NON-TERMINATION, IMPLICIT DEFINITIONS
AND ABSTRACT DATA TYPES#

by
T.S.E. Maibaum
Computer Science Dept.
University of Waterloo
Waterloo, Ontario N2L 3Gl
CANADA

Research Report CS-79-26
June 1979

*This work was supported by a grant from the National Sciences and
Engineering Research Council of Canada.

Abstract

Based on the observation that non-termination of procedures and
the use of implicitly defined constructs (recursion, iteration) in imple-
mentations are.not taken into account in the algebraic theory of abstract
data types, we propose an extension of this theory to take these factors
into account. The extension is based on the concept of continuous algebras
and on recent developments (partially) generalising the theory of abstract
data types to this setting. The nature éf the extension is such that there
is a simple and automatic transformation from a conventional specification
to the corresponding "'continuous'" specification. Thus the conventional
theory need not be abandoned but may be included in the generalisation in a

straightforward manner.

Introduction

Much work has been done in recent years to develop a mathematical
theory of data types [8,2,3,9,10,11,12]. The main aim of all these methods
has been the abstract or representation independent characterisation of
data types. Probably the most effective approach has been the algebraic one
as exemplified in [2,11,9,10].

In parallel, much work has been done on the semantics of program-
ming languages using the algebraic approach [1,4,6,7,19,20]. One main
factor divides these subject areas as far as the uses of algebra are con-
cerned. This is the use of "normal' algebras in the study of abstract data
types and the use of continuous algebras in the study of semantics. 1In
[15,16] we have tried to make the point that a theory of data types using
conventional algebras is not good enough since it is not possible to
characterise some data types (e.g. data types with sharing and/or
circularities) using conventional algebras. Even if it is possible, the
characterisation may not be the most elegant (see, for example, the treat-
ment of referencing in [13]).

Our aim in this section is to show that a theory of continuous
data types is needed for a completely different reason. We can illustrate
our points through a simple example. Suppose that we have defined the data
type sequence of integers which has amongst its operations the test
igintinseq (to test a sequence to see if it contains a specified integer)
and insert (which inserts an integer at the end of a specified sequence).

Now consider the operation

insert(n,s).

N
.

This is quite normal and makes sense. Now replace n by the expression f(x)

where £ is a procedure which returns an integer. Thus we have
insert (£(x),s).

This still makes sense only if f terminates with an integer value. If f
does not terminate, what is the value of the insert operation? It is
impossible to tell from the normal specification since '"undefined" is not a
formal value of the data type. It is not an error value since "undefined"
is not a value in the normal sense. It seems clear that one way of over-
coming this problem (perhaps the only way using algebras) is to introduce
"undefined" as a formal object in the algebras and thus consider continuous
algebras.

Now consider the operation isintinseq. Suppose that we implement
the type using linked lists (i.e., pointers). How will we implement the
operation isintinseq? The natural implementation is

operation isintinseq (n: integer; s: sequence): boolean;

m := first(s);

while endofseq(s) do
if m=n then isintinseq := true
else m := next(s)

end

The only operations we have used are integer or linked list operations.
However, the "meaning" of this program as an expression is an infinite

expression (obtained by unfolding the while loop). (See [1,7,6,19,20])

The usual concept of implementation (as in [2,12]) requires that isintinseq
be implemented in terms of a finite expression over the integer and linked
list operations as only such expressions define derived operations over con-
ventional algebras. However, as the example above points out, it is not the
natural way to define implementations of operations and in fact it may not
even be possible in all cases (e.g. where recursion is required).

On the other hand, the infinite expression above does belong to a
well defined continuous algebra. Thus again continuous algebras seem to
offer a possible solution. We confine ourselves in this report to showing
how the conventional algebraic theory of data types can be transformed into
a continuous theory in a straightforward manner. We refer the reader to
[13,15,16] for a more general attempt to use continuous algebras to define

data types.

Mathematical Preliminaries

Let Z = {Z be a many-sorted alphabet sorted by the

W,8 <w,8>eS%x§

sorting set S. A symbol f ¢ ZW s is said to be of type <w,s>, arity w,

H

sort s, and rank |w| (where |w| is the length of the string w € S*). If

w = A, f is said to be a constant or nullary symbol of sort s. A I-algebra

A_ is a family of sets {A }
s’ s€

5 together with an assignment of operations to

S

symbols in I so that f € ZW s is assigned an operation fA:
b
for w=s,...5_. (We denote A x...xA by A"
1 n 81 s

Given I-algebras AZ and BZ , a (Z)-homomorphism h: AZ+BZ is a

A X, XA A
s s s
1 n

family of mappings h = {hs} such that for f ¢ ZW s and ai € AS , where

se€S R .
i

W= Si...8 and 1 £ 1 £ n, we have

1

h(fA(al,...,an)) = fB(h(al)""’h(an))'

(Note that for convenience we have dropped subscripts from the h's.)
Homomorphisms which are injective, surjective, or bijective are called

monomorphisms, epimorphisms, and isomorphisms, respectively. An algebra

A. is said to be initial in a class C of Z-algebras if Azec and if for

each BZeC there is a unique homomorphism h: AZ+BZ.

Theorem: The class of all I-algebras has an initial algebra denoted TZ'

We can think of TZ as the algebra of (finite) expressions over the

alphabet X.

Example: Our standard example throughout this report will be the data

type "stack of natural numbers'. We use the following alphabet (using the

notation of [2] to specify our data type):

S = {st,nat};

succ: nat - nat

push: nat x st > st

pop: st - st

top: st = nat

error : -~ nat
nat -

error : - st
st -

0
Let X = {XS} by any family of sets. We define the set of expressions

generated by the variables X as follows:

(i) XS E~TZ(X)S for each seS;
(ii) If f ¢ Zw,s’ W= Si...8 and ti € TZ(X)si
for 1 < i < n, then ftl...tn € TZ(X)S'

We can make TZ(X) into a I-algebra by defining fTZ(X)(tl,...,tn) =

feo...t . If each X = ¢, then TZ({¢}seS) is isomorphic to T..
Let AZ be an I-algebra and a: X+ A an assignment of values
to variables. Then we have the result that a extends uniquely to a homo-

morphism a: TZ(X)—>AZ so that a agrees with a on X. (For a proof see

[1D.

} for w = s;
n
< i = i
the algebra TZ({Xi,si [1 <4i<n, sy sées). The use of XW will be seen

below. For further discussion and examples, see [2,18].

Let XW = {x reeS . We denote by TZ(XW)

eo e g X
l,Sl’ >“n,s

Given a Z-algebra AZ’ a (IZ-)congruence q over AZ is a family

q = {qs}SGS of equivalence relations with the following substitution
property. If f ¢ I and a,, b, €« A so that a,q b, for 1 < i < n, then
W,S i’ i s i‘s, 1

’ i i

fA(al,...,an)qsz(bl,...,bn).

Denote by Az/q the algebra whose carrier of sorts is {[a] | a ¢ AS} where
[a] is the congruence class of a. The operations are defined by fA /q
z
([a,],...,[a 1) = [f (a,,...,2a)]. The substitution property above
1 n A1 n
guarantees the consistency of this definition. We call AZ/q the quotient
of AZ by q.
A (Z-)equation is a pair <%,r> (written 2=r) for L,r € TZ(XW)'

An algebra AZ is said to satisfy f=r if for all assignments a: XW+A,
a(L)= a(r). AZ is said to satisfy a set of equations e if it satisfies
each equation in e separately. It is well known that a set of equations ¢
generates a least congruence q. on a L-algebra AZ (and so guarantees that
AZ/qe satisfiese). If we denote by AlgZ e the class of algebras satisfying

]

€, then we have the following important result.

Theorem: Tz/qs (denoted Ty o in the sequel) is initial in Alg. _.

b4 b

Example: Given the alphabet for stacks of natural numbers defined

above, we consider the following equations €t to define the data type:

top(push(n,s)) = n
top(push(n,s)) = s
top(A) = error ..
pop (M) = error_,

n and s are variables of sort nat and st respectively.
a

A partially ordered set (poset) is a pair (D, SD) (often denoted

just be D) where D is a set and £ is a partial order on D. D is strict

D
if D has a minimal element (denoted by LD). A set D' ¢ D is directed if
every pair of elements d,d' in D' has an upper bound in D'. D is a complete

partial order (cpo) if D is strict and each directed subset of D has a

least upper bound (fub) in D. If {di}ieI is a directed set in D, we denote
by Udi the fub of the set. TIf D,D' are posets and f: D»D', then f is
continuous if f(Udi)=IJf(di) (assuming that both udi and Uf(di) exist).

An algebra AZ is continuous if each AS is a cpo and if each
operation is continuous. A homomorphism of continuous algebras h: AZ—>BZ is
continuous if each hS is., Denote by Eé;g{ the class of continuous

r-algebras together with continuous homomorphisms between them.

Theorem: CAng has an initial algebra CTZ'

We can think of CTZ'as the algebra of (finite and infinite) partially
specified expressions over X. The least element (denoted by LS) of CTZ,s

is the completely unspecified expression of sort s. t < t' if t' is

obtained by replacing some unspecified subexpressions of t by some "specified"

expressions. If Z(1) denotes the alphabet obtained from I by adding 1, to

ZA s for each seS, then the algebra of completely specified (finite and
?

infinite) expressions over %(L) is isomorphic to CTZ' The order relation
on this algebra is the least order consistent with LsSt for each t and

if t.<t! for 1 < i < n then ft ...t < ft!...t'. We define CT.(X)
i i n n LY w

1 1

analogously to TZ(XW)'

Construction of Continuous Data Types

Suppose we have specified a data type over the alphabet I using
the equations €. We now want to contend with the kinds or problems discussed
in the introduction. The "natural" procedure is to construct a continuous

algebra from Ts . by making the set (TZ €)S into a "flat" (discrete) cpo
H

3
(I4]) as follows: Let 1 be a new data structure such that iSSt for all
t e (T) and otherwise the elements of (T) are incomparable. We

L,e’s L,e’s
can graphically illustrate this partial order (TZLE)S as follows where

3
comparable elements are connected by edges with "smaller" elements below
larger elements in the diagram.
to tl t2

1

s
We can now make the family of sets TZ é into a continuous algebra
s
by defining for each f ¢ ZW s and each 1 < i < n
b
£, 1 L)
T, KpseeesXy g5l oXgqseeesX) = Lo
,7€ 1

Ly

for any Xj in (TZ,E <

» j#i. That this definition makes T t into a
. >

continuous X-algebra is readily verified (see [4]).
However, we have now lost all the power of the theory of abstract

data types since TZ i is no longer a simple quotient algebra and we cannot
I’

in fact be sure that TZ é even satisfies €. For example if we have a
b

binary operation + and the axiom +xy = y, then

10.

+ T4, [t]) =
,€e

whereas the right hand side of the equation is [t] for t in T

L,e

Example: We can make our stack example into a continuous algebra by

introducing L and lst as values in T and extending the operations

L
at Z,€

as follows:

top(Ly) = Lot

POP(lSt) - lSt
push(inat,s) = push(n,Lst) = lst

suce(d) = Lhae

Even if TZ,: satisfies ¢, it is not in general initial as a Z(L)-algebra
satisfying €. This is of course a great pity since we no longer have a
simple "handle'" on this algebra. The results in [2,12] on proofs of correct-
ness of specifications and implementations are no longer applicable. So the
question now arises: Do we start all over again with a new theory of con-
tinuous data types or can we somehow salvage the situation.

Some recent developments in the theory of continuous data types
(see [15]) turn out to be quite useful for our development. Suppose that

e 1s a set of equations and q. is the least congruence on CT. generated by

z

e. It is shown that in general CTZ/q€ is not initial in CAng e (the class
b

of continuous I-algebras satisfying e together with continuous homomorphisms

between them). In fact it is not even always possible to partially order

the congruence class of CTZ/qe in a way which is consistent with the order on

11.

CTZ' As a first step in getting around this problem, we define a

continuous congruence q over a continuous algebra AZ to be a congruence with

the following continuity property. If {ai}.

feT? {bi}i€I are two directed

sets in some A_so that for all iel, a.q b,, then (la.)q (b.). In other
s i*s i i’s i

words, if the elements of two directed sets are pairwise congruent, then so
are the fub's. In [15] it is shown that a set of equations e generates a
least continuous congruence on a continuous I-algebra AZ' In fact, the
class of continuous congruences form a lattice.

As the next step in our development, we will introduce a genera-
lisation of canonical term algebras in the theory of abstract data types.

A canonical term algebra for a given data type T is an algebra C_ such

L,€ X
that
(i) CS E-TZ,S for each seS;
and (ii) ft....t e C_ dimplies t, in C_ for
1 n s i 4
W =8 ...8, 1 <1< n and moreover
1 n

fc(_tl,...,tn) = ftl...tn.

Canonical term algebras are useful because each congruence class of TZ e
2

is represented by a canonical representative and the operations of CZ

preserve canonical terms. The usefulness of canonical term algebras is

guaranteed by the fact that CZ is isomorphic to TZ and so CZ is initial in

s
é&gx,e. Moreover, a canonical term algebra always exists for each data
type ([2]).

In the case of continuous algebras, the matter is again not so
simple. However, the following partial generalisation was developed in

[15]. Let g be a continuous congruence over CTZ and suppose there exists a

function

12,

nf: CTZ - CTZ

such that
W [eg] = [t,] = nf(e)) = nf ()
(ii) [t] = [nf(£)];
(iidi) nf is continuous.

nf is called a normaliser for q. We then have the following important
result.

Theorem: If 9. is a continuous congruence generated by the equations £ on
CTZ and a normaliser for q. exists, then CTZ/q€ is initial in CAng,e'

Now, the image of CT. under nf can be made into a '"normal term

z
algebra", generalising the concept of canonical term algebra. In fact, if
a normal term algebra exists for CTZ/qs’ then a normaliser exists ([15]).
Also note that the existence of a normaliser guarantees initiality of
CTZ/qa whereas we saw that this was not in general true,

Now suppose that ¢ is the set of equations specifying some abstract

]

data type. Denote by &' the set of equations obtained from e as follows:

If 2 =t is in ¢, for £, r € TZ(XW)S’ then put into €' the equation

P
]

r if x # L Ae..AX #1
l,sl 81 n,s s

where w = s;...8 . Thus we place into &' equations which are conditioned by

1 n
requiring that none of the variables be given values which are 1. (In [2]

it is shown how conditioned equations can be transformed into an equivalent

set of normal equations.) The failure of our first attempt resulted partly

13.

from the fact that we did not condition our equations. Let £'(l) be the

set of equations obtained by adding to ¢' for each f ¢ ZW s and each
H

1 <1i<n (wherew = s "'Sn) the equation

1

cee X, L
1,s.°’ >Ti-1,s, .°

X .o .
> . b

s, ’i+l,s n,s s
i-1 i ’ ?

i+l n

We call such equations strictness axicms as they specify that if any argument

of an operation is "undefined", then the result of the operation is "undefined".

Lemma: Given qe'(i) as defined above, if t is in CT but does not

2 Tr(L)
contain any occurrences of 1, then t is congruent to L. (i.e. if t is an
infinite expression then t is congruent to L.)

Proof: It is well known that there exists a directed set {ti}ieI such that
each ti is finite and Uti = t. Moreover, each ti contains occurrences of 1.
Thus each ti is congruent to L. Thus we have two directed sets {ti}i and

el

{1},

ieT whose elements are pairwise congruent. Thus LJti is congruent to

Il = L demonstrating the result.

Theorem: CTZ(l)/qe'(L) is initial in CAng(l),e'(L)'

Proof: If we can demonstrate the existence of a normaliser for qe,(l), then

our result is proved. For t € TZ o’ let cf(t) be the canonical form of t in
3

the sense of [2 1. (cf is in fact the unique homomorphism from TZ to CZ

where CZ is the canonical term algebra.) Now define nf: CTZ(1)+CTZ(L) by:

14.

(i) nf(Ls) = ls for each seS;
cf(t) if teTZ
(ii) nf(t) =
1l if t€TZ(l) - TZ;
(iii) nf(t) = ls (for téCTZ(l)’S) otherwise.

Now we must demonstrate the properties of normalisers. Firstly, we must

show [t] = [t'] implies nf(t) = nf(t'). If t = 1, then t' is in

CTZ(l) - TZ (since all infinite expressions and all expressions containing

L are congruent to L and no others are). Thus nf(t) = nf(L) =1=nf(t') by
¢ . . . - [. _

definition. If t is in CTZ(L) TZ’ then t' is in CTZ(L) TZ and so

nf(t) = 1L = nf(t") by definition. If t is in T then t' is in TZ and the

52
result follows from properties of cf.

Secondly, we must show [t] = [nf(t)]. If t is in CTZ(L) - TZ ,
then [t] = [L] by the above lemma and the strictness axioms. But nf(t) = L and
so [t] =[t] =[nf(t)]. 1If teTZ, then the result follows from properties of
cf.

Finally, we must show nf is continuous. Let {ti}iEI be directed
and let t = Uti. If t is in CTZ(L) - TZ , then nf(t) = 1L and for each icI we
have ti in CTZ(l) - T, and so nf(ti) = L. Hence Unf(ti) = | and so

Z
nf(Uti) =] = Unf(ti). If t is in TZ’ then t = tj for some jeI. 1In fact
no other t, can be in T (since ti < tj) and so all other t, are congruent
to L. Thus nf(t) = cf(t) and for all octher ti#t we have nf(ti) = L. Thus
nf(Uti) = cf(t) = Unf(ti) since {nf(ti)}iGI is directed with cf(t) as Rfub.

Having demonstrated the existence of anormaliser, we have our

result.

15.

Example: Applying the above construction to our stack example, we get the
following:

2(L) is ¥ together with:

1 : > nat
nat -
L Hld .
St §E
' .
is:
sst(L) s
sh = if A
top(push(n,s)) n if n # lnat s # lst
ush =g if n AS
pop(push(n,s)) i ¥# Loat # Lot
\) = error e . .
top(2) e nat No conditions exist since there are
no variables in the equations.
pop(A) = error_,

top(L =
p(st) J'nat

p0p('Lst) = J'st
Strictness axioms.
push(inat,s) =Ll

push(n,LSt) = Lst

O

Finally, we demonstrate the usefulness of our first construction

1
(of TZ,E).

P .
Theorem: TZ,e is initial in CAng(l)’e,(l).

L
Proof: We can demonstrate this result by showing that TZ c (= T) and

s
L

= C)are isomorphic as I(L) algebras. (Note that TZ c

T (1% ()
can easily be made into a %X(L) algebra by having the symbol L denote the

value g introduced in the definition of this algebra.) Let [t]€ denote

the q_-congruence class of ¢ for t in TZ' Let | t]e'(L) denote the

qe,(l)—congruence class of t in CTZ(L)' Define h: T = C by h([t]e) = [t]e,(l)

16.

and h(J.S) = [1]

slet ()" We must verify that h is a homomorphism. So

suppose £ ¢ & and r, are inT forw=1s,...s and 1 <1 £ n, Then,
W, S i 1 n

if r, # L for any i, then

h(fT(rl9--'srn)) = h(fTZ 8([tl]€’...,[tn]€))
for some t, in T,, 1 €< 1i <n
i Z

= h([ftl°"tn]s)

by definition of £
T
L,€

= [ftl'°°tn]€'(L)

by definition of h

= fC([tl]s'(L)"'"[tn]e'(L))

by definition of fC

= £,(n([ty1),...,h(lt 1))

by definition of h.

1f one of the ri = 1, then

h(L) - by definition of h

it

h(fT(nl,...,rn))

= 41

li

CICH PR TN WIS YC D IPPIN YC)
- since h(ri) = | and
the fact that fC satisfies the strictness axioms

= fc(h(rl),...,h(rn)).

Thus h is a homomorphism and we must now verify that it is continuous. The

only directed sets in T 1 are either of the form {1} or {L,[t]e} or

Lye

17.

{[t]e} for some t in T,.: The least upper bounds are 1, [t]e, and [t]8

respectively. 1In the first case

h(lL)

h(L)

= 1

LUh(y).

In the second case (using | as a binary operator),

BQ[e]) = h([E])
= h([t])
= h()Lh([t]).
The final case yields
h(Ule]) = h(le])
= Un([])

We must now show that h is onto. Let [t]s,(l) be in C. Then if t
is in TZ’ then h([t]e) = [t]e'(L)' If t is not in TZ’ then [t]s'(l)

contains L and so h(1) = [t]e'(1)° Thus h is onto. Finally to show that h

L

is one to one, let r, r' be in TZ . SO that r#r'. If neither r = L nor r'
b

—_ _ | - \ : —

= 1, then r = [t]e,r = [t]€ for some t,t' in Ty- If hir) = [t]e'(L)

= [t']e'(L) = h(r'), then either t and t' are congruent (under c'(l))

because of the equations e'(L) or because of the continuity property of &'(1).

18.

The former case is not possible since [t] # [t']_ and 1L ¢ [t]e'(l). On

the other hand, if there are directed sets {t.}, _ and {t'}. . which are
i“ie i del

I

. . 1 = '
pairwise congruent (under ¢'(L)) and so that [Uti]e'(L) [Uti]e'(L)’

then clearly some t, = t and some ti = t'. But then we can show that this
requires t and t' to be congruent (under e'(l)) simply because of the
equations. This is a contradiction.
Now suppose that r = L and ' # L (and so r' = [t']8 for t' in TZ)'
= i = ' = '
Then h(r) [l]e'(L) and if h(r) h(r') we must have [l]e'(l) [t]s'(L)

But then L ¢ [t']e'(L) and so t' is not in T., again a contradiction.

X

Having exhausted all possible cases, we have shown that T is isomorphic

L
I,€
to CTZ(l)/qe.(l).

0

This result is interesting because it justifies the past practice

of specifiying abstract data types as uncrdered (non-continuous) algebras
and then taking such computational problems as non-termination into account

by using a standard construction. As seen above, this standard construction

consists of making the algebra TZ into a continuous algebra T

L
N> L,€ by

making the carriers into flat cpo's (by adding 1) and extending the operations

of T to define strict (and continuous) functions on T

L
. Moreover
I,€ I,e >

the proof techniques developed for the study of abstract data type speci-
fications and implementations can still be used. This is justified as

follows. Let A;(L) denote the continuous Z(1L)-algebra obtained from the
L-algebra AZ by making each AS into a flat cpo (by adding the new element

Ls) and extending operations of AZ to strict (and automatically continuous)

. L
operations over As.

Theorem: A;(l) and B;(l) are isomorphic as X(L) algebras if and only if

AZ and B. are isomorphic as I-algebras.

X

19.

20.

Conclusions

We have attempted to show how the conventional algebraic theory of
data types can be fitted into the setting of continuous algebras. It turned
out that the "obvious" construction of making the carrier of a given
algebra into a flat cpo and extending the operations to be strict (continuous)
ones over these flat cpo's resulted in an algebra initial in the class of
continuous algebras satisfying (a slightly modified) specification. Thus
the extremely important property of initiality has been retained.

The practical lesson to be learned from all this is that data
types can continue to be specified in the normal or conventional setting
(if this is possible or convenient) but when it comes to proving properties
of programs using the type or defining representations for the type, we
have to use the extended (continuous) specification.

Another possibility is to abandon the algebraic method and resort
to theories based on (first order) logic as this fits in more easily with
conventional methods of proof of program correctness. It also allows us
(by resorting to the theory of definitions) to get around the problem of
implicit definitions (e.g. by recursion or iteration) and thus deal with
the problem of implementations. (See [5]) This is more in the spirit of

the work done by Hoare [8].

21.

References

1.

10.

11.

12.

13.

ADJ - J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright:
Initial Algebra Semantics and Continuous Algebras, JACM, Vol. 24,
No. 1, pp.68-95, 1977.

ADJ - J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright:

An Initial Algebra Approach to the Specification, Correctness, and
Implementation of Abstract Data Types in 'Current Trends in
Programming Methodolody, Vol. 4", ed. R.T. Yeh, Prentice Hall, 1978.

ADJ - J.W, Thatcher, E.G. Wagner, J.B. Wright: Data Type Specification:
Parameterization and the Power of Specification Techniques, Proc. of
10th SIGACT Symposium on Theory of Computing, 1978.

G. Berry, B. Courcelle: Program Equivalence and Canonical Forms in
Stable Discrete Interpretations, Proc. of 3rd Colloquium on Automata,
Languages and Programming, Edinburgh, University of Edinburgh Press,
1976.

R.L. de Carvalho, T.S.E. Maibaum, T.H.C. Pequeno, A.A. Pereda Borquez,
P.A.S. Veloso: A Model - Theoretic Approach to the Semantics of Data
Types and Structures, in preparation.

B. Courcelle: On Recursive Equations Having a Unique Solution, Proc.
of 19th Annual Symposium on Foundations of Computer Science, Ann Arbor,
1978.

B. Courcelle, M, Nivat: Algebraic Families of Interpretations, Proc.
17th Annual Symposium on Foundations of Computer Science, Houston, 1976.

C.A.R. Hoare: Proof of Correctness of Data Representations, Acta
Informatica, Vol. 1, No. 1, pp. 271-281, 1972.

J.A. Goguen: Abstract Errors for Abstract Data Types, Proc. of IFIP
Working Conference on Formal Description of Programming Concepts, North
Holland, 1977.

J.A. Goguen: Some Design Principles and Theory for OBJ-0, A Language
to Express and Execute Algebraic Specifications of Programs, Proc. of
International Conference on Mathematical Studies in Information
Processing, Kyoto, pp. 429-475, 1978.

J.V. Guttag: Abstract Data Types and the Development of Data Structures,
CACM, Vol. 20, No. 6, pp. 396-404, 1977.

J.V. Guttag, E. Horowitz, D.R. Musser: Abstract Data Types and Software
Validation, CACM, Vol. 21, No. 12, pp. 1048-1064, 1978.

M.R. Levy: Data Types with Sharing and Circularity, Ph.D. Thesis,
Department of Computer Science, University of Waterloo, 1978. (Also
Technical Report CS-78-26)

14,

15.

16.

17.

18.

19.

20.

21.

22,

M.R. Levy: Verification of Programs with Data Referencing, Proc. of
3me Colloque International sur la Programmation, Dunod, pp. 411-426,
1978.

M.R. Levy, T.S.E. Maibaum: Continuous Data Types, submitted for
publication.

M.R. Levy, T.S.E. Maibaum: Data Types with Sharing and Circularity,
in preparation.

B.H. Liskov, S.N, Zilles: Specification Techniques for Data
Abstractions, IEEE, TSE, SE-1, No. 1, pp. 7-18, 1975.

T.S.E. Maibaum - A generalized approach to formal languages: JCSS 8
(1973), 409-439. '

T.S.E. Maibaum: The Semantics of a Simple Non-deterministic Language,
Proc. of 3€ Colloque International sur la Programmation, Dunod,
pp. 158-171, 1978.

T.S.E. Maibaum: The Semantics of Nondeterminism, submitted for
publication.

S.N. Zilles: Algebraic Specification of Data Types, Project MAC
Progress Report 11, MIT, pp. 28-52, 1974.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

