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Synonyms

Committee-based learning; Multiple classifier systems; Classifier combination

Definition

Ensemble learning is a machine learning paradigm where multiple learners are trained to solve the same problem. In contrast
to ordinary machine learning approaches which try to learnone hypothesis from training data, ensemble methods try to
construct asetof hypotheses and combine them to use.

Main Body Text

Introduction

An ensemble contains a number of learners which are usually calledbase learners. Thegeneralizationability of an ensemble
is usually much stronger than that of base learners. Actually, ensemble learning is appealing because that it is able to boost
weak learnerswhich are slightly better than random guess tostrong learnerswhich can make very accurate predictions. So,
“base learners” are also referred as “weak learners”. It is noteworthy, however, that although most theoretical analyses work
on weak learners, base learners used in practice are not necessarily weak since using not-so-weak base learners often results
in better performance.

Base learners are usually generated from training data by abase learning algorithmwhich can be decision tree, neural
network or other kinds of machine learning algorithms. Most ensemble methods use a single base learning algorithm to
producehomogeneousbase learners, but there are also some methods which use multiple learning algorithms to produce
heterogeneouslearners. In the latter case there is no single base learning algorithm and thus, some people prefer calling the
learnersindividual learnersor component learnersto “base learners”, while the names “individual learners” and “component
learners” can also be used for homogeneous base learners.

It is difficult to trace the starting point of the history of ensemble methods since the basic idea of deploying multiple
models has been in use for a long time, yet it is clear that the hot wave of research on ensemble learning since the 1990s owes
much to two works. The first is an applied research conducted by Hansen and Salamon [1] at the end of 1980s, where they
found that predictions made by the combination of a set of classifiers are often more accurate than predictions made by the
best single classifier. The second is a theoretical research conducted in 1989, where Schapire [2] proved thatweak learners
can be boosted tostrong learners, and the proof resulted in Boosting, one of the most influential ensemble methods.

Constructing Ensembles

Typically, an ensemble is constructed in two steps. First, a number of base learners are produced, which can be generated in
a parallel style or in asequentialstyle where the generation of a base learner has influence on the generation of subsequent
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learners. Then, the base learners are combined to use, where among the most popular combination schemes aremajority
votingfor classification andweighted averagingfor regression.

Generally, to get a good ensemble, the base learners should be as more accurate as possible, and as more diverse as
possible. This has been formally shown by Krogh and Vedelsby [3], and emphasized by many other people. There are many
effective processes for estimating theaccuracyof learners, such ascross-validation, hold-out test, etc. However, there is
no rigorous definition on what is intuitively perceived asdiversity. Although a number of diversity measures have been
designed, Kuncheva and Whitaker [4] disclosed that the usefulness of existing diversity measures in constructing ensembles
is suspectable. In practice, the diversity of the base learners can be introduced from different channels, such as subsampling
the training examples, manipulating the attributes, manipulating the outputs, injecting randomness into learning algorithms,
or even using multiple mechanisms simultaneously. The employment of different base learner generation processes and/or
different combination schemes leads to different ensemble methods.

There are many effective ensemble methods. The following will briefly introduce three representative methods,Boost-
ing [2, 5], Bagging [6] and Stacking [7]. Here, binary classification is considered for simplicity. That is, letX and
Y denote the instance space and the set of class labels, respectively, assumingY = {−1,+1}. A training data set
D = {(x1, y1), (x2, y2), · · · , (xm, ym)} is given, wherexi ∈ X andyi ∈ Y (i = 1, · · · ,m).

Boosting is in fact a family of algorithms since there are many variants. Here, the most famous algorithm, AdaBoost [5],
is considered as an example. First, it assigns equal weights to all the training examples. Denote the distribution of the weights
at thet-th learning round asDt. From the training data set andDt the algorithm generates a base learnerht : X → Y by
calling the base learning algorithm. Then, it uses the training examples to testht, and the weights of the incorrectly classified
examples will be increased. Thus, an updated weight distributionDt+1 is obtained. From the training data set andDt+1

AdaBoost generates another base learner by calling the base learning algorithm again. Such a process is repeated forT times,
each of which is called around, and the final learner is derived by weighted majority voting of theT base learners, where
the weights of the learners are determined during the training process. In practice, the base learning algorithm may be a
learning algorithm which can use weighted training examples directly; otherwise the weights can be exploited by sampling
the training examples according to the weight distributionDt. The pseudo-code of AdaBoost is shown in Fig.1.

Input: Data setD = {(x1, y1), (x2, y2), · · · , (xm, ym)};
Base learning algorithmL;
Number of learning roundsT .

Process:
D1(i) = 1/m. % Initialize the weight distribution
for t = 1, · · · , T :

ht = L(D, Dt); % Train a base learnerht fromD using distributionDt

εt = Pri∼Di [ht(xi 6= yi)]; % Measure the error ofht

αt = 1
2
ln
�

1−εt
εt

�
; % Determine the weight ofht

Dt+1(i) = Dt(i)
Zt

×
�

exp(−αt) if ht(xi) = yi

exp(αt) if ht(xi) 6= yi

=
Dt(i)exp(−αtyiht(xi))

Zt
% Update the distribution, whereZt is a normalization
% factor which enablesDt+1 to be a distribution

end.

Output: H(x) = sign(f (x)) = sign
�PT

t=1 αtht(x)
�

Fig. 1.The AdaBoost algorithm

Bagging [6] trains a number of base learners each from a differentbootstrap sampleby calling a base learning algorithm. A
bootstrap sample is obtained by subsampling the training data set with replacement, where the size of a sample is as the same
as that of the training data set. Thus, for a bootstrap sample, some training examples may appear but some may not, where
the probability that an example appears at least once is about 0.632. After obtaining the base learners, Bagging combines
them by majority voting and the most-voted class is predicted. The pseudo-code of Bagging is shown in Fig.2. It is worth
mentioning that a variant of Bagging,Random Forests[8], has been deemed as one of the most powerful ensemble methods
up to date.
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Input: Data setD = {(x1, y1), (x2, y2), · · · , (xm, ym)};
Base learning algorithmL;
Number of learning roundsT .

Process:
for t = 1, · · · , T :

Dt = Bootstrap(D); % Generate a bootstrap sample fromD
ht = L(Dt) % Train a base learnerht from the bootstrap sample

end.

Output: H(x) = argmaxy∈Y
PT

t=1 1(y = ht (x)) % the value of 1(a) is 1 if a is true and0 otherwise

Fig. 2.The Bagging algorithm

In a typical implementation of Stacking [7], a number of first-level individual learners are generated from the training data
set by employing different learning algorithms. Those individual learners are then combined by a second-level learner which
is called asmeta-learner. The pseudo-code of Stacking is shown in Fig.3. It is evident that Stacking has close relation with
information fusion methods.

Input: Data setD = {(x1, y1), (x2, y2), · · · , (xm, ym)};
First-level learning algorithmsL1, · · · ,LT ;
Second-level learning algorithmL.

Process:
for t = 1, · · · , T :

ht = Lt(D) % Train a first-level individual learnerht by applying the first-level
end; % learning algorithmLt to the original data setD
D′ = ∅; % Generate a new data set
for i = 1, · · · , m:

for t = 1, · · · , T :
zit = ht(xi) % Useht to classify the training examplexi

end;
D′ = D′ ∪ {((zi1, zi2, · · · , ziT ) , yi)}

end;
h′ = L(D′). % Train the second-level learnerh′ by applying the second-level

% learning algorithmL to the new data setD′
Output: H(x) = h′ (h1 (x) , · · · , hT (x))

Fig. 3. The Stacking algorithm

Generally speaking, there is no ensemble method which outperforms other ensemble methods consistently. Empirical
studies on popular ensemble methods can be found in many papers such as [9, 10, 11]. Previously, it was thought that using
more base learners will lead to a better performance, yet Zhou et al. [12] proved the “many could be better than all” theorem
which indicates that this may not be the fact. It was shown that after generating a set of base learners, selecting some base
learners instead of using all of them to compose an ensemble is a better choice. Such ensembles are calledselective ensembles.

It is worth mentioning that in addition to classification and regression, ensemble methods have also been designed for
clustering [13] and other kinds of machine learning tasks.

Why Ensembles Superior to Singles

To understand that why thegeneralization ability of an ensemble is usually much stronger than that of a single learner,
Dietterich [14] gave three reasons by viewing the nature of machine learning as searching a hypothesis space for the most
accurate hypothesis. The first reason is that, the training data might not provide sufficient information for choosing a single
best learner. For example, there may be many learners perform equally well on the training data set. Thus, combining these
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learners may be a better choice. The second reason is that, the search processes of the learning algorithms might be imperfect.
For example, even if there exists a unique best hypothesis, it might be difficult to achieve since running the algorithms
result in sub-optimal hypotheses. Thus, ensembles can compensate for such imperfect search processes. The third reason is
that, the hypothesis space being searched might not contain the true target function, while ensembles can give some good
approximation. For example, it is well-known that the classification boundaries of decision trees are linear segments parallel
to coordinate axes. If the target classification boundary is a smooth diagonal line, using a single decision tree cannot lead to
a good result yet a good approximation can be achieved by combining a set of decision trees. Note that those are intuitive
instead of rigorous theoretical explanations.

There are many theoretical studies on famous ensemble methods such as Boosting and Bagging, yet it is far from a clear
understanding of the underlying mechanism of these methods. For example, empirical observations show that Boosting often
doesnot suffer fromoverfitting even after a large number of rounds, and sometimes it is even able to reduce thegeneral-
ization error after the training error has already reached zero. Although many researchers have studied this phenomenon,
theoretical explanations are still in arguing.

Thebias-variance decompositionis often used in studying the performance of ensemble methods [9, 12]. It is known that
Bagging can significantly reduce the variance, and therefore it is better to be applied to learners suffered from large variance,
e.g., unstable learners such as decision trees or neural networks. Boosting can significantly reduce the bias in addition to
reducing the variance, and therefore, on weak learners such as decision stumps, Boosting is usually more effective.

Applications

Ensemble learning has already been used in diverse applications such as optical character recognition, text categorization,
face recognition, computer-aided medical diagnosis, gene expression analysis, etc. Actually, ensemble learning can be used
wherever machine learning techniques can be used.

Summary

Ensemble learning is a powerful machine learning paradigm which has exhibited apparent advantages in many applications.
By using multiple learners, thegeneralization ability of an ensemble can be much better than that of a single learner. A
serious deficiency of current ensemble methods is the lack of comprehensibility, i.e., the knowledge learned by ensembles is
not understandable to the user. Improving the comprehensibility of ensembles [15] is an important yet largely understudied
direction. Another important issue is that currently no diversity measures is satisfying [4] although it is known that diversity
plays an important role in ensembles. If those issues can be addressed well, ensemble learning will be able to contribute more
to more applications.

Related Entries

Boosting, Classifier design, Machine learning, Multiple classifier systems, Multiple experts.
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Definitional Entries

Bias-Variance Decomposition

An important tool for analyzing machine learning approaches. Given a learning target and the size of training data set, it
breaks the expected error of a learning approach into the sum of three non-negative quantities, i.e., theintrinsic noise, the
bias and thevariance. The intrinsic noise is a lower bound on the expected error of any learning approach on the target;
the bias measures how closely the average estimate of the learning approach is able to approximate the target; the variance
measures how much the estimate of the learning approach fluctuates for the different training sets of the same size.

Cross-Validation

A popular approach to estimating how well the result learned from a given training data set is going to generalize on unseen
new data. It partitions the training data set intok subsets with equal size, and then uses the union ofk− 1 subsets for training
while the remaining subset for performance evaluation. The final estimate is obtained by averaging after every subset has
been used for evaluation once. A popular settings ofk is 10 and in this case it is called as10-fold cross-validation; another
popular setting ofk is the number of training examples and in this case it is called as LOO (i.e.,Leave-One-Out) test.

Generalization

The most central concept in machine learning, which characterizes how well the result learned from a given training data set
can be applied to unseen new data.

Overfitting

The phenomenon that the learning result performs very good on training data but poorly on unseen new data, which is caused
by that the learning approach has fit the training data too much such that some malign particularities that prevents a good
generalization has also been captured by the learning result.


