
at similar speed and ease.
Overall, we find LITE’s abstraction very flexible. For ex-

ample, the “name” LITE-Graph associates with its LMR is the

320

SOSP ’17, October 28, 2017, Shanghai, China Shin-Yeh Tsai and Yiying Zhang

vertex index, and the “name” LITE-DSM uses is the global
virtual memory address in DSM. In general, LITE’s memory
APIs are a good fit for accessing data fast and its synchro-
nization APIs are helpful in offering synchronized accesses.
Building applications using these APIs is to a large extent
similar to building a single-machine shared-memory appli-
cation. LITE RPC is a better fit for exchanging metadata and
implementing complex distributed protocols.

After choosing the right LITE APIs (e.g., memory vs. RPC),
optimizing LITE-based application performance is easy and
mostly does not involve networking optimizations. For ex-
ample, LITE-Graph improves performance by using finer-
grained LITE locks to increase parallelism, the same concept
commonly used in multi-threaded applications.
Finally, it is easy to run multiple applications together

on LITE, while each application’s implementation process
involves no other applications.

9 RELATEDWORK
Several new RDMA-based systems were built in the past few
years for datacenter environments. FaRM [19] is an RDMA-
based distributed memory platform which inspired LITE.
Its core communication stack uses RDMA read and write.
On top of the basic communication stack, FaRM builds a
distributed shared memory layer, a transaction system [20],
and a distributed hash table. LITE-DSM is also a distributed
shared memory layer, but LITE is more generalized and flex-
ible: it supports other types of remote memory usages and a
write-imm-based RPC mechanism; it safely shares resources
across applications; it does not require big pages or any dri-
ver changes.

Pilaf [58] and HERD [37] are two key-value store sys-
tems that implement customized RDMA stacks using RDMA
read, write, or send. HERD-RPC [38] and FaSST [39] are two
RDMA-based RPC implementations. FaSST’s main goal is to
scale with number of nodes. The Derecho project [4, 7, 8]
is a set of efforts to build a distributed computing environ-
ment. It uses a new RDMA-based multicast mechanism and a
shared-state table to implement several consensus and mem-
bership protocols. There are also several RDMA-based data-
base and transactional systems [6, 11, 20, 78, 81], distributed
RDF store [70], DSM system [59], consensus system [77],
and distributed NVM systems [52, 69, 82]. These systems all
target a specific type of application and most of them builds
customized software to use RDMA. LITE is a generic, shared
indirection layer that supports various datacenter applica-
tions. Building LITE has the unique challenge that its design
decisions cannot be tailored to just one application.

There are several RDMA-based user-level libraries includ-
ing the standard OFED library [62], rdma-cm [35], MVA-
PICH2 [32, 51], Rsockets [30], and Portals [10]. MVAPICH2

supports the MPI interface and is designed for the HPC en-
vironments. Rsockets implements a socket-like abstractions.
Portals exposes an abstraction that is based on put and get
operations. LITE’s abstraction is designed for datacenter ap-
plications and is richer and more flexible than these libraries’
abstractions. Moreover, LITE uses a kernel-level indirection
to solve native RDMA’s issues in datacenters, which none of
these existing libraries solve. There are also several kernel-
level layers on top of IB, such as IPoIB, SDP [24], and SRP [74],
to support traditional network and storage interfaces. They
all have heavy performance overhead and do not offer the
low-latency performance as LITE does.
Finally, there have been various efforts in user-level

TCP/IP implementations such as mTCP [36], U-Net [76],
IX [5], and Arrakis [63]. Moving TCP/IP stack from kernel to
user space can reduce the performance cost of kernel cross-
ings. However, resource sharing across user-level processes
is inefficient and not safe. In fact, U-Net and IX rely on kernel
to perform resource isolation. Hardware-enforced isolation
mechanisms such as SR-IOV is one way to let user-level
processes safely access hardware resources and has been
used by systems like Arrakis. However, unlike TCP/IP, hard-
ware isolation mechanisms limit the flexibility of RDMA,
since these mechanisms require pre-allocating and pinning
all memory of each application (or VM) for DMA [64]. A
software layer in the kernel like LITE can allocate and map
application memory on demand, i.e., only when accessed.
Software can also implement more flexible resource sharing
and isolation policies. Moreover, LITE is designed for RDMA
and solves RDMA’s issues in the datacenter environments.

10 CONCLUSION
We presented LITE, a Local Indirection TiEr in the OS to vir-
tualize and manage RDMA for datacenter applications. LITE
solves three key issues of native RDMA when used in the
datacenter environments: mismatched abstraction, unscal-
able performance, and lack of resource management. LITE
demonstrates that using a kernel-level indirection layer can
preserve native RDMA’s good performance, while solving
its issues. We performed extensive evaluation of LITE and
built four datacenter applications on LITE. Overall, LITE is
both easy to use and performs well.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd Tim
Harris for their tremendous feedback and comments, which
have substantially improved the content and presentation
of this paper. We also thank Felix Lin, T.N. Vijaykumar, Flo-
rentina Popovici, and Sanjay Rao for their suggestions to an
early version of the paper.

321

LITE Kernel RDMA Support for Datacenter Applications SOSP ’17, October 28, 2017, Shanghai, China

REFERENCES
[1] 2011. Apache Hadoop. (2011). http://hadoop.apache.org/.
[2] 2016. Derecho project. (2016). https://github.com/Derecho-Project/

derecho-unified.
[3] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. 2012. Workload Analysis of a Large-scale Key-value Store.
In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’12). London, UK.

[4] Jonathan Behrens, Ken Birman, Sagar Jha, Matthew Milano, Edward
Tremel, Eugene Bagdasaryan, Theo Gkountouvas, Weijia Song, and
Robbert Van Renesse. 2016. Derecho: Group Communication at the
Speed of Light. Technical Report. Cornel University.

[5] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’14). Broomfield, CO, USA.

[6] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan
Zamanian. 2016. The End of Slow Networks: It’s Time for a Redesign.
Proc. VLDB Endow. 9, 7 (2016), 528–539.

[7] Ken Birman. 2016. A real-time cloud for the internet of things. (2016).
Keynote talk at MesosCon North America ’16.

[8] Ken Birman, Jonathan Behrens, Sagar Jha, Matthew Milano, Edward
Tremel, and Robbert Van Renesse. 2016. Groups, Subgroups and Auto-
Sharding in Derecho: A Customizable RDMA Framework for Highly
Available Cloud Services. Technical Report. Cornel University.

[9] Andrew D. Birrell and Bruce Jay Nelson. 1984. Implementing Remote
Procedure Calls. ACM Trans. Comput. Syst. 2, 1 (1984), 39–59.

[10] Ron Brightwell, Bill Lawry, Arthur B. MacCabe, and Rolf Riesen. 2002.
Portals 3.0: Protocol Building Blocks for Low Overhead Communica-
tion. In Proceedings of the 16th International Parallel and Distributed
Processing Symposium (IPDPS ’02). Washington, DC, USA.

[11] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen.
2016. Fast and General Distributed Transactions Using RDMA and
HTM. In Proceedings of the Eleventh European Conference on Computer
Systems (EUROSYS ’16). London, UK.

[12] Cisco, EMC, and Intel. 2014. The Performance Impact of NVMe and
NVMe over Fabrics. (2014). http://www.snia.org/sites/default/files/
NVMe_Webcast_Slides_Final.1.pdf.

[13] Jonathan Corbet. 2011. On vsyscalls and the vDSO. (2011). https:
//lwn.net/Articles/446528/.

[14] Jonathan Corbet. 2015. Memory protection keys. (2015). https:
//lwn.net/Articles/643797/.

[15] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash. 2015. R2C2:
A Network Stack for Rack-scale Computers. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication
(SIGCOMM ’15). London, UK.

[16] Alexandras Daglis, Dmitrii Ustiugov, Stanko Novaković, Edouard
Bugnion, Babak Falsafi, and Boris Grot. 2016. SABRes: Atomic ob-
ject reads for in-memory rack-scale computing. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’16).
Taipei, Taiwan.

[17] Feras Daoud, AmirWatad, andMark Silberstein. 2016. GPUrdma: GPU-
side Library for High Performance Networking from GPU Kernels. In
Proceedings of the 6th International Workshop on Runtime and Operating
Systems for Supercomputers (ROSS ’16). Kyoto, Japan.

[18] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data
Processing on Large Clusters. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI ’04). San Francisco,
CA, USA.

[19] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and
Miguel Castro. 2014. FaRM: Fast Remote Memory. In Proceedings of
the 11th USENIX Conference on Networked Systems Design and Imple-
mentation (OSDI ’14). Seattle, WA, USA.

[20] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightin-
gale, Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel
Castro. 2015. No Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles (SOSP ’15). Monterey, CA, USA.

[21] Brad Fitzpatrick. 2004. Distributed Caching with Memcached. Linux
Journal 2004, 124 (2004), 5.

[22] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston,
Alexandra Fedorova, and Vivien Quéma. 2014. Large Pages May Be
Harmful on NUMA Systems. In Proceedings of the 2014 USENIX Confer-
ence on USENIX Annual Technical Conference (ATC ’14). Philadelphia,
PA, USA.

[23] Johann George. 2009. qperf - Measure RDMA and IP performance.
(2009). https://linux.die.net/man/1/qperf.

[24] Dror Goldenberg, Michael Kagan, Ran Ravid, and Michael S. Tsirkin.
2005. Transparently Achieving Superior Socket Performance Using
Zero Copy Socket Direct Protocol over 20Gb/s InfiniBand Links. In
2005 IEEE International Conference on Cluster Computing. Burlington,
MA, USA.

[25] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. 2010. PowerGraph: Distributed Graph-Parallel Com-
putation on Natural Graphs. In Proceedings of the 10th USENIX con-
ference on Operating Systems Design and Implementation (OSDI ’12).
Vancouver, BC, Canada.

[26] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,
Michael J. Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in
a Distributed Dataflow Framework. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’14). Broomfield, CO, USA.

[27] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang Shin. 2017. EfficientMemoryDisaggregationwith Infiniswap.
In Proceedings of the 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’17). Boston, MA, USA.

[28] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitu Padhye, and Marina Lipshteyn. 2016. RDMA over Commodity
Ethernet at Scale. In Proceedings of the 2016 ACM Conference on Special
Interest Group on Data Communication (SIGCOMM ’16). Florianopolis,
Brazil.

[29] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy.
2012. MegaPipe: A New Programming Interface for Scalable Network
I/O. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’12). Hollywood, CA, USA.

[30] Sean Hefty. 2012. Rsockets. In 2012 OpenFabrics International Workshop.
Monterey, CA, USA.

[31] Hewlett-Packard. 2010. Memory Technology Evolution: An
Overview of System Memory Technologies the 9th edition.
(2010). http://h20565.www2.hpe.com/hpsc/doc/public/display?sp4ts.
oid=348553&docId=emr_na-c00256987.

[32] Wei Huang, Gopalakrishnan Santhanaraman, Hyun-Wook Jin, Qi Gao,
and Dhabaleswar K. Panda. 2006. Design of High Performance MVA-
PICH2: MPI2 over InfiniBand. In Sixth IEEE International Symposium
on Cluster Computing and the Grid (CCGRID ’06). Rio de Janeiro, Brazil.

[33] InfiniBand Trade Association. 2014. RoCEv2 Architecture Specification.
(2014). https://cw.infinibandta.org/document/dl/7781.

[34] InfiniBand Trade Association. 2015. InfiniBand Architecture Specifica-
tion. (2015). https://cw.infinibandta.org/document/dl/7859.

[35] Intel. 2010. RDMA Communication Manager. (2010). https://linux.die.
net/man/7/rdma_cm.

322

http://hadoop.apache.org/
https://github.com/Derecho-Project/derecho-unified
https://github.com/Derecho-Project/derecho-unified
http://www.snia.org/sites/default/files/NVMe_Webcast_Slides_Final.1.pdf
http://www.snia.org/sites/default/files/NVMe_Webcast_Slides_Final.1.pdf
https://lwn.net/Articles/446528/
https://lwn.net/Articles/446528/
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
https://linux.die.net/man/1/qperf
http://h20565.www2.hpe.com/hpsc/doc/public/display?sp4ts.oid=348553&docId=emr_na-c00256987
http://h20565.www2.hpe.com/hpsc/doc/public/display?sp4ts.oid=348553&docId=emr_na-c00256987
https://cw.infinibandta.org/document/dl/7781
https://cw.infinibandta.org/document/dl/7859
https://linux.die.net/man/7/rdma_cm
https://linux.die.net/man/7/rdma_cm

SOSP ’17, October 28, 2017, Shanghai, China Shin-Yeh Tsai and Yiying Zhang

[36] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong,
Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a
Highly Scalable User-level TCP Stack for Multicore Systems. In 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’14). Seattle, WA, USA.

[37] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using
RDMA Efficiently for Key-value Services. In Proceedings of the 2014
ACM Conference on Special Interest Group on Data Communication
(SIGCOMM ’14). Chicago, IL, USA.

[38] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design
Guidelines for High Performance RDMA Systems. In Proceedings of
the 2016 USENIX Annual Technical Conference (ATC’16). Denver, CO,
USA.

[39] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST:
Fast, Scalable and Simple Distributed Transactions with Two-Sided
(RDMA) Datagram RPCs. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’16). Savanah, GA, USA.

[40] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas An-
derson, and Arvind Krishnamurthy. 2016. High Performance Packet
Processing with FlexNIC. In Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’16). Atlanta, Georgia, USA.

[41] Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu, Amir Wated,
Emmett Witchel, and Mark Silberstein. 2014. GPUnet: Networking
Abstractions for GPU Programs. In 11th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI ’14). Broomfield, CO,
USA.

[42] Ashok Krishnamoorthy, Hiren Thacker, Ola Torudbakken, Shimon
Muller, Arvind Srinivasan, Patrick Decker, Hans Opheim, John Cun-
ningham, Ivan Shubin, Xuezhe Zheng, Marcelino Dignum, Kannan
Raj, Eivind Rongved, and Raju Penumatcha. 2016. From Chip to Cloud:
Optical Interconnects in Engineered Systems. Journal of Lightwave
Technology 35, 15 (2016), 3103–3115.

[43] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.
What is Twitter, A Social Network or A News Media?. In Proceedings
of the 19th International Conference on World Wide Web (WWW ’10).
Raleigh, NC, USA.

[44] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,
and Emmett Witchel. 2016. Coordinated and Efficient Huge Page
Management with Ingens. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (OSDI ’16). Savannah,
GA, USA.

[45] Page Lawrence, Brin Sergey, Rajeev Motwani, and Terry Winograd.
1998. The PageRank Citation Ranking: Bringing Order to the Web. Tech-
nical Report. Stanford University.

[46] Manhee Lee, Eun Jung Kim, and Mazin Yousif. 2005. Security En-
hancement in InfiniBand Architecture. In Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium (IPDPS ’05).
Washington, DC, USA.

[47] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grim-
berg, Liran Liss, Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. 2017.
Page Fault Support for Network Controllers. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’17). Xi’an,
China.

[48] HenryM. Levy. 1984. Capability-Based Computer Systems. Butterworth-
Heinemann, Newton, MA, USA.

[49] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R. Narasayya. 2016.
Accelerating Relational Databases by Leveraging Remote Memory
and RDMA. In Proceedings of the 2016 International Conference on
Management of Data (SIGMOD ’16). San Francisco, CA, USA.

[50] Kai Li and Paul Hudak. 1989. Memory Coherence in Shared Virtual
Memory Systems. ACM Trans. Comput. Syst. 7, 4 (1989), 321–359.

[51] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda. 2004. High
Performance RDMA-based MPI Implementation over infiniBand. Int.
J. Parallel Program. 32, 3 (2004), 167–198.

[52] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an
RDMA-enabled Distributed Persistent Memory File System. In 2017
USENIX Annual Technical Conference (ATC ’17). Santa Clara, CA, USA.

[53] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache
Craftiness for Fast Multicore Key-value Storage. In Proceedings of the
7th ACM European Conference on Computer Systems (EUROSYS ’12).
Bern, Switzerland.

[54] Mellanox Technologies. 2010. NVIDIA GPUDirect Technology -
Accelerating GPU-based Systems. http://www.mellanox.com/pdf/
whitepapers/TB_GPU_Direct.pdf. (2010).

[55] Mellanox Technologies. 2015. InfiniBand Now Connecting More than
50 Percent of the TOP500 Supercomputing List. http://tinyurl.com/
zcz97fs. (2015).

[56] Frank Mietke, Robert Rex, Robert Baumgartl, Torsten Mehlan, Torsten
Hoefler, and Wolfgang Rehm. 2006. Analysis of the Memory Registra-
tion Process in the Mellanox Infiniband Software Stack. In Proceedings
of the 12th International Conference on Parallel Processing (EUROPAR
’06). Dresden, Germany.

[57] Dave Minturn. 2015. NVM Express Over Fabrics. In 11th Annual
OpenFabrics International OFS Developers’ Workshop. Monterey, CA,
USA.

[58] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-
sided RDMA Reads to Build a Fast, CPU-efficient Key-value Store. In
Proceedings of the 2013 USENIX Annual Technical Conference (ATC’13).
San Jose, CA, USA.

[59] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, and Mark Oskin. 2015. Latency-Tolerant Software
Distributed Shared Memory. In Proceedings of the 2015 USENIX Annual
Technical Conference (ATC ’15). Santa Clara, CA, USA.

[60] NVIDIA. 2010. NVIDIA GPUDirect. https://developer.nvidia.com/
gpudirect. (2010).

[61] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout,
and Mendel Rosenblum. 2011. Fast Crash Recovery in RAMCloud. In
Proceedings of the 23rd ACM Symposium on Operating Systems Principles
(SOSP ’11). Cascais, Portugal.

[62] OpenFabrics Alliance. 2004. The OpenFabrics Enterprise Distribution.
(2004). https://www.openfabrics.org.

[63] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2014. Ar-
rakis: The Operating System is the Control Plane. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’14). Broomfield, CO, USA.

[64] Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi, Bernard Metzler, Ion-
nis Koltsidas, and Thomas R. Gross. 2015. A Hybrid I/O Virtualization
Framework for RDMA-capable Network Interfaces. In Proceedings of
the 11th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE ’15). Istanbul, Turkey.

[65] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski,
and Christos Kozyrakis. 2007. Evaluating MapReduce for Multi-core
and Multiprocessor Systems. In Proceedings of the 13th International
Symposium on High Performance Computer Architecture (HPCA ’07).
Washington, DC, USA.

[66] Richard Rashid, Daniel Julin, Douglas Orr, Richard Sanzi, Robert Baron,
Alessandro Forin, David Golub, and Michael Jones. 1989. Mach: a sys-
tem software kernel. In Thirty-Fourth IEEE Computer Society Interna-
tional Conference: Intellectual Leverage (COMPCON ’89). San Francisco,
CA, USA.

323

http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf
http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf
http://tinyurl.com/zcz97fs
http://tinyurl.com/zcz97fs
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://www.openfabrics.org

LITE Kernel RDMA Support for Datacenter Applications SOSP ’17, October 28, 2017, Shanghai, China

[67] RDMAConsortium. 2009. iWARP, Protocol of RDMA over IP Networks.
(2009). http://www.rdmaconsortium.org/.

[68] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosen-
blum, and John K. Ousterhout. 2011. It’s Time for Low Latency. In
Proceedings of the 13th USENIX Conference on Hot Topics in Operating
Systems (HotOS ’11). Napa, CA, USA.

[69] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. 2017. Distributed
Shared Persistent Memory. In Proceedings of the 8th Annual Symposium
on Cloud Computing (SOCC ’17). Santa Clara, CA, USA.

[70] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li. 2016.
Fast and Concurrent RDF Queries with RDMA-Based Distributed
Graph Exploration. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’16). Savanah, GA, USA.

[71] Pravin Shinde, Antoine Kaufmann, Timothy Roscoe, and Stefan Kaestle.
2013. We Need to Talk About NICs. In Presented as part of the 14th
Workshop on Hot Topics in Operating Systems (HotOS ’13). Santa Ana
Pueblo, NM, USA.

[72] Galen M. Shipman, Ron Brightwell, Brian Barrett, Jeffrey M. Squyres,
and Gil Bloch. 2007. Investigations on InfiniBand: Efficient Network
Buffer Utilization at Scale. In Proceedings of the 14th European Con-
ference on Recent Advances in Parallel Virtual Machine and Message
Passing Interface (PVM/MPI ’07). Paris, France.

[73] Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call
Scheduling with Exception-less System Calls. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation
(OSDI ’10). Vancouver, BC, Canada.

[74] Technical Committee T10. 2002. SCSI RDMA Protocol. (July 2002).
http://www.t10.org/drafts.htm#SCSI3_SRP.

[75] Madhusudhan Talluri, Shing Kong, Mark D. Hill, and David A. Pat-
terson. 1992. Tradeoffs in Supporting Two Page Sizes. In Proceedings
of the 19th Annual International Symposium on Computer Architecture
(ISCA ’92). Queensland, Australia.

[76] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vo-
gels. 1995. U-Net: A User-level Network Interface for Parallel and
Distributed Computing. In Proceedings of the Fifteenth ACM Sympo-
sium on Operating Systems Principles (SOSP ’95). Copper Mountain, CO,
USA.

[77] Cheng Wang, Xusheng Chen, Jianyu Jiang, Ning Yi, and Heming Cui.
2017. APUS: Fast and Scalable PAXOS on RDMA. In Proceedings of the
8th Annual Symposium on Cloud Computing (SOCC ’17). Santa Clara,
CA, USA.

[78] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen.
2015. Efficient In-Memory Transactional Processing Using HTM. In
Proceedings of the 25th Symposium on Operating Systems Principles
(SOSP ’15). Monterey, CA, USA.

[79] Wikimedia Foundation. 2015. Wikimedia Downloads. (2015). https:
//dumps.wikimedia.org/.

[80] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-tolerant Ab-
straction for In-memory Cluster Computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation
(NSDI ’12). San Jose, CA, USA.

[81] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017.
The End of a Myth: Distributed Transactions Can Scale. Proc. VLDB
Endow. 10, 6 (2017), 685–696.

[82] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swan-
son. 2015. Mojim: A Reliable and Highly-Available Non-Volatile Mem-
ory System. In Proceedings of the 20th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS ’15). Istanbul, Turkey.

[83] Yuanyuan Zhou, Liviu Iftode, and Kai Li. 1996. Performance Eval-
uation of Two Home-based Lazy Release Consistency Protocols for
Shared Virtual Memory Systems. In Proceedings of the Second USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’96). Seattle, WA, USA.

324

http://www.rdmaconsortium.org/
http://www.t10.org/drafts.htm#SCSI3_SRP
https://dumps.wikimedia.org/
https://dumps.wikimedia.org/

	Abstract
	1 Introduction
	2 Background and Issues of RDMA
	2.1 Background on RDMA
	2.2 RDMA in Datacenter Applications
	2.3 Issue 1: Mismatch in Abstractions
	2.4 Issue 2: Unscalable Performance
	2.5 Issue 3: Lack of Resource Sharing, Isolation, and Protection

	3 Virtualizing RDMA in Kernel: a Design Overview
	3.1 Kernel-Level Indirection
	3.2 Challenges
	3.3 LITE Overall Architecture
	3.4 LITE Design Principles

	4 LITE Memory Abstraction and RDMA
	4.1 LITE Memory Abstraction and Management
	4.2 LITE RDMA Benefits and Performance

	5 LITE RPC
	5.1 LITE RPC Mechanism
	5.2 Optimizations between User-Space and Kernel
	5.3 LITE RPC Performance and CPU Utilization

	6 Resource Sharing and QoS
	6.1 Resource Sharing
	6.2 Resource Isolation and QoS

	7 Extended Functionalities
	7.1 Memory-Like Operations
	7.2 Synchronization and Atomic Primitives

	8 LITE Applications
	8.1 Distributed Atomic Logging
	8.2 MapReduce
	8.3 Graph Engine
	8.4 Kernel-Level DSM
	8.5 Programming Experience

	9 Related Work
	10 Conclusion
	References

