
Data Encryption

Encryption refers to the coding of information in order to keep it secret. Encryption is accom-
plished by transforming the string of characters comprising the information to produce a new
string that is a coded form of the information. This is called a cryptogram or ciphertext and may
be safely stored or transmitted. At a later time it can be deciphered by reversing the encrypting
process to recover the original information, which is called plaintext.

Data encryption has been used to send secret military and political messages from the days
of Julius Caesar to the present. Recent applications include the Washington-Moscow hotline, elec-
tronic funds transfer, electronic mail, database security, and many other situations in which the
transmission of secret data is crucial. Less profound applications have included Captain Midnight
secret decoder rings that could be obtained in the 1950s for twenty-five cents and two Ovaltine
labels, puzzles appearing in the daily newspaper, and a number of other frivolous applications. In
this section we describe some encryption schemes ranging from the Caesar cipher scheme of the
first century B.C. to the Data Encryption Standard and the public key encryption schemes of the
20th century.

The simplest encryption schemes are based on the string operation of substitution, in which
the plaintext string is traversed and each character is replaced by some other character according
to a fixed rule. For example, the Caesar cipher scheme consists of replacing each letter by the let-
ter that appears k positions later in the alphabet for some integer k. (The alphabet is thought of as
being arranged in a circle, with A following Z.) In the original Caesar cipher, k was 3, so that each
occurrence of A in the plaintext was replaced by D, each B by E, . . ., each Y by B, and each Z by
C. For example, using the character set

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

we would encrypt the string “IDESOFMARCH” as follows:

To decode the message, the receiver uses the same key k and recovers the plaintext by applying
the inverse transformation, that is, by traversing the ciphertext string and replacing each character
by the character k positions earlier in the alphabet. This is obviously not a very secure scheme,
since it is possible to “break the code” by simply trying the 26 possible values for the key k.

An improved substitution operation is to use a keyword to specify several different displace-
ments of letters rather than the single offset k of the Caesar cipher. In this Vignère cipher scheme,
the same keyword is added character by character to the plaintext string, where each character is
represented by its position in the character set and addition is carried out modulo 26. For example,
suppose the character set and positions of characters are given by



and that the keyword is DAGGER. The plaintext IDESOFMARCH is then encrypted as follows:

Again, the receiver must know the key and recovers the plaintext by subtracting the characters in
this keyword from those in the ciphertext.

A different substitution operation is to use a substitution table, for example:

The string IDESOFMARCH would then be encoded as follows:

To decode the ciphertext string, the receiver must again know the key, that is, the substitution
table.

Since there are 26! (approximately 1028) possible substitution tables, this scheme is consid-
erably more secure than the simple Caesar cipher scheme. Experienced cryptographers can easily
break the code, however, by analyzing frequency counts of certain letters and combinations of let-
ters.

Another basic string operation in some encryption schemes is permutation, in which the
characters in the plaintext or in blocks of the plaintext are rearranged. For example, we might
divide the plaintext string into blocks (substrings) of size 3 and permute the characters in each
block as follows:



Thus the message IDESOFMARCH is encrypted (after the addition of a randomly selected char-
acter X so that the string length is a multiple of the block length)

To decode the ciphertext string, the receiver must know the key permutation and its inverse

Original position:1 2 3
Permuted position:2 3 1

Data Encryption Standard
Most modern encryption schemes use both of these techniques, by combining several substitution
and permutation operations. One of the best known is the Data Encryption Standard (DES)
developed in the early 1970s by the federal government and the IBM corporation. The scheme is
described in Federal Information Processing Standards Publication 46 (FIPS Pub 46)1 and is out-
lined in Figure 1, which is a diagram from this government publication.

1. Copies of this publication can be obtained from the National Institute of Standards and Technology of the U.S. Department of Commerce.



In DES, the input is a bit string of length 64 representing a block of characters in the plain-
text string (for example, the concatenation of the ASCII codes of eight characters), and the output
is a 64-bit string that is the ciphertext. The encryption is carried out as a complicated series of per-
mutations and substitutions. The substitution operations used are similar to those in earlier exam-
ples: Some are obtained by the addition of keywords and others use a substitution table.

Figure 1.  DES



The first operation applied to the 64-bit input string is an initial permutation (IP) given by the
following table:

For example, the first bit in the permuted result is the fifty-eighth bit in the original string; the sec-
ond bit is the fiftieth; and so on. This permuted string is then split into two 32-bit substrings: a left
substring, denoted by L0 in the diagram in Fig. 3.14, and a right substring, denoted by R0. A
cipher function denoted by f uses substitutions and a key K1 to transform R0 into a new 32-bit
string denoted by f(R0,K1). This string is then added to L0 using bit-by-bit addition modulo 2 (that
is, they are combined using the exclusive or operation ⊕) to produce the right substring R1 at the
next stage. The original R0 becomes the left substring L1.

This basic sequence of operations is performed 16 times with 16 different key strings K1, . . .,
K16, except that no “crossover” is performed at the last stage. These operations produce a 64-bit
string R16L16 labeled “PREOUTPUT” in the diagram. The inverse of the initial permutation (IP-1)
is then applied to this preoutput string to yield the final ciphertext.

 IP

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17   9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

IP–1

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41   9 49 17 57 25



The details of the operation f are shown in Figure 2. The right substring denoted by R is first
expanded into a 48-bit string using the following bit-selection table E:

Thus the first 6-bit block consists of bits 32, 1, 2, 3, 4, and 5 of R; the second block consists of bits
4, 5, 6, 7, 8, and 9; and so on. A substitution operation is then applied to this 48-bit string by com-
bining it with a 48-bit key string K using the exclusive or operation. Another substitution using a
different table is then applied to each of the 6-bit blocks to produce 4-bit blocks so that the final
result is again a 32-bit string. For example, the substitution table for S1 is

Figure 2.  Calculation of f(R, K)

E

32   1   2   3   4   5

  4   5   6   7   8   9

  8   9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32   1



To illustrate how it is used, suppose that the first 6-bit block is 101000. The binary numeral 10
consisting of the first and last bits determines a row in this table, namely, row 2, and the middle
four bits 0100 determine a column, namely, column 4. The 4-bit binary representation 1101 of the
entry 13 in the second row and the fourth column of this table is the replacement for this 6-bit
block. Similar substitution tables S2, . . ., S8 are used to transform the other seven 6-bit blocks.

One final permutation P is applied to the resulting 32-bit string to yield f(R, K):

The 16 different keys used in DES are extracted in a carefully prescribed way from a single
64-bit key. Thus the user need supply only one key string to be used for encryption and decryp-
tion, rather than 16 different keys. The algorithm for decrypting ciphertext is the same as that for
encryption, except that the 16 keys are applied in reverse order.

Because it was thought to be almost impossible to break, DES was adopted by the National
Institute of Standards and Technology (formerly the National Bureau of Standards) as the stan-
dard encryption scheme for sensitive federal documents. It soon became one of the most widely-
used methods of data encryption.

Questions about whether the 48-bit keys used in the substitutions were long enough and the
substitution keys sophisticated enough to provide the necessary security were soon raised, how-
ever. And in 1998, DES was broken by the Electronic Frontier Foundation (EFF) using custom-
designed chips and a personal computer running for 56 hours. Although it was reaffirmed in 1999
by the federal government as the encryption scheme of choice, it has since been replaced with a
new standard for encryption known as the Advanced Encryption Standard (AES) 

S1
Column Number

Row

No.   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14  15
0 14   4 13 1   2 15 11   8   3 10   6 12   5   9 0   7

1    0 15   7 4 14   2 13   1 10   6 12 11   9   5 3   8

2   4   1 14 8 13   6   2 11 15 12   9   7   3 10 5  0

3 15 12   8 2   4   9   1   7   5 11   3 14 10   0 6 13

P

16 7 20 21

29 12 28 17

  1 15 23 26

  5 18 31 10

  2   8 24 14

32 27   3   9

19 13 30   6

22 11   4 25



Public-Key Encryption
Each of the encryption schemes considered thus far requires that both the sender and the receiver
know the key or keys used in encrypting the plaintext. This means that although the cryptogram
may be transmitted through some public channel such as a telephone line that is not secure, the
keys must be transmitted in some secure manner, for example, by a courier. This problem of main-
taining secrecy of the key is compounded when it must be shared by several people.

Another popular type of encryption scheme eliminates this problem by using two keys, one
for encryption and one for decryption. These schemes are called public-key encryption schemes
because the encryption key is not kept secret. The keys used in these systems have the following
properties:

1. For each encryption key there is exactly one corresponding decryption key, and it is dis-
tinct from the encryption key.

2. There are many such pairs of keys, and they are relatively easy to compute.
3. It is almost impossible to determine the decryption key if one knows only the encryption 

key.
4. The encryption key is made public by the receiver to all those who will transmit messages 

to him or her, but only the receiver knows the decryption key.

In 1978, Rivest, Shamir, and Adelman proposed one method of implementing a public key
encryption scheme.1 The public key is a pair (e, n) of integers, and one encrypts a message string
M by first dividing M into blocks M1, M2, . . ., Mk and converting each block Mi of characters to
an integer Pi in the range 0 through n – 1 (for example, by concatenating the ASCII codes of the
characters). M is then encrypted by raising each block to the power e and reducing modulo n:

Plaintext:  

Ciphertext: % n

(Here % is the mod operator in C++. ) The cipher text C is decrypted by raising each block Ci to
the power d and reducing modulo n, where d is a secret decryption key. Clearly, to recover the
plaintext, we need

Pi = Ci
d % n = (Pi

e)d % n = Pi
e.d % n

for each block Pi. Thus e and d must be chosen so that 

xe d % n = x

for each nonnegative integer x.
The following algorithms summarize this Rivest-Shamir-Adelman (RSA) public key encryp-

tion system:

1. R. L. Rivest, A. Shamir, and L. Adelman, “A method for obtaining digital signatures and public-key cryptosystems,” communications of 
the ACM 21, 2 (February 1978): 120–126

M1M2
…Mk P→ 1P2

…P=

C1C2…Ck Ci, P= =



RSA Encryption Algorithm

/*  This algorithm encrypts a plaintext using the RSA scheme with a 
public encryption code (e, n) to produce a ciphertext.

Receive: Plaintext M.
Return: Ciphertext C.

---------------------------------------------------------------------------------------------------------*/

1. Pad M with some randomly selected character if necessary so that length(M) 
is a multiple of blockLength.

2. Calculate numberOfBlocks = length(M) / blockLength.
3. Initialize index j to 1.
4. For i = 1 to numberOfBlocks:

a. Extract the substring Mi from M consisting of the blockLength characters 
beginning at position j.

b. Convert Mi to numeric form to give Pi.

c. Calculate Ci = Pi
e % n

d. Increment j by blockLength.

RSA Decryption Algorithm

/*  This algorithm decrypts a ciphertext using a secret decryption 
key d to produce a plaintext.

Receive: Ciphertext C consisting of numeric blocks Ci, i = 1, . . ., numberOfBlocks

Return: Plaintext M.
---------------------------------------------------------------------------------------------------------*/

1. Initialize M to the empty string.
2. For i = 1 to numberOfBlocks:

a. Calculate Pi = Ci
d % n

b. Convert Pi to a string of characters Mi.

c. Concatenate Mi onto M.

To illustrate, suppose that (17, 2773) is the public encryption code and that characters are
converted to numeric values using the following table:



To encrypt a string such as M = “IDESOFMARCH” using the RSA algorithm, we divide M into
2-character blocks M1, M2, . . ., M6 (after appending the randomly selected character X) and repre-
sent each block Mi as an integer Pi in the range 0 through 2773 – 1 = 2772 by concatenating the
numeric codes of the characters that comprise the block:

Each of these blocks Pi is then encrypted by calculating Ci = Pi
13 % 2773:

For this encryption key, the corresponding decrypting key is d = 157. Thus, we decrypt the
ciphertext by calculating Ci

157 % 2773 for each block Ci. For the preceding ciphertext this gives

Decrypted ciphertext: 0803 0418 1405 1200 1702 0723

which is the numeric form of the original message.

Two points in the preceding discussion of the RSA encryption scheme require further expla-
nation: (1) How are n, e, and d chosen? (2) How can the exponentiation be performed efficiently?

The number n is the product of two large “random” primes p and q,

n = p . q

In the preceding example, we used the small primes 47 and 59 to simplify the computations, but
Rivest, Shamir, and Adelman suggest that p and q have at least one hundred digits. The decrypting
key d is then selected to be some large random integer that is relatively prime to both p – 1 and q
– 1, that is, one that has no factors in common with either number. In our example, d = 157 has
this property. The number e is then selected to have the property that

e . d % [(p – 1) . (q – 1)]is equal to 1



A result from number theory then guarantees that e and d will have the required property
described earlier, namely, that

Pi
e d % n = Pi

for each block Pi.
We can efficiently carry out the exponentiations required in encryption and decryption by

repeatedly squaring and multiplying, as follows:

Exponentiation Algorithm

/*  Algorithm to calculate y = xk mod n.

Input: Integers x, k, and n.
Return: y. 

----------------------------------------------------------------*/

1. Find the base-2 representation bt
...b1b0 of the exponent k.

2. Initialize y to 1.
3. For i = t down to 0:

a. Set y = y2 % n.
b. If bi = 1 then

  Set y = (y * x) % n.

Recall that the encrypting key (e, n) is a public key, so that no attempt is made to keep it
secret. The decrypting key d is a private key, however, and so must be kept secret. To break this
code, one would need to be able to determine the value of d from the values of n and e. Because of
the manner in which d and e are selected, this is possible if n can be factored into a product of
primes. The security of the RSA encryption scheme is based on the difficulty of determining the
prime factors of a large integer. For large prime factors, this is a prohibitively time-consuming
task. A study of a few years ago gave the following table displaying some estimated times, assum-
ing that each operation required one microsecond.

Number of Digits in 
Number Being Factored Time

  50 4 hours

  75 104 days

100 74 years

200 4 billion years

300 5 ∞ 1015 years

500 4 ∞ 1025 years



EXERCISES 

1. A pure permutation encryption scheme is very insecure. Explain why by describing how an en-
cryption scheme that merely permutes the bits in an n-bit string can easily be cracked by study-
ing how certain basic bit strings are encrypted. Illustrate for n = 4. 

2. Consider a simplified DES scheme that encrypts messages using the DES approach pictured in
Fig. 3.14 but with only two keys, K1 and K2, instead of 16 keys K1, . . ., K16, and that in the
calculation of f(R, K) pictured in Fig. 3.15 uses the same substitution table S1 for each of the 6-
bit blocks instead of eight different tables S1, . . ., S8. Encrypt the string “AARDVARK” using
this simplified DES scheme with keys K1 = “ABCDEF” and K2 = “SECRET” and assuming
that strings are converted into bit strings by replacing each character by its binary ASCII codes.

3. Using the character codes 00, 01, . . ., 25 given in the text
a) Find the RSA ciphertext produced by the key (e, n) = (5, 2881) for the plaintext “PUB-

LIC.”
b) Verify that d = 1109 is a decrypting key for the RSA scheme in (a).

4. If the RSA ciphertext produced by key (e,n) = (13, 2537) is 0095 and the character codes 00,
01, . . ., 25 given in the text are used, find the plaintext.

5. A public key encryption scheme can be used to provide positive identification of the sender of
a message by incorporating a digital signature into it. To illustrate, suppose that Al wishes to
send a message M to Bob. Al first “signs” M by encrypting it using his secret decrypting key,
which we might indicate by

S = DAl(M)

6. He then encrypts S using Bob’s public encryption key and sends the result to Bob:

M  = EBob(S)

7. Bob first decrypts the ciphertext M  with his secret decrypting key to obtain the signature S

DBob(M ) = DBob(EBob(S)) = S

8. and then extracts the message M by using Al’s public encryption key:

EAl(S) = EAl(DAl(M)) = M

9. Bob’s pair (M, S) is similar to a paper document that Al signed, since only Al could have cre-
ated S. For the message M = “HI” and using the character codes 00, 01, . . ., 25 given in the text,
find M  if Al and Bob have published RSA encryption keys (3, 1081) and (1243, 1829), respec-
tively.

10. Write a function to implement the algorithm given in the text for calculating y = xk % n by re-
peated squaring and multiplication.


