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Introduction 
Perhaps one of computer-supported 
cooperative work (CSCW)’s greatest 
successes of the past decade has been group 
scheduling. But virtually all major 
groupware systems available today present a 
binary view of group calendaring: users are 
either free or they are busy. This presents 
the false appearance that all of a user’s free 
time is equally free. In reality, not all 
“available” times are equally free—people 
often prefer to keep large blocks of free time 
open for work, or try to avoid scheduling 
nonessential meetings the night before a 
large assignment is due, for instance. 
 
User Group 
A prime example of a user segment whose 
calendars are difficult to predict is college 
students. Without a clearly defined Monday 
to Friday, nine-to-five work week, many 
students find they need to be available to 
work at almost any time—day or night, 
weekday or weekend. At the same time a 
plethora of commitments compete for 
students’ time, from classes and studying to 
jobs, interviews, meetings, and rehearsals to 
parties and dates. Many students must 
coordinate their schedules with others on a 
regular basis to arrange team meetings, 
whether for class or for outside activities. 
And yet each user has their own set of 
priorities when it comes to resolving the 
inevitable scheduling conflicts that arise. 
 
Related Work 
Probabilistic models have been successfully 
employed before to predict user availability. 
Horvitz, Koch, Kadie, and Jacobs used a 
Bayesian network to forecast a user’s 
presence and availability, based on calendar 

information, sensors at his/her desk, and the 
location of various mobile devices [1]. This 
operated more on the short term, 
specializing in predicting, for instance, how 
soon a colleague who just stepped out of the 
office would return. And Joe Tullio used 
Bayesian networks to estimate the likelihood 
of a user attending a given meeting based on 
empirical evidence about which meetings 
he/she attended in the past, hoping to 
improve group calendar accuracy [2]. 
However, both projects were specific to 
relatively more constrained office 
environments; as far as we know no one has 
yet applied probabilistic methods to more 
erratic student schedules. 
 
In our earlier study (Brzozowski and 
Carattini [3]), a system was built to model 
what times would most likely be convenient 
for students to schedule their commitments.  
The model was then used to predict the 
optimum meeting times for a user based on 
implicit user preferences for how he/she 
likes to schedule free time. Over time, such 
a system would adapt to its user’s unique 
scheduling priorities and preferences. 
 
Model Ontology and Training Data 
Following the model ontology in our earlier 
study (see selection from Brzozowski and 
Carattini, “Probabilistic Group Scheduling 
for Chaotic People” in Appendix A for full 
details of the model ontology), we asked a 
group of students to provide us with the 
details of their commitments over a period 
of one week.  We then proposed various 
meeting times and types over the course of 
the week, and asked the users to classify 
their availability for the given appointment 
into one of four categories: “Can’t make it”, 



“rather not”, “is ok”, and “works great”.  We 
extracted features from this data that 
corresponded to things like the category of 
the meeting to be scheduled (e.g. was it a 
lecture or a dance rehearsal?), the day of 
week and time of day of the meeting, the 
events that the meeting conflicted with, and 
the amount of time before and after the 
meeting to the next scheduled event.  We 
then trained our model use softmax 
regression for the 4 possible labels. 
 
Methodology and Discussion 
The goal of the early study was to model 
and build a system for a very small number 
of people that supplied large data sets so that 
the system could be fine-tuned for an 
individual.  We found, however, that 
although we obtained mild success using 
cross validation on a single user’s data set, 
when we learned and tested on different 
users, the error rate was very high.  The goal 
of our present study is to now use a much 
larger set of users (46 users in total with 200 
data points each) and determine the best 
method of transfer learning for determining 
a prediction on a user with a sparse data set.  
The utility of this is obvious: when a user 
begins using the system, there will be little 
or no data to reflect the individual’s 
preferences.  We can, however, still make 
useful predictions for a person for which we 
have no training data, as some principles 
hold true across many users.  For example, 
most of the users in our sample did not wish 
to schedule anything between 3am to 6am 
on any day.  Simply training on all user data 
sets may not be the best way to represent 
these trends, as an initial 70:30 cross 
validation over all 46 users gave an error 
rate of 44.5%. 
 
The first method of transfer learning 
attempted was to first learn the weights for 
each individual user, and then cluster the 
users according to their weights.  The idea 

behind this method is that people who like to 
schedule things in a similar way will have 
similar weights, and therefore cluster 
together.  The cross validation technique 
was then repeated on each of the individual 
clusters.  The initial clustering was 
hierarchical (see Fig. 1), to obtain an overall 
view of the data and determine a good value 
for the number of clusters to use. 
 

 
Fig. 1 Initial hierarchical clustering of 46 user study.  Each 
data set is a row and each feature weight is a column.  Red 
corresponds to negative weights and green to positive 
weights. 
 
We determined the best number of clusters 
for the training set to be six, and proceeded 
to cluster the data into six clusters using k-
means.  The clusters can be seen in Fig. 2.   
 
 
 
 
 
 
 
 
 
 



 
 

 

Cluster # 
Number of data 
sets 

Cross Validation Error 
Rate Off By 1 Off By 2 Off By 3 

1 9 0.50626 0.37209 0.094812 0.039356 
2 1 0.68852 0.39344 0.16393 0.13115 
3 11 0.46356 0.35131 0.086006 0.026239 
4 6 0.36856 0.22764 0.086721 0.054201 
5 10 0.43065 0.24839 0.12258 0.059677 
6 9 0.41301 0.26714 0.10896 0.036907 

All Data 
sets 46 0.44507 0.28647 0.12222 0.036383 

Table 1.  Error rates for clusters given by K-means algorithm.  “Off by 1” indicates the predicted class was one class 
away from the correct class (e.g. “rather not” is one class away from “can’t make it”). 
 
 
We then repeated the 70:30 cross validation 
on each of the individual clusters, and 
obtained the error rates show in Table 1.   
 

 
Fig. 2 K-means clustering of 46 user study into 6 clusters.  
Each data set is a row and each feature weight is a column.  
Red corresponds to negative weights and green to positive 
weights. 
 

The results are mixed.  Three of the clusters 
showed an increase in error rate over the 
entire user set-trained system, whilst the 
other three showed a decrease.  One cluster 
in particular (cluster 4) showed a very large 
decrease in error rate.  Although these error 
rates are high, we can see that most of the 
errors are “off by one”, i.e. the classification 
predicted by our algorithm was one class 
away from the actual class (e.g. “Works 
great” is one class away from “Is ok”).  The 
error rate from Cluster 2, which only had 
one user’s data set, was extremely high.  
This result shows the need for a good 
transfer learning algorithm, as learning over 
a single user’s data provides the algorithm 
with insufficient data to accurately predict a 
scheduling preference. 
 
The results from this initial transfer learning 
method were disappointing, in that there was 
on average no decrease in the cross 
validation error rate over the baseline using 
all data points.  The next step was to 
investigate alternative methods of transfer 
learning in the hopes of attaining decreased 
cross-validation error rates. 
 
An initial attempt at simulating online 
learning using the perceptron algorithm 
yielded the results shown in Table 2.  The 
class labels were modified so that “is ok” 



and “works great” were combined into one 
class, and “rather not” and “can’t make it” 
were combined into another. 
 

Data 
Set 

# Training Points 
Used in Online 
Portion of 
Learning 

Error 
Rate 

KTPH 200 0.495 
W15P 200 0.555 
All 9200 0.41937 
All 200 0.505 

Table 2.  Error rates for data sets using the 
 perceptron algorithm for online learning. 
 
Only one result showed a minor 
improvement over the baseline softmax 
cross-validation error.  The trial first trained 
on 9000 data points using the perceptron 
algorithm, and then proceeded to use the 
online learning update for the next 200 data 
points (which were all from the same user).  
The rest of the results showed little to know 
improvement over random guessing (0.5 
error rate), and so this method of learning 
was not pursued further. 
 
The third method of transfer learning 
investigated was weighted regression.  Four 
different kinds of weighting schemes were 
investigated on the six clusters: 
 
1) The weights were calculated according 

to the Euclidean distance between them 
using the formula: 
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2) The weights were calculated using the 

time of day and day of week features 
only.  Times of day and days of week 
closer to the point in question were 
weighted more heavily.  Since the 
feature vectors contained mostly 
Boolean values and had very high 
dimension, the Euclidean distance 
between many of the vectors was nearly 
identical.  For this reason, we decided to 
use a distance metric based on only a 
few key features that were not Boolean 
values. 

 
3) The third weighting scheme gave a 

training point a weight of 1.0 if the 
query point was targeted for the same 
user as the training point came from.  If 
the user was different, the training point 
was given a weight of 0.5. 

 
4) The fourth weighting scheme was a 

combination of the first and third 
schemes. 

 
The weighted regression was run on each of 
the smaller clusters using both 70/30 and 
90/10 cross-validation.  The results are 
shown in Table 3. 
 
 

 
 
 
 
 
 
 
 
 
 



Cluster 
Weighting 
Scheme 

70/30 
CV 

90/10 
CV Error Rate Off By 1 Off By 2 Off By 3 

1 3 x   0.44361 0.31391 0.097744 0.031955 

1 1   x 0.51053 0.31579 0.15263 0.042105 

1 2   x 0.42781 0.30481 0.090909 0.032086 

1 3   x 0.42246 0.28877 0.1123 0.02139 

1 4   x 0.41711 0.28342 0.10695 0.026738 

2 1 x   0.54545 0.34545 0.10909 0.090909 

2 2 x   0.58182 0.34545 0.16364 0.072727 

4 1 x   0.33523 0.2017 0.079545 0.053977 

4 2 x   0.32955 0.18182 0.085227 0.0625 

4 4 x   0.31534 0.17898 0.079545 0.056818 

4 2   x 0.33858 0.17323 0.14961 0.015748 

4 3   x 0.35878 0.21374 0.1145 0.030534 

4 4   x 0.27559 0.15748 0.10236 0.015748 

6 4 x   0.34586 0.22556 0.10338 0.016917 
Table 3.  Error rates for clusters using 4 different weighted regression schemes.  Scheme 1 weighted according to Euclidean 
distance, 2 according to distance in the time of day and day of week dimensions only, 3 according to the user, and 4 was a 
combination of 1 and 3. 
 
We can see that, with one exception, the 
error rate decreased from the baseline for 
each cluster using the un-weighted 
regression.  The combination weight scheme 
(#4) consistently gave the lowest error rates 
of all the weighting schemes, but there does 
not appear to be a straightforwardly 
discernable hierarchy of weighted regression 
schemes.  It is not surprising that the 
combined weight scheme gave the lowest 
error rate, since this scheme takes into 
account both how closely related two data 
points are (distance) and how their sources 
are linked (same or different users). 
 
These results indicate that weighted 
regression within a cluster would be a useful 
way to learn weights for an individual that 

would make use of other users training data 
as well, and thereby require fewer training 
points for accurate predictions from the 
individual in question.  The online learning 
method did not prove very promising for 
this task, nor did the clustering on its own.  
Future work in this area should therefore 
concentrate on finding the best weighted 
regression scheme using a minimal number 
of data points from an individual user, as 
this will be the actual task faced in a 
groupware scheduling application.  Other 
areas of interest that will arise in such a 
setting include learning with an incomplete 
set of features (e.g. if the user does not 
provide a full calendar), and taking into 
account the person who initiates the meeting 
invitation (e.g. a boss vs. a friend). 
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MODEL ONTOLOGY 
We believe that the probability that a user will 
want to schedule meeting M at time T, where T 
is a span of time on one or two specific days, is 
dependent on: 
• The category C of M, that is, what type of meeting it is. 

Table 1 shows the categories we chose for this domain, 
which capture a range of pressures (social, academic, 
professional, economic, etc.) to attend various types of 
events. 

• The time of week T, encapsulating both a day and time. 

• The presence of other events EO overlapping with T and 
their corresponding categories. 

• The length of time dT- between the end of preceding 
event E- and the start of T. 

• The length of time dT+ between the end of T and the 
start of the following event E+. 

Category Description Example from user data 

Interest An optional event the user might like to attend 
out of interest, not because friends will be present  

Psychology professor’s talk on 
politics of fear and Iraq prison abuses 

Interview A job interview. Phone interview with Yahoo! 

Lecture A lecture for a class the user is taking, attendance 
at which is not strictly required. 

Ling 238 lecture 

Practice Practice for a sports team or group. Tae kwon do practice 

Project A meeting to work on a team class project CS 221 class project 

Rehearsal A rehearsal for a performance group or show. Viennese Ball Opening Waltz 
rehearsal 

Section An optional discussion section for a class. CS 229 section 

Seminar A small seminar with required attendance. CS 376 seminar 

Sleep Time the user plans to be asleep.1 Six hours preceding morning 
rehearsal 

Social-
private 

A social event with a small group of friends; peer 
pressure encourages the user to attend. 

Thanksgiving dinner at a friend’s 
apartment 

Social-
public 

A social event with a large group of people, most 
of whom will not notice if the user is absent. 

Ragtime Ball 

Study Time the user plans to be studying. Study for CS 221 midterm 

                                                 
1 We discovered that not all users view sleep as an inflexible time commitment but believe our model should reflect that some 
users don’t mind scheduling meetings far into their “sleep” hours. 



 8 

Study-
group 

A meeting with a group not obligated to work 
together, to study. 

CS 229 problem set 2 study session 

Work Work as part of a paying job. Course advisor office hours 

TRAINING DATA 
We gathered training data by soliciting subjects’ 
complete schedules for the following week and 
encoding a series of events according to our 
ontology. We then proceeded to ask subjects to 
consider a series of hypothetical meetings 
randomly selected from categories the subject is 
likely to encounter (e.g. users who do not 
participate in sports or performing arts are not 
asked about extra practices or rehearsals; users 
are not invited to pick a time to meet to sleep). 
Subjects were given a graphical representation 
of the schedule they supplied us with the 
suggested times highlighted. They were asked to 
assume that they wanted to schedule M at some 
point over the week and to label each 
prospective hour-long slot T with one of four 

options: 
• Can’t Make It: The subject cannot attend M at T 

under any circumstances. 

• Rather Not: The subject would rather not attend at T 
but could if necessary. 

• Is OK: The subject could meet at T but there are other 
times that work better. 

• Works Great: T is one of the best times for the 
subject to meet. 

Currently we have 1600 data points obtained 
from nine subjects, representing a variety of 
preferences and some variations in priorities. 
The subjects are undergraduate and graduate 
students in both engineering and humanities 
disciplines.  
A sample of the data collected from one subject 
is shown in Figure 1.  
FEATURE CALCULATIONS 
After our early trials with logistic regression, it 
became apparent that the time of day, day of 

week, and time until the events before and after 
the hypothetical meeting were the most highly 

Table 1 Possible values for category C in data collected 

Figure 1 A sample of data collectd from a test subject. White boxes are prior scheduled commitments; red boxes are times labeled Can't 
Make It; yellow ones are Rather Not; green ones are labeled Is OK; blue ones are Works Great. The four large columns represent four days 
of the week; the columns within each day correspond to different hypothetical commitment categories. Notice the subject is more willing to 

miss events marked �������� and has no flexibility to get out of ���	. 
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weighted in our hypothesis function. However, 
this achieved poor results with high error over 
our training data. We hypothesized this may be 
due to the fact that there is not a linear 
relationship between some features and the 
likely classifications. We therefore considered 
alternate possibilities for these highly weighted 
features that would more accurately represent 
the user’s preferences. 
Day and Time 
Initially, the time of day feature was simply a 
value between 0 and 47, representing the half-
hour slot when the hypothetical meeting would 
begin. But the most favorable times are not 
necessarily early or late in the day. So we 
calculated the expected value of the 
convenience labeling over each time slot over 
the entire week. Similarly, we modified the day 
of week feature, which had initially been a value 
between zero and six to return the expected 
value of convenience calculated for each day 
over every time slot.  
Due to the sparseness of the training data, we 
implemented a smoothing algorithm to avoid 
zero probabilities and ensure that slots with few 
examples were not biased. To do this, instead of 
taking the exact expectation over each time slot 
(and day of week), we calculated a locally 
weighted average of the expectation over all 
time slots (and days of week). These 
adjustments increased the accuracy of our 
learned hypothesis on the training data slightly; 
a sample of the final results can be seen in 
Figure 2.  
Times Between Events 
The initial features storing the times in between 
events (dT- and dT+) were simply the raw values 
of dT- and dT+ in minutes. This formulation 
seemed reasonable, as it favors a positive 
response when the hypothetical event occurs far 
away from other events in the schedule. We 
soon realized, however, that this scheduling 
preference did not generalize from the training 
data, but rather from our own pre-suppositions 
about how people schedule their time. After 
observing more training data, we noticed that a 
significant proportion of our test subjects 

actually preferred to schedule their events close 
together, thereby leaving large blocks of free 
time for other purposes. In order to take this into 
account, we adopted a similar approach as the 
time of day and day of week features. However, 
since the dT’s are continuously valued, it is 
implausible to directly calculate the expected 
value over every possible dT. Instead, we fit the 
data to 2nd through 6th-order polynomial 
regressions (using a 70:30 cross validation 
split), and averaged the mean-squared error over 
ten trials for each order polynomial. 
We chose cubic regression as our feature 
function because it had one of the lowest 
generalization errors, and did not appear to 
overfit the training data. As an additional 
feature, we decided to experiment with a 
combined regression over the joint distribution 
of dT- and dT+. This cubic regression proved to 
have an even lower generalization error, and 
was included in the final feature set. This seems 
intuitive if we consider people trying to 
schedule their meetings in the “cracks” in their 
schedule, i.e. places where both dT- and dT+ are 
low, but not where one of them is low and the 
other high. Thus, it makes sense that these 
features are not necessarily independent. After 

Figure 2  Distribution of E[Label | Day, Time] for a subject (see 
Figure 1 for color coding). For this subject, the best times to 

meet tend to be between 11 AM and 3 PM. 
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altering the dT feature functions to reflect the 
user responses, we were able to obtain 86% 
accuracy on our training data using logistic 
regression.  
Conflicts 
The conflict category feature(s) posed an 
interesting dilemma: Choosing a number to 
reflect the category of a conflict would 
incorrectly suppose a continuous relationship 
between conflict categories, when actually the 
categories are either independent or their 
preferential ordering is indeterminable a priori. 
To overcome this, we implemented a separate 
feature for each potential conflict category. For 
each query, a Boolean array was built to 
indicate which categories the query conflicted 
with (note this number can be greater than one, 
since we can conflict with multiple events for a 
given query). The feature for each category was 
then ‘1’ if the query conflicted with an event in 
this category, and ‘0’ otherwise. This 
formulation seemed unsatisfactory, since it blew 
up the size of our feature set so that a different 
weight had to be trained on each conflict 
category. In order to improve this, we tried to 
use the same expectation trick we described 
earlier. 
SOFTMAX REGRESSION 
We still felt that this did not adequately capture 
the midrange of possible labels (Rather Not/Is 
OK), the chief area of interest, since we seek to 
provide nonbinary classification. Our next step 
was to implement softmax regression. Using 
softmax, we were able to classify the responses 
into each of the four classes, rather than 
arbitrarily splitting the response space in half. 
This yielded encouraging results, and errors 
typically took the form of misclassifying into 
neighboring labels (e.g. Is OK into Works Great 
instead of Can’t Make It). 
Conflicts Revisited 
We attempted to implement a “conflict 
category” feature that would return the expected 
value of the response, given training data with 
that conflict. Categories that did not conflict 
with any of the training data returned a 
smoothed expected response over all conflict 

categories, and the “no-conflict” category 
returned the smoothed expected value over all 
non-conflicting queries in the training data. The 
features were smoothed by taking a fraction 
(lambda) of the expected value over the conflict 
category and summing with (1 – 
lambda)*Expected value over all conflict 
categories. However, adding this feature 
actually decreased the accuracy of our 
hypothesis function. This was a rather surprising 
result, since the similar formulations over the 
other features had all increased accuracy. 
One possible reason for this may be that the 
weights being learned for each of the label 
classifiers themselves don’t bear a linear 
relationship with, say, P(Rather Not). Thus, if 
the classifier were to attach a positive weight to 
the expectation it would attach an even greater 
weight to an expectation closer to Works Great. 
Thus, our estimate of the expectation does not 
necessarily contribute to the correct P(Y)s we’d 
expect. 


