
GroupTime: Probabilistic Scheduling

Kendra Carattini and Mike Brzozowski

Introduction
Perhaps one of computer-supported
cooperative work (CSCW)’s greatest
successes of the past decade has been group
scheduling. But virtually all major
groupware systems available today present a
binary view of group calendaring: users are
either free or they are busy. This presents
the false appearance that all of a user’s free
time is equally free. In reality, not all
“available” times are equally free—people
often prefer to keep large blocks of free time
open for work, or try to avoid scheduling
nonessential meetings the night before a
large assignment is due, for instance.

User Group
A prime example of a user segment whose
calendars are difficult to predict is college
students. Without a clearly defined Monday
to Friday, nine-to-five work week, many
students find they need to be available to
work at almost any time—day or night,
weekday or weekend. At the same time a
plethora of commitments compete for
students’ time, from classes and studying to
jobs, interviews, meetings, and rehearsals to
parties and dates. Many students must
coordinate their schedules with others on a
regular basis to arrange team meetings,
whether for class or for outside activities.
And yet each user has their own set of
priorities when it comes to resolving the
inevitable scheduling conflicts that arise.

Related Work
Probabilistic models have been successfully
employed before to predict user availability.
Horvitz, Koch, Kadie, and Jacobs used a
Bayesian network to forecast a user’s
presence and availability, based on calendar

information, sensors at his/her desk, and the
location of various mobile devices [1]. This
operated more on the short term,
specializing in predicting, for instance, how
soon a colleague who just stepped out of the
office would return. And Joe Tullio used
Bayesian networks to estimate the likelihood
of a user attending a given meeting based on
empirical evidence about which meetings
he/she attended in the past, hoping to
improve group calendar accuracy [2].
However, both projects were specific to
relatively more constrained office
environments; as far as we know no one has
yet applied probabilistic methods to more
erratic student schedules.

In our earlier study (Brzozowski and
Carattini [3]), a system was built to model
what times would most likely be convenient
for students to schedule their commitments.
The model was then used to predict the
optimum meeting times for a user based on
implicit user preferences for how he/she
likes to schedule free time. Over time, such
a system would adapt to its user’s unique
scheduling priorities and preferences.

Model Ontology and Training Data
Following the model ontology in our earlier
study (see selection from Brzozowski and
Carattini, “Probabilistic Group Scheduling
for Chaotic People” in Appendix A for full
details of the model ontology), we asked a
group of students to provide us with the
details of their commitments over a period
of one week. We then proposed various
meeting times and types over the course of
the week, and asked the users to classify
their availability for the given appointment
into one of four categories: “Can’t make it”,

“rather not”, “is ok”, and “works great”. We
extracted features from this data that
corresponded to things like the category of
the meeting to be scheduled (e.g. was it a
lecture or a dance rehearsal?), the day of
week and time of day of the meeting, the
events that the meeting conflicted with, and
the amount of time before and after the
meeting to the next scheduled event. We
then trained our model use softmax
regression for the 4 possible labels.

Methodology and Discussion
The goal of the early study was to model
and build a system for a very small number
of people that supplied large data sets so that
the system could be fine-tuned for an
individual. We found, however, that
although we obtained mild success using
cross validation on a single user’s data set,
when we learned and tested on different
users, the error rate was very high. The goal
of our present study is to now use a much
larger set of users (46 users in total with 200
data points each) and determine the best
method of transfer learning for determining
a prediction on a user with a sparse data set.
The utility of this is obvious: when a user
begins using the system, there will be little
or no data to reflect the individual’s
preferences. We can, however, still make
useful predictions for a person for which we
have no training data, as some principles
hold true across many users. For example,
most of the users in our sample did not wish
to schedule anything between 3am to 6am
on any day. Simply training on all user data
sets may not be the best way to represent
these trends, as an initial 70:30 cross
validation over all 46 users gave an error
rate of 44.5%.

The first method of transfer learning
attempted was to first learn the weights for
each individual user, and then cluster the
users according to their weights. The idea

behind this method is that people who like to
schedule things in a similar way will have
similar weights, and therefore cluster
together. The cross validation technique
was then repeated on each of the individual
clusters. The initial clustering was
hierarchical (see Fig. 1), to obtain an overall
view of the data and determine a good value
for the number of clusters to use.

Fig. 1 Initial hierarchical clustering of 46 user study. Each
data set is a row and each feature weight is a column. Red
corresponds to negative weights and green to positive
weights.

We determined the best number of clusters
for the training set to be six, and proceeded
to cluster the data into six clusters using k-
means. The clusters can be seen in Fig. 2.

Cluster #
Number of data
sets

Cross Validation Error
Rate Off By 1 Off By 2 Off By 3

1 9 0.50626 0.37209 0.094812 0.039356
2 1 0.68852 0.39344 0.16393 0.13115
3 11 0.46356 0.35131 0.086006 0.026239
4 6 0.36856 0.22764 0.086721 0.054201
5 10 0.43065 0.24839 0.12258 0.059677
6 9 0.41301 0.26714 0.10896 0.036907

All Data
sets 46 0.44507 0.28647 0.12222 0.036383

Table 1. Error rates for clusters given by K-means algorithm. “Off by 1” indicates the predicted class was one class
away from the correct class (e.g. “rather not” is one class away from “can’t make it”).

We then repeated the 70:30 cross validation
on each of the individual clusters, and
obtained the error rates show in Table 1.

Fig. 2 K-means clustering of 46 user study into 6 clusters.
Each data set is a row and each feature weight is a column.
Red corresponds to negative weights and green to positive
weights.

The results are mixed. Three of the clusters
showed an increase in error rate over the
entire user set-trained system, whilst the
other three showed a decrease. One cluster
in particular (cluster 4) showed a very large
decrease in error rate. Although these error
rates are high, we can see that most of the
errors are “off by one”, i.e. the classification
predicted by our algorithm was one class
away from the actual class (e.g. “Works
great” is one class away from “Is ok”). The
error rate from Cluster 2, which only had
one user’s data set, was extremely high.
This result shows the need for a good
transfer learning algorithm, as learning over
a single user’s data provides the algorithm
with insufficient data to accurately predict a
scheduling preference.

The results from this initial transfer learning
method were disappointing, in that there was
on average no decrease in the cross
validation error rate over the baseline using
all data points. The next step was to
investigate alternative methods of transfer
learning in the hopes of attaining decreased
cross-validation error rates.

An initial attempt at simulating online
learning using the perceptron algorithm
yielded the results shown in Table 2. The
class labels were modified so that “is ok”

and “works great” were combined into one
class, and “rather not” and “can’t make it”
were combined into another.

Data
Set

Training Points
Used in Online
Portion of
Learning

Error
Rate

KTPH 200 0.495
W15P 200 0.555
All 9200 0.41937
All 200 0.505

Table 2. Error rates for data sets using the
 perceptron algorithm for online learning.

Only one result showed a minor
improvement over the baseline softmax
cross-validation error. The trial first trained
on 9000 data points using the perceptron
algorithm, and then proceeded to use the
online learning update for the next 200 data
points (which were all from the same user).
The rest of the results showed little to know
improvement over random guessing (0.5
error rate), and so this method of learning
was not pursued further.

The third method of transfer learning
investigated was weighted regression. Four
different kinds of weighting schemes were
investigated on the six clusters:

1) The weights were calculated according

to the Euclidean distance between them
using the formula:

)
2

)(
exp(2

2)(

)(

τ

j
i

j
ji

xx
w

−
−=
�

 (1)

2) The weights were calculated using the

time of day and day of week features
only. Times of day and days of week
closer to the point in question were
weighted more heavily. Since the
feature vectors contained mostly
Boolean values and had very high
dimension, the Euclidean distance
between many of the vectors was nearly
identical. For this reason, we decided to
use a distance metric based on only a
few key features that were not Boolean
values.

3) The third weighting scheme gave a

training point a weight of 1.0 if the
query point was targeted for the same
user as the training point came from. If
the user was different, the training point
was given a weight of 0.5.

4) The fourth weighting scheme was a

combination of the first and third
schemes.

The weighted regression was run on each of
the smaller clusters using both 70/30 and
90/10 cross-validation. The results are
shown in Table 3.

Cluster
Weighting
Scheme

70/30
CV

90/10
CV Error Rate Off By 1 Off By 2 Off By 3

1 3 x 0.44361 0.31391 0.097744 0.031955

1 1 x 0.51053 0.31579 0.15263 0.042105

1 2 x 0.42781 0.30481 0.090909 0.032086

1 3 x 0.42246 0.28877 0.1123 0.02139

1 4 x 0.41711 0.28342 0.10695 0.026738

2 1 x 0.54545 0.34545 0.10909 0.090909

2 2 x 0.58182 0.34545 0.16364 0.072727

4 1 x 0.33523 0.2017 0.079545 0.053977

4 2 x 0.32955 0.18182 0.085227 0.0625

4 4 x 0.31534 0.17898 0.079545 0.056818

4 2 x 0.33858 0.17323 0.14961 0.015748

4 3 x 0.35878 0.21374 0.1145 0.030534

4 4 x 0.27559 0.15748 0.10236 0.015748

6 4 x 0.34586 0.22556 0.10338 0.016917
Table 3. Error rates for clusters using 4 different weighted regression schemes. Scheme 1 weighted according to Euclidean
distance, 2 according to distance in the time of day and day of week dimensions only, 3 according to the user, and 4 was a
combination of 1 and 3.

We can see that, with one exception, the
error rate decreased from the baseline for
each cluster using the un-weighted
regression. The combination weight scheme
(#4) consistently gave the lowest error rates
of all the weighting schemes, but there does
not appear to be a straightforwardly
discernable hierarchy of weighted regression
schemes. It is not surprising that the
combined weight scheme gave the lowest
error rate, since this scheme takes into
account both how closely related two data
points are (distance) and how their sources
are linked (same or different users).

These results indicate that weighted
regression within a cluster would be a useful
way to learn weights for an individual that

would make use of other users training data
as well, and thereby require fewer training
points for accurate predictions from the
individual in question. The online learning
method did not prove very promising for
this task, nor did the clustering on its own.
Future work in this area should therefore
concentrate on finding the best weighted
regression scheme using a minimal number
of data points from an individual user, as
this will be the actual task faced in a
groupware scheduling application. Other
areas of interest that will arise in such a
setting include learning with an incomplete
set of features (e.g. if the user does not
provide a full calendar), and taking into
account the person who initiates the meeting
invitation (e.g. a boss vs. a friend).

References
1. Horvitz, E., Koch, P., Kadie, C. M., and Jacobs, A.
Coordinate: Probabilistic Forecasting of Presence and
Availability. Proceedings of the Eighteenth
Conference on Uncertainty and Artificial Intelligence,
Edmonton, Alberta. Morgan Kaufman (2002), 224-
233.

2. Tullio, J. Intelligent Groupware to Support
Communication and Persona Management. ACM
Symposium on User Interface Software and
Technology (Doctoral Consortium). (2003)

 3. Brzozowski, M., and Carattini, K.
 Probabilistic Group Scheduling for Chaotic People.
 CS 229, Stanford University, Fall (2004).

 7

Appendix A: selection from:

Probabilistic Group Scheduling For Chaotic People
Mike Brzozowski

Kendra Carattini

MODEL ONTOLOGY
We believe that the probability that a user will
want to schedule meeting M at time T, where T
is a span of time on one or two specific days, is
dependent on:
• The category C of M, that is, what type of meeting it is.

Table 1 shows the categories we chose for this domain,
which capture a range of pressures (social, academic,
professional, economic, etc.) to attend various types of
events.

• The time of week T, encapsulating both a day and time.

• The presence of other events EO overlapping with T and
their corresponding categories.

• The length of time dT- between the end of preceding
event E- and the start of T.

• The length of time dT+ between the end of T and the
start of the following event E+.

Category Description Example from user data

Interest An optional event the user might like to attend
out of interest, not because friends will be present

Psychology professor’s talk on
politics of fear and Iraq prison abuses

Interview A job interview. Phone interview with Yahoo!

Lecture A lecture for a class the user is taking, attendance
at which is not strictly required.

Ling 238 lecture

Practice Practice for a sports team or group. Tae kwon do practice

Project A meeting to work on a team class project CS 221 class project

Rehearsal A rehearsal for a performance group or show. Viennese Ball Opening Waltz
rehearsal

Section An optional discussion section for a class. CS 229 section

Seminar A small seminar with required attendance. CS 376 seminar

Sleep Time the user plans to be asleep.1 Six hours preceding morning
rehearsal

Social-
private

A social event with a small group of friends; peer
pressure encourages the user to attend.

Thanksgiving dinner at a friend’s
apartment

Social-
public

A social event with a large group of people, most
of whom will not notice if the user is absent.

Ragtime Ball

Study Time the user plans to be studying. Study for CS 221 midterm

1 We discovered that not all users view sleep as an inflexible time commitment but believe our model should reflect that some
users don’t mind scheduling meetings far into their “sleep” hours.

 8

Study-
group

A meeting with a group not obligated to work
together, to study.

CS 229 problem set 2 study session

Work Work as part of a paying job. Course advisor office hours

TRAINING DATA
We gathered training data by soliciting subjects’
complete schedules for the following week and
encoding a series of events according to our
ontology. We then proceeded to ask subjects to
consider a series of hypothetical meetings
randomly selected from categories the subject is
likely to encounter (e.g. users who do not
participate in sports or performing arts are not
asked about extra practices or rehearsals; users
are not invited to pick a time to meet to sleep).
Subjects were given a graphical representation
of the schedule they supplied us with the
suggested times highlighted. They were asked to
assume that they wanted to schedule M at some
point over the week and to label each
prospective hour-long slot T with one of four

options:
• Can’t Make It: The subject cannot attend M at T

under any circumstances.

• Rather Not: The subject would rather not attend at T
but could if necessary.

• Is OK: The subject could meet at T but there are other
times that work better.

• Works Great: T is one of the best times for the
subject to meet.

Currently we have 1600 data points obtained
from nine subjects, representing a variety of
preferences and some variations in priorities.
The subjects are undergraduate and graduate
students in both engineering and humanities
disciplines.
A sample of the data collected from one subject
is shown in Figure 1.
FEATURE CALCULATIONS
After our early trials with logistic regression, it
became apparent that the time of day, day of

week, and time until the events before and after
the hypothetical meeting were the most highly

Table 1 Possible values for category C in data collected

Figure 1 A sample of data collectd from a test subject. White boxes are prior scheduled commitments; red boxes are times labeled Can't
Make It; yellow ones are Rather Not; green ones are labeled Is OK; blue ones are Works Great. The four large columns represent four days
of the week; the columns within each day correspond to different hypothetical commitment categories. Notice the subject is more willing to

miss events marked �������� and has no flexibility to get out of ���	.

 9

weighted in our hypothesis function. However,
this achieved poor results with high error over
our training data. We hypothesized this may be
due to the fact that there is not a linear
relationship between some features and the
likely classifications. We therefore considered
alternate possibilities for these highly weighted
features that would more accurately represent
the user’s preferences.
Day and Time
Initially, the time of day feature was simply a
value between 0 and 47, representing the half-
hour slot when the hypothetical meeting would
begin. But the most favorable times are not
necessarily early or late in the day. So we
calculated the expected value of the
convenience labeling over each time slot over
the entire week. Similarly, we modified the day
of week feature, which had initially been a value
between zero and six to return the expected
value of convenience calculated for each day
over every time slot.
Due to the sparseness of the training data, we
implemented a smoothing algorithm to avoid
zero probabilities and ensure that slots with few
examples were not biased. To do this, instead of
taking the exact expectation over each time slot
(and day of week), we calculated a locally
weighted average of the expectation over all
time slots (and days of week). These
adjustments increased the accuracy of our
learned hypothesis on the training data slightly;
a sample of the final results can be seen in
Figure 2.
Times Between Events
The initial features storing the times in between
events (dT- and dT+) were simply the raw values
of dT- and dT+ in minutes. This formulation
seemed reasonable, as it favors a positive
response when the hypothetical event occurs far
away from other events in the schedule. We
soon realized, however, that this scheduling
preference did not generalize from the training
data, but rather from our own pre-suppositions
about how people schedule their time. After
observing more training data, we noticed that a
significant proportion of our test subjects

actually preferred to schedule their events close
together, thereby leaving large blocks of free
time for other purposes. In order to take this into
account, we adopted a similar approach as the
time of day and day of week features. However,
since the dT’s are continuously valued, it is
implausible to directly calculate the expected
value over every possible dT. Instead, we fit the
data to 2nd through 6th-order polynomial
regressions (using a 70:30 cross validation
split), and averaged the mean-squared error over
ten trials for each order polynomial.
We chose cubic regression as our feature
function because it had one of the lowest
generalization errors, and did not appear to
overfit the training data. As an additional
feature, we decided to experiment with a
combined regression over the joint distribution
of dT- and dT+. This cubic regression proved to
have an even lower generalization error, and
was included in the final feature set. This seems
intuitive if we consider people trying to
schedule their meetings in the “cracks” in their
schedule, i.e. places where both dT- and dT+ are
low, but not where one of them is low and the
other high. Thus, it makes sense that these
features are not necessarily independent. After

Figure 2 Distribution of E[Label | Day, Time] for a subject (see
Figure 1 for color coding). For this subject, the best times to

meet tend to be between 11 AM and 3 PM.

 10

altering the dT feature functions to reflect the
user responses, we were able to obtain 86%
accuracy on our training data using logistic
regression.
Conflicts
The conflict category feature(s) posed an
interesting dilemma: Choosing a number to
reflect the category of a conflict would
incorrectly suppose a continuous relationship
between conflict categories, when actually the
categories are either independent or their
preferential ordering is indeterminable a priori.
To overcome this, we implemented a separate
feature for each potential conflict category. For
each query, a Boolean array was built to
indicate which categories the query conflicted
with (note this number can be greater than one,
since we can conflict with multiple events for a
given query). The feature for each category was
then ‘1’ if the query conflicted with an event in
this category, and ‘0’ otherwise. This
formulation seemed unsatisfactory, since it blew
up the size of our feature set so that a different
weight had to be trained on each conflict
category. In order to improve this, we tried to
use the same expectation trick we described
earlier.
SOFTMAX REGRESSION
We still felt that this did not adequately capture
the midrange of possible labels (Rather Not/Is
OK), the chief area of interest, since we seek to
provide nonbinary classification. Our next step
was to implement softmax regression. Using
softmax, we were able to classify the responses
into each of the four classes, rather than
arbitrarily splitting the response space in half.
This yielded encouraging results, and errors
typically took the form of misclassifying into
neighboring labels (e.g. Is OK into Works Great
instead of Can’t Make It).
Conflicts Revisited
We attempted to implement a “conflict
category” feature that would return the expected
value of the response, given training data with
that conflict. Categories that did not conflict
with any of the training data returned a
smoothed expected response over all conflict

categories, and the “no-conflict” category
returned the smoothed expected value over all
non-conflicting queries in the training data. The
features were smoothed by taking a fraction
(lambda) of the expected value over the conflict
category and summing with (1 –
lambda)*Expected value over all conflict
categories. However, adding this feature
actually decreased the accuracy of our
hypothesis function. This was a rather surprising
result, since the similar formulations over the
other features had all increased accuracy.
One possible reason for this may be that the
weights being learned for each of the label
classifiers themselves don’t bear a linear
relationship with, say, P(Rather Not). Thus, if
the classifier were to attach a positive weight to
the expectation it would attach an even greater
weight to an expectation closer to Works Great.
Thus, our estimate of the expectation does not
necessarily contribute to the correct P(Y)s we’d
expect.

