
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Checking Correctness of
TypeScript Interfaces for JavaScript Libraries

Asger Feldthaus
Aarhus University

asf@cs.au.dk

Anders Møller
Aarhus University
amoeller@cs.au.dk

Abstract
The TypeScript programming language adds optional types
to JavaScript, with support for interaction with existing
JavaScript libraries via interface declarations. Such decla-
rations have been written for hundreds of libraries, but they
can be difficult to write and often contain errors, which may
affect the type checking and misguide code completion for
the application code in IDEs.

We present a pragmatic approach to check correctness of
TypeScript declaration files with respect to JavaScript library
implementations. The key idea in our algorithm is that many
declaration errors can be detected by an analysis of the li-
brary initialization state combined with a light-weight static
analysis of the library function code.

Our experimental results demonstrate the effectiveness of
the approach: it has found 142 errors in the declaration files
of 10 libraries, with an analysis time of a few minutes per
library and with a low number of false positives. Our anal-
ysis of how programmers use library interface declarations
furthermore reveals some practical limitations of the Type-
Script type system.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]]: Testing and Debugging

General Terms Languages, Verification

1. Introduction
The TypeScript [10] programming language is a strict super-
set of JavaScript, one of the main additions being optional
types. The raison d’être of optional types is to harness the
flexibility of a dynamically typed language, while providing
some of the benefits otherwise reserved for statically typed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OOPSLA ’14, October 19–21, 2014, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2585-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2660193.2660215

languages: for instance, the compiler can quickly catch obvi-
ous coding blunders, and editors can provide code comple-
tion. Types also carry documentation value, giving program-
mers a streamlined language with which to document APIs.
TypeScript does not ensure type safety, in other words, the
type system is unsound by design. Even for programs that
pass static type checking, it is possible that a variable at run-
time has a value that does not match the type annotation.
This is seen as a trade-off necessary for keeping the type
system unrestrictive.

TypeScript is designed to compile to JavaScript using
a shallow translation process. Each TypeScript expression
translates into one JavaScript expression, and a value in
TypeScript is the same as a value in JavaScript. This makes it
possible to mix TypeScript code with JavaScript code, in par-
ticular existing JavaScript libraries, without the use of a for-
eign function interface as known from other programming
languages. However, in order to provide useful type check-
ing, it is beneficial for the compiler to know what types to
expect from the JavaScript code. For this purpose, a sub-
set of TypeScript is used for describing the types of func-
tions and objects provided by libraries written in JavaScript.
Once such a description has been written for a JavaScript li-
brary, the library can be used by TypeScript programmers as
though it were written in TypeScript. This language subset
is used extensively and is an essential part of the TypeScript
ecosystem. As an example, the Definitely Typed repository,1

which is a community effort to provide high quality Type-
Script declaration files, at the time of writing contains dec-
larations for over 200 libraries, comprising a total of over
100,000 effective lines of code in declaration files.

TypeScript declaration files are written by hand, and often
by others than the authors of the JavaScript libraries. If the
programmer makes a mistake in a declaration file, tools that
depend on it will misbehave: the TypeScript type checker
may reject perfectly correct code, and code completion in
IDEs may provide misleading suggestions. The TypeScript
compiler makes no attempt to check the correctness of the
declaration file with respect to the library implementation,
and types are not checked at runtime, so any bugs in it

1 https://github.com/borisyankov/DefinitelyTyped

Fragment of d3.js (library implementation)

1 var d3 = function() {
2 var d3 = {...};
3 ...
4 d3.scale = {};
5 ...
6 d3.scale.threshold = function() {
7 return d3_scale_threshold([.5], [0, 1]);

8 };
9 function d3_scale_threshold(domain,range) {

10 ...
11 }
12 return d3;
13 }();

Fragment of d3.d.ts (declaration file)

14 declare module D3 { ...
15 module Scale { ...
16 interface ScaleBase { ...
17 theshold(): ThresholdScale;
18 }
19 interface ThresholdScale { ... }
20 }
21 interface Base { ...
22 scale : Scale.ScaleBase;
23 }
24 }
25 declare var d3 : D3.Base;

Figure 1. Fragments of the d3.js library and the associated
declaration file found on the Definitely Typed repository.
The ellipses (“...”) represent fragments taken out for brevity.

can easily remain undetected long enough for the buggy
declaration file to get published to the community. Hence,
application programmers who depend on the declaration file
may occasionally find themselves debugging their own code,
only to find that the bug was in the declaration file.

Figure 1 shows an example of a bug found in the decla-
ration file for the d3.js library. The initialization code for
the library creates the d3 and d3.scale objects, and ex-
poses the threshold function on d3.scale. The library
uses the d3 object as a namespace for all its exposed fea-
tures. Note that the function expression spanning lines 1–13
is invoked immediately on line 13, exposing the d3 ob-
ject through a global variable. This trick is used to hide
the d3_scale_threshold function (and other features not
shown in the fragment).

The declaration file declares a module D3 to provide a
namespace for type declarations, and declares that the global
variable d3 must satisfy the type D3.Base, which refers to
the interface on line 21. The interface D3.Base declares a
property scale of type Scale.ScaleBase, which refers to
D3.Scale.ScaleBase defined on line 16. It follows that the
d3.scale object created during library initialization must
satisfy the D3.Scale.ScaleBase interface. This interface

declares a theshold method, which is intended to docu-
ment the function created on line 6, but the declaration file
contains a misspelling of the word “threshold”. This has con-
sequences for users of the declaration file: First, editors that
provide code completion (also called autocompletion) will
suggest that an expression like d3.scale.th is completed
to d3.scale.theshold(), which will pass the static type
check, but fail at runtime. Second, if the programmer discov-
ers the problem and fixes the typo in his client code, the static
type checker will reject his otherwise correct code, claiming
that ScaleBase has no method called threshold.

Some declaration files, including the one for d3.js, con-
sist of over a thousand effective lines of code and are not
trivial to write or proofread. Currently, the main line of de-
fense against declaration bugs is to write tests using a code
completing editor, deliberately using the completion sugges-
tions. These tests invoke certain features of the library, and
if the tests both type check and do not fail at runtime, the
declaration file is likely to be correct for those features. An
obvious downside to this approach is that the programmer
effectively has to duplicate parts of the library’s test suite
(which is not written in TypeScript, and hence cannot be
checked by the compiler). Such tests are present for many
libraries in the Definitely Typed repository, but they are in-
complete and many bugs have escaped the scrutiny of these
tests. For instance, there are 1,800 lines of code for testing
the declaration file for d3.js, yet the aforementioned bug
was not caught.

The API of a JavaScript library is not expressed declara-
tively as in other languages but defined operationally by its
initialization code that sets up the objects and functions that
constitute the library interface. This initialization is typically
done during execution of the top-level code of the library,
that is, immediately when the JavaScript file is loaded and
not later when events are processed. Based on this observa-
tion, we expect that many mismatches between TypeScript
declarations and JavaScript implementations can be detected
by considering the effects of the library initialization code.

In this work we present a technique for checking the cor-
rectness of TypeScript declaration files against a JavaScript
implementation. Our technique proceeds in three phases:

1. We first execute the library’s initialization code and ex-
tract a snapshot of its state.

2. Next we check that the global object and all reachable ob-
jects in the snapshot match the types from the declaration
file using a structural type checking algorithm.

3. We then complement the preceding phase with a light-
weight static analysis of each library function to check
that it matches its signature in the declaration file.

The error in Figure 1 is one of those found by type checking
the heap snapshot (phase 2). We shall later see examples of
errors that are caught by the static analysis of the function
code (phase 3).

With our implementation, TSCHECK, we observe that
many large declaration files published to the community
contain bugs, many of which cause other tools to misbehave.
We also observe that a large portion of the bugs are easily
fixed, while others are harder to address due to limitations in
TypeScript’s type system.

In summary, our contributions are as follows:

• We point out the need for tool support to check correct-
ness of TypeScript declaration files against JavaScript li-
brary implementations, and we present an algorithm that
is designed to detect many kinds of errors in such dec-
larations. Our algorithm checks that the runtime object
structure after library initialization and the library func-
tion code are consistent with the given declaration file.

• As part of describing the algorithm, we formalize the re-
lationship between values and types in TypeScript, which
is otherwise only described informally in the language
specification.

• Our experimental results show that the algorithm is capa-
ble of detecting 142 errors in a collection of 10 existing
declaration files, with a low number of false positives.
The snapshot type checking phase takes less than a sec-
ond to execute for each library, and the static analysis
checks each function in about one second.

• The development of our algorithm and experiments has
exposed some practical limitations of TypeScript’s type
system, which may be useful information for evolution
of the TypeScript language.

Our algorithms naturally depend on what it means for a
runtime value to have a certain type according to the Type-
Script language specification. The snapshot type checking
phase described in Section 4 is designed to be sound and
complete with respect to this meaning of types, modulo two
assumptions we explain in Section 3 about library initial-
ization and two deviations that we introduce for reasons ex-
plained in Section 4.1.

As mentioned, TypeScript’s static type checker is delib-
erately unsound, as exemplified by the following program:

26 var x : string = "foo";
27 var y : any = x;
28 var z : number = y;

The assignment on line 28 would require a type cast in a
Java-like type system (which would consequently fail at run-
time), but the assignment is deliberately allowed in Type-
Script. Our algorithm for statically analyzing the function
code is independent of TypeScript’s type checking proce-
dure. Still, we follow the same pragmatic approach and in-
tentionally sacrifice strong type safety in the design of our
static analysis algorithm in Section 5 to ensure high perfor-
mance and reduce the number of false positives.

2. The TypeScript Declaration Language
TypeScript extends the JavaScript language with additional
statements and expressions for interfacing with the type sys-
tem. We here give an overview of the declaration language in
TypeScript and introduce the notation and terminology that
we use in the remainder of the paper.

Declarations in TypeScript can do one or both of the
following: (1) contribute to the type namespace at compile
time, and (2) have an effect at runtime. Declarations that
have no effect at runtime are called ambient declarations.
Declaration files consist exclusively of ambient declarations,
so we will focus on the subset of TypeScript that may occur
in such declarations.

An interface declaration declares a type and has no effect
at runtime. For example, the interface below declares a type
IPoint with members x and y of type number.

29 interface IPoint {
30 x: number;
31 y: number;
32 }

TypeScript uses a structural type system; any object satisfies
the IPoint type if it has properties x and ywith numeric val-
ues. This stands in contrast to nominal type systems known
from Java-like languages where an object only implements
an interface if the class of the object is explicitly declared to
implement the interface.

A class declaration declares a type and creates a con-
structor for the class at runtime. For example, consider the
class below:

33 class Point {
34 x: number;
35 y: number;
36 constructor(x: number, y: number) {
37 this.x = x;
38 this.y = y;
39 }
40 }

This declares a type Point but will also at runtime create
a constructor function for the class and expose it in the
variable Point, so that the class can be instantiated by an
expression, such as, new Point(4,5). Class types are only
satisfied by objects that are created using its constructor, so
for instance, an object created by the expression {x:4, y:5}
satisfies the IPoint type but not the Point type, while an
object created by the expression new Point(4,5) satisfies
both Point and IPoint. This makes class types behave like
the nominal types from Java-like languages. In TypeScript
nomenclature, such types are called branded types.

The class declaration above has effects at runtime, and
thus cannot occur in a declaration file. An ambient class dec-
laration may be used instead, which instructs the TypeScript
compiler to behave as if the class declaration had been there
(for type checking purposes), but no code will be emitted for
the declaration:

41 declare class Point {
42 x: number;
43 y: number;
44 constructor(x: number, y: number);
45 }

2.1 TypeScript Declaration Core
The TypeScript language has non-trivial name resolution
and inheritance features, which we will not describe in this
work. We instead present TypeScript Declaration Core that
captures the expressiveness of TypeScript’s declaration lan-
guage, after all type references have been resolved and in-
heritance hierarchies have been flattened.

We now describe the syntax and semantics of this core
type system. We let S denote the set of Unicode strings for
use as property names and string constants. A TypeScript
declaration core consists of the following finite disjoint sets,

T ∈ N : type names
v ∈ V : type variables
e ∈ E : enum type names

along with a type environment, the name of the global object
type, and a mapping from enum types to their members:

Σ : N → type-def type environment
G ∈ N name of the global object type
Γ : E → P(S) enum members

The type environment Σ maps type names to their def-
initions, e.g. IPoint would map to the type {x:number;
y:number}. In JavaScript, all global variables are actually
properties of a special object known as the global object.
We use G as the name of the global object type. The global
object must satisfy the global object type, hence Σ(G) can
be used to describe the types of global variables. Enum type
names e ∈ E describe finite enumeration types; the enum
member mapping Γ denotes what values belong to each
enum type. Enum types will be discussed in more detail later
in this section.

The syntax of types is given below:

type-def ::= 〈 V 〉 obj

τ ∈ type ::= any | void | bool | num | str | "S" |
obj | N〈type〉 | E | V

o ∈ obj ::= { prty ; indexer ; fun-sig ; brand }
ρ ∈ prty ::= opt? S : type

i ∈ indexer ::= [num : type] | [str : type]

c ∈ fun-sig ::= new? vargs? 〈 type-parm 〉(parm)⇒ type

p ∈ parm ::= opt? type

type-parm ::= V extends type

b ∈ brand ::= S

We will now informally describe the meaning of these types.

Type Definitions A type definition 〈v〉o defines a poten-
tially generic type, with v being the names of the type vari-
ables.

Example The IPoint interface would give rise to the type
definition Σ(IPoint) = 〈〉{x:number; y:number}.

Type References A type of form T 〈τ〉 denotes the instanti-
ation of the type with name T with type arguments τ . Here,
T must be the name of a type definition that has the same
number of type parameters. If zero type parameters are spec-
ified, this is simply a reference to the type T .

Objects An object type consists of properties, indexers,
function signatures, and brands. Each member restricts the
set of values that satisfy the type. These meaning of these
members are detailed below.

Properties A property f : τ denotes that an object of this
type must have a property f with a value of type τ . If the
opt flag is specified, the property is optional. An optional
property opt f : τ denotes that if the object has a property
named f , then the value of that property must have type τ .

Indexers An indexer [str : τ] denotes that all enumerable
properties of the object must have a value of type τ . Such
indexers are used for describing the types of objects that are
used as dictionaries. Enumerability is a boolean flag set on
each property, indicating if it should be seen by reflective
operators, such as JavaScript’s for-in loop. Properties are
generally enumerable by default, but certain natively defined
properties are non-enumerable so that they do not interfere
with dictionary-like objects.

An indexer [num : τ] denotes that all properties whose
name is a valid array index (i.e. "0", "1", "2", etc.) must
satisfy τ . JavaScript treats array indices as properties whose
names are number strings, so number indexers can be used
to describe the types of arrays and array-like objects.

Example The declaration file lib.d.ts, which the Type-
Script compiler uses as a model for JavaScript’s native API,
uses number indexers to describe the type of arrays (Type-
Script uses a slightly different syntax for indexers than our
core language):

46 interface Array<T> { ...
47 [n: number]: T;
48 }

Indexers are not only used for actual arrays. The declaration
file for jQuery shows that a JQuery object can be seen as an
array of HTMLElements:

49 interface JQuery { ...
50 [n: number]: HTMLElement;
51 }

Function Signatures A function signature in an object
type denotes that the object must be callable as a func-
tion; such an object is typically called a function. In its

simplest form, a signature (τ1, ..., τn) ⇒ τ specifies that
when the function is invoked with n arguments satisfying
types τ1, ..., τn, a value of type τ should be returned. If the
new flag is present, the signature only applies to constructor
calls, otherwise, it only applies to non-constructor calls. If
the vargs flag is present, the signature additionally applies to
any call with more than n arguments where the extra argu-
ments satisfy the type τn. The vargs flag cannot be used if
n = 0. If the last k parameters are annotated with the opt
flag, the signature additionally applies to calls with n−k ar-
guments. It is invalid to use the opt flag for a parameter un-
less all following parameters also use it. A function signature
is polymorphic if it declares one or more type parameters; in
this case the function must satisfy all valid instantiations of
the function signature. An instantiation is valid if the types
substituting a type variable satisfies its bound.

Brands An object type with a brand b is called a branded
type. Brands serve to emulate nominal types in TypeScript’s
structural type system, so that otherwise equivalent types
are distinguishable. In TypeScript, classes are branded types
while interfaces are unbranded. In our core type system,
a brand is an access path pointing to the prototype object
associated with a class. An access path is a sequence of
property names, for example, the path foo.bar points to the
value of the bar property of the object in the global variable
foo. For an object to satisfy a brand b, this object must have
the object pointed to by b in its prototype chain.

Given a class declaration declare class C {}, the
branded type Σ(C) = 〈〉{ C.prototype } would be gen-
erated. This interpretation of branded types is based on how
constructor calls work in JavaScript: when an object o is
created by an expression of form new F(...), the internal
prototype link of o is initialized to the object referred to
by F.prototype. Thus, the prototype chain indicates what
constructor was used to create a given object.

Enums An enum type of name e is satisfied by the values
pointed to by the access paths in Γ(e).

Example The enum declaration below declares an enum
type of name FontStyle ∈ E.

52 declare enum FontStyle {
53 Normal, Bold, Italic
54 }

The declaration also introduces a global variable FontStyle
with members Normal, Bold, Italic, all of type FontStyle.
The values for these three members are not specified in
the type and can be chosen arbitrarily by the implemen-
tation. The specific values used by the implementation of
this enum can be found by inspecting the access paths
FontStyle.Normal, FontStyle.Bold, and FontStyle.Italic.
For instance, here are two valid JavaScript implementations
of the enum type:

55 var FontStyle = // implementation 1
56 { Normal: 0, Bold: 1, Italic: 2 }

57 var FontStyle = // implementation 2
58 { Normal: "normal", Bold: "bold",
59 Italic: "italic" }

In both cases, we have Γ(FontStyle) = {FontStyle.Normal,
FontStyle.Bold, FontStyle.Italic}, but the set of values
satisfied by the enum type depends on the implementation
being checked against.

3. Library Initialization
In this section we discuss what it means to initialize a library,
the assumptions we make about the library initialization
process, and the notion of a snapshot of the runtime state.

Loading a library in JavaScript amounts to executing the
library’s top-level code. In order to expose its functionality
to clients, this code must introduce new global variables
and/or add new properties to existing objects. Although not
strongly enforced in any way, it is typically the case that a
library is initialized and its API is ready to be used when the
end of its top-level code is reached. In principle, it is possible
for a library to postpone parts of its initialization until the
client calls some initialization function or an event is fired
from the browser, but this is seldom seen in practice. We
exploit this common case using the following assumption:

Initialization assumption: The library’s public API has
been established at the end of its top-level code.

Another way to phrase the initialization assumption is that
the declaration file is intended to describe the state of the
heap after executing the top-level code. The experiments
discussed in Section 6 confirm that this assumption only fails
in rare cases.

JavaScript uses an event-based single-threaded program-
ming model. This means that it is not possible for a JavaScript
library to read any input at the top-level, neither through the
UI nor using AJAX calls. Though it may initiate an AJAX
call, it cannot react to the response until after the top-level
code has finished and the event loop has resumed. Thereby
we can execute the top-level code in isolation without need-
ing to simulate inputs from the environment.

JavaScript has multiple execution platforms; notably,
there are at least five major browsers as well as the server-
side platform node.js.2 These platforms provide incompati-
ble native APIs, which means it is possible, and often nec-
essary, for a library to detect what platform it is running
on. Although the top-level code cannot read any external
input, the platform itself can be seen as an input. We could
take a snapshot using every version of every major platform,
but this is somewhat impractical. Fortunately, libraries go
to great lengths to provide platform-agnostic APIs. As long
as the API is completely platform-agnostic, any declaration
bug we can detect on one platform should be detectable on
all supported platforms. In practice, it should therefore suf-

2 http://nodejs.org

fice to run the library on just one platform. This leads to our
second assumption:

Platform assumption: Executing the library on a single
platform (as opposed to multiple platforms) is sufficient
for the purpose of uncovering bugs in the declaration file.

Note that our goal is to find errors in the TypeScript decla-
rations, not in the JavaScript implementation of the library.
If we were looking for bugs in the library implementation,
the platform assumption might not be as realistic. As with
the previous assumption, experiments will be discussed in
the evaluation section, which confirm that this assumption is
valid in practice.

While some libraries are completely portable, there are
also some that are specific to the browser platforms, and
some are specific to the node.js platform. Our implementa-
tion supports two platforms: the phantom.js platform3 based
on WebKit (the engine used in Chrome and Safari) and the
node.js platform. Most JavaScript libraries support at least
one of these two platforms.

We now describe the structure extracted from the program
state at runtime. The call stack is known to be empty when
extracting the snapshot, because we are at the end of the top-
level code, so this is effectively a snapshot of the heap.

We use boldface fonts for symbols related to the snapshot.
A snapshot consists of a finite set of object names O,

k ∈ O : object names

along with a name for the global object g, and a store s,

g ∈ O (global object)
s : O→ obj-def (store)

where the definition of objects and values are as follows:

x, y ∈ value ::= true | false | num(D) | str(S) |
null | undef | obj(O)

obj-def ::= { properties: prty;
prototype: value;
function: fun;
env: value }

fun ::= user(U) | native(S) | none
p ∈ prty ::= { name : S

enumerable : true | false
value : value;
getter : value;
setter : value }

Here, D is the set of 64-bit floating point values, and U is
a set of identifiers for the functions in the source code from
which the snapshot was taken.

An object has a list, properties, representing its ordinary
properties. A property can have a value field, or it can have a
getter/setter pair denoting functions that are invoked when

3 http://phantomjs.org

the property is read from or written to, respectively. For
properties with a non-null getter or setter, the value field
is always null.

An object’s prototype field represents JavaScript’s inter-
nal prototype link; the object inherits the properties of its
prototype object. This field is set to null for objects without
a prototype.

The function field indicates whether the object is a user-
defined function, a native function, or not a function. Vari-
ables captured in a closure are represented as properties
of environment objects. For user-defined functions, the env
field refers to the environment object that was active when
the function was created, thus binding its free variables. For
environment objects, the env field points to the enclosing en-
vironment object, or the global object. Environment objects
cannot be addressed directly in JavaScript (we ignore with
statements), and thus can only be pointed at by the env field.
Environment objects do not have a prototype.

4. Type Checking of Heap Snapshots
We now show how a value from the heap snapshot can
be checked against a type from the declaration file. In this
section we ignore function signatures (i.e. they are assumed
to be satisfied) and getters and setters (i.e. they are assumed
to satisfy any type), which makes this type checking problem
decidable.

We introduce typing judgements with five different forms:

∼ ⊆ value × type ∪
prty × type ∪
O× prty ∪
O× indexer ∪
O× brand

The judgement of form x ∼ τ means the value x satisfies
the type τ . A judgement p ∼ τ means the concrete prop-
erty p has a value satisfying τ (or it has a getter/setter). A
judgement k ∼ ρ means the object with name k satisfies the
property type ρ; likewise, k ∼ i means the object with name
k satisfies the indexer type i, and k ∼ b means the object
with name k satisfies the brand b.

We use the rules in Figure 2 to derive typing judgements.
When a question mark occurs after a flag in the inference
rules it means the rule can be instantiated with or without
that flag in place. Type checking is initiated by checking
if the global object satisfies its type, i.e., we attempt to
derive the typing judgement obj(g) ∼ G〈〉 by goal-directed
application of these rules.

The inference rules are cyclic, that is, the derivation of
a typing judgement may loop around and depend on itself.
When we encounter a cycle, which may happen due to cyclic
structures in the heap snapshot and the corresponding types,
we do not recursively check the judgement again, but coin-
ductively assume that the nested occurrence of the judge-
ment holds.

x ∼ any
[any]

num(z) ∼ num
[num]

true ∼ bool
[true]

false ∼ bool
[false]

str(s) ∼ str
[str]

str(s) ∼ "s"
[str-const]

undef ∼ void
[undef]

null ∼ τ
[null]

∃f ∈ Γ(e). L∗(g, f) = x
x ∼ e

[enum]

Σ(T) = 〈 v 〉o, x ∼ o[v → τ]

x ∼ T 〈 τ 〉
[ref]

ToObj(x) = obj(k),

∀ρ ∈ ρ. k ∼ ρ, ∀i ∈ i. k ∼ i, ∀b ∈ b. k ∼ b
x ∼ {ρ ; i ; c ; b}

[obj]

L(k, f) = p, p ∼ τ
k ∼ opt? f : τ

[prty]
L(k, f) = nil
k ∼ opt f : τ

[prtynil]

∀p ∈ L(k, ∗). if p.enumerable then p ∼ τ
k ∼ [str : τ]

[str-idx]

∀p ∈ L(k, ∗). IsNum(p.name)⇒ p ∼ τ
k ∼ [num : τ]

[num-idx]

p.getter = p.setter = null, p.value ∼ τ
p ∼ τ

[p-value]

p.getter 6= null ∨ p.setter 6= null
p ∼ τ

[p-getter]

L∗(g, b) = obj(k′), k′ ∈ Protos(k)

k ∼ b
[brand]

L∗(g, b) = nil
k ∼ b

[brandnil]

Figure 2. Type derivation rules.

Several auxiliary functions are used in Figure 2; these are
described in the following paragraphs.

The property lookup function L : O × S → prty ∪
{nil} maps an object name and a property name to the
corresponding property definition (if any) while taking into
account inheritance from prototypes:

L(k, f) =


p if s(k) has a property p named f
L(k′, f) else if s(k).prototype = obj(k′)
nil otherwise

This is well-defined since prototype chains cannot be cyclic.
We use the notation L(k, ∗) to denote the finite set of all

properties available on the object with name k. The phrase
“has a property” used in the above definition means the
properties sequence of the object should contain a property
with the given name.

The path lookup function L∗ operates on access paths
instead of single property names. It returns a value instead
of a prty , and defaults to nil if the path cannot be resolved:

L∗ : O× S∗ → value ∪ {nil}

L∗(k, f) =


obj(k) if f = ε

L∗(k′, f ′) if f = f1f ′ ∧ L(k, f1) = p
∧ p.value = obj(k′)

nil otherwise
The ToObj function, ToObj : value → value , converts
primitive values to objects:

ToObj(x) =



obj(k) if x = obj(k)

L∗(g, Number.prototype) if x = num(z)

L∗(g, String.prototype) if x = str(s)

L∗(g, Boolean.prototype) if x = true
L∗(g, Boolean.prototype) if x = false
null otherwise

A path such as Number.prototype should be read as the
path consisting of two components: the string Number fol-
lowed by the string prototype. Note that the property
named “prototype” should not be confused with the in-
ternal prototype link.

In JavaScript, a primitive value is automatically coerced
to an object when it is used as an object. For instance,
when evaluating the expression "foo".toUpperCase() in
JavaScript, the primitive string value "foo" is first coerced
to a string object, and this object inherits the toUpperCase
property from the String.prototype object. To allow such
expressions to be typed, TypeScript permits an automatic
type conversion from primitive types to their corresponding
object types. The ToObj function is used in the [obj] rule to
mimic this behavior.

The Protos function, Protos : O→ P(O), maps the name
of an object to the set of objects on its prototype chain:

Protos(k)=

{
Protos(k′)∪{k} if s(k).prototype = obj(k′)
{k} otherwise

The substitution operator o[v → τ] used in the [ref] rule
produces a copy of o where for all i, all occurrences of the
type variable vi have been replaced by the type τi.

We will now discuss some of the typing rules in more
detail.

Primitives The rules for the primitive types, any, num,
bool, str, and "s" are straightforward. Following the
TypeScript specification, null satisfies any type, and undef
satisfies the void type.

Enums As mentioned in Section 2, Γ(e) denotes a set of
access paths pointing to the members of enum e. The [enum]
rule uses the path lookup function L∗ to resolve each access
path and check if the value is found at any of them.

Example Below is an enum declaration and an implemen-
tation in JavaScript:

60 // declaration file:
61 declare enum E { X, Y }

62 // JavaScript file:
63 var E = { X: "foo", Y: "bar" }

To check that the string value "bar" satisfies the enum type
E, we can apply the [enum] rule with f = E.Y ∈ Γ(E), and
find that L∗(g, E.Y) = "bar".

References The [ref] rule looks up a reference in the type
environment Σ, instantiates the type with the given type
arguments (if any), and recursively checks the value against
the resolved type.

Example Below is a generic type Pair<T> and a variable
whose type is an instantiation of this type:

64 // declaration file:
65 interface Pair<T> { fst: T; snd: T };
66 declare var x : Pair<number>;

67 // JavaScript file:
68 var x = { fst: 42, snd: 24 };

If we let x denote the concrete object created on line 68, the
type checker will attempt to derive x ∼ Pair〈num〉. The [ref]
rule will then be applied, after which the type checker will
recursively attempt to derive x ∼ {fst : num; snd : num}.

Note that TypeScript requires that a generic type does not
contain a reference to itself with type arguments wherein
one of its type parameters have been wrapped in a bigger
type. For instance, the following type declaration violates
this rule:

69 interface F<T> { x: F<F<T>> }

This means only regular types can be expressed. Without this
condition, termination of our type checking procedure would
not be guaranteed.

Objects The [obj] rule coerces the value to an object, and
checks separately that the resulting object (if any) satisfies
each property, indexer, and brand member of the type.

Properties The [prty] and [prtynil] rules use the lookup
function L to find the property with the given name (if
any). The [prtynil] rule allows optional property members
to be satisfied when the concrete property does not exist.
If the property exists, the [prty] rule will check its type; in
most cases this rule will be followed up by an application of
the [p-value] rule. In case the property is defined by a get-
ter and/or setter, the [p-getter] rule automatically accepts the
typing judgement.

Indexers The [str-idx] rule checks that every enumerable
property satisfies the type, and [num-idx] checks that every
array entry (i.e. property whose name is a number string)
satisfies the type. As with the [prty] rule, these rules are
typically followed up by an application of [p-value].

Brands The [brand] and [brandnil] rules use the path lookup
function L∗ to find the brand’s associated prototype object,
and then checks that this object exists on the prototype chain.
The [brandnil] rule exists to avoid duplicate errors in case a
class appears to be missing, since this would otherwise be re-
ported as a missing class constructor and as missing brands
for every instance of the class.

Functions The [obj] rule as shown in Figure 2 ignores the
function signatures of the type being checked against be-
cause checking these requires static analysis of the function
body. We collect all such objects and corresponding function
signatures in a list that will be checked in the static analysis
phase described in Section 5.

4.1 Relationship to TypeScript
These type checking rules formalize the relation between
values and types in TypeScript, which is only described im-
plicitly and informally in the TypeScript language specifica-
tion. We have strived toward a faithful formalization, how-
ever, in two situations we have decided to deviate from the
language specification in order to match common uses of
TypeScript types in declaration files.

First, the specification states that enum types are assignable
to and from the number type, but different enum types are
not assignable to each other (assignability is not transitive
in TypeScript). While this may be appropriate for code writ-
ten entirely in TypeScript, it does not reflect how JavaScript
libraries work, where string values are often used as enum-
like values. Despite the tight coupling to numbers, we see
declaration files use enums to describe finite enumerations
of string values. Thus, we developed the access-path based
interpretation of enums to allow for more liberal use of the
enum construct when checking against a JavaScript library.

Second, the TypeScript specification treats branded types
purely as a compile-time concept. Since they are only used
for class types, there is a simple runtime interpretation
of brands, which we decided to include as reflected by
the [brand] rule.

5. Static Analysis of Library Functions
The type checking algorithm presented in the preceding sec-
tion is designed to detect mismatches between the object
structure in the snapshot and the declarations, however, it
does not check the function code. In this section we describe
a static analysis for determining if a given function imple-
mented in JavaScript satisfies a given function signature. The
problem is undecidable, so any analysis must occasionally
reject a correct function implementation, or conversely, ac-
cept an incorrect one. Following the philosophy of optional
types, in which usability is valued higher than type safety,
we aim toward the latter kind of analysis so as not to disturb
the user with false warnings.

Figure 3 shows an example of a bug that was found using
the algorithm presented throughout this section. On line 97,

Fragment of d3.js (library implementation)

70 d3.layout.bundle = function() {
71 return function(links) {
72 var paths = []
73 for (var i=0; i<links.length; ++i) {
74 paths.push(d3_layout_bundlePath(links[i]))
75 }
76 return paths;
77 };
78 };
79 function d3_layout_bundlePath(link) {
80 var start = link.source
81 var end = link.target
82 var lca = d3_layout_bundleLCA(start, end)
83 var points = [start]
84 while (start !== lca) {
85 start = start.parent
86 points.push(start)
87 }
88 var k = points.length
89 while (end !== lca) {
90 points.splice(k, 0, end)
91 end = end.parent
92 }
93 return points
94 }
95 function d3_layout_bundleLCA(a,b) {...}

Fragment of d3.d.ts (declaration file)

96 declare module d3.layout {
97 function bundle(): BundleLayout
98 interface BundleLayout{
99 (links: GraphLink[]): GraphNode[]

100 }
101 interface GraphLink {
102 source: GraphNode
103 target: GraphNode
104 }
105 interface GraphNode {
106 parent: GraphNode
107 /* some properties omitted ... */
108 }
109 }

Figure 3. Example of an incorrect function signature found
in d3.d.ts (slightly modified for readability).

a function bundle is declared to return a BundleLayout that,
as per line 99, itself must be a function taking a single
GraphLink[] argument and returning a GraphNode[]. The
implementation, however, returns a two-dimensional array
of GraphNodes; the return type on line 99 should thus have
been GraphNode[][].

Our starting point is the collection of pairs of function
objects and corresponding function signatures that was pro-
duced in connection with the [obj] rule, as explained in Sec-
tion 4. For each of these pairs, we now analyze the function
body and check that it is compatible with the function signa-
ture. For each program expression, the analysis will attempt
to compute a type that over-approximates the set of values
that may flow into the given expression. Once an approxi-
mate type has been found for every expression, we determine

if the type inferred for the function’s possible return values
is assignment compatible with the function signature’s de-
clared return type. We will discuss the notion of assignment
compatibility later, but for now, it can be thought of as the
types having a nonempty intersection. If the types are not
assignment compatible, i.e. their intersection is empty, then
any value the function might return will violate the declared
return type, indicating a clear mismatch between the dec-
laration file and the library implementation. If the types are
assignment compatible, on the other hand, we view the func-
tion signature as satisfied.

The analysis of each function can be seen as a two-step
process. In the first step, a set of constraints is generated by
a single traversal over the AST of the library code and the
heap snapshot. The heap snapshot is used in the process, for
example to resolve global variables. In the second step, the
constraints are solved by finding a least fixed-point of some
closure rules. We will introduce various types of constraints
and discuss the most relevant AST constructs in the follow-
ing subsections.

The analysis will involve all functions that might tran-
sitively be called from the function being checked. As an
example, the implementation of bundle on lines 70–78 in
Figure 3 uses the function d3_layout_bundlePath for which
we do not have a function signature, so checking bundle also
involves the code in d3_layout_bundlePath.

5.1 Atoms and Unification
To reason about the types of program expressions, we intro-
duce a new type, called an atom:

type ::= . . . | atom

There is an atom for every expression in the AST and for ev-
ery object in the heap snapshot, and some additional atoms,
which we will introduce as needed:

a ∈ atom ::= ast-node | O | . . .

These atoms can be seen as type variables, representing the
type of a program expression (which is unknown due to lack
of type annotations in the source code) or the type of a heap
object (which is known at the time of the snapshot, but may
later be modified by the program code, hence should also be
seen as unknown).

We define a term to be an atom or an atom combined with
a field name. A field can either be the name of a property (i.e.
a string) or the special env field name that we use to model
the chain of environment objects:

t ∈ term ::= atom | atom � field

f ∈ field ::= S | env

Like atoms, terms can be thought of as type variables. Intu-
itively, a compound term a � f acts as placeholder for the
type one gets by looking up the property f on a. This lets us

address the type of a’s properties at a time where the type
of a is still unknown. In an analogy to points-to analysis, the
compound term a � f can be thought of as a placeholder for
whatever is in the points-to set for a.f.

Our analysis computes an equivalence relation≡⊆ term×
term of terms that are deemed to have the same type. When
t1 ≡ t2, we say that t1 and t2 have been unified. The analysis
assigns a single type to each equivalence class in ≡, so once
terms have been unified, they can effectively be thought of
as being the same term.

In addition to being an equivalence relation, ≡ is closed
under the [prty] rule, which states that once two atoms have
been unified, all their fields must also be pointwise unified.
In summary, ≡ is closed under following four rules (the first
three ones being the rules for equivalence relations).

t1 ≡ t2, t2 ≡ t3
t1 ≡ t3

[trans]
t ≡ t

[refl]
t1 ≡ t2
t2 ≡ t1

[sym]

a1 ≡ a2
a1 � f ≡ a2 � f

[prty]

To gain some intuition about the meaning of this relation,
one can think of it as a points-to graph in which every
equivalence class of ≡ is a vertex, and there is an edge
labelled f from the class of an atom a to the class of a � f .
The following graph visualizes the state of≡ generated from
d3_layout_bundlePath from Figure 3 (if ignoring function
calls), where the labels inside each vertex indicate which
atoms reside in the class:

link

target
vvmmmmmmmmmm

source ��

points
0

uukkkkkkkkkk
push��

splice
((RRRRRRRRRR

length //

end

parent

ii start

parent

[[

We use a union-find data structure to represent the equiv-
alence classes of ≡. Every root node in the data structure
contains its outgoing edges in a hash map. When two nodes
are unified, their outgoing edges are recursively unified as
well. More details of this procedure can be found in our pre-
vious work on JavaScript analysis for refactoring [2], which
follows a related approach with a simpler constraint system.

The ≡ relation allows us to handle three basic forms of
program expressions:

Local Variables We unify all references to the same vari-
able, thus capturing all data flow in and out of the variable.
Closure variables will be discussed in Section 5.4.

Properties An expression e of form e1.f is translated into
the constraint e ≡ e1 � f . By the transitivity and the [prty]
rule, e will become unified with all other occurrences of f
on a similarly typed expression.

Assignment An expression e of form e1 = e2 is translated
into the constraints e ≡ e1 and e ≡ e2.

5.2 Types
For every equivalence class in ≡ we compute a set of types:

Types : term ≡−→ P(type)

We use the ≡−→ symbol to denote functions that are con-
gruent with ≡, so that whenever a1 ≡ a2, we must have
Types(a1) = Types(a2). Our implementation maintains one
set of types per root in the union-find data structure and
merges the sets when two roots are unified.

The primary purpose of these types is to encode the types
of the parameters from the function signature being checked.
A type τ associated with a term t can be seen as a bound on
the type of t. In an analogy to dataflow analysis, one can also
think of τ as a set of values that may flow into t.

Types are propagated to other terms by the following rule,
where τ.f indicates the lookup of property f on the type τ :

τ ∈ Types(a)

τ.f ∈ Types(a � f)
[type-field]

We unify two atoms if the type of one becomes bound by the
other:

a1 ∈ Types(a2)

a1 ≡ a2
[type-same]

An example is shown in Section 5.6. We also introduce
primitive values as types, so we can use types for a kind of
constant propagation (note that we never use obj values as
types):

type ::= . . . | value

This lets us translate two more forms of basic expressions:

Literals A constant expression e with primitive value x is
translated into the constraint x ∈ Types(e). Similarly, if e
is a simple object literal {}, the constraint {} ∈ Types(e) is
generated.

Array Expressions For an expression e of form [e1, . . . , en],
we generate a new atom a to represent the members of the
array being created. We then add the constraints Array〈a〉 ∈
Types(e) and a ≡ ei for every i.

Arithmetic Operators Arithmetic operators, such as * and
-, are assumed to return values of type num, while the +
operator is assumed to return a value of type str or num.

We can now continue the previous example with types on
the vertices (again, we show the function in isolation without
interprocedural information):

target
xxppppppppp
source ��

Array〈a1〉
0

vvmmmmmmmmm
push��

splice
))SSSSSSSSS

length // num

parent

jj a1

parent

hh {c1} {c2; c3}

The atom a1 represents the members of the points array,
and c1 is short for the function signature vargs(a1)⇒ num,

which is the type for the push method on arrays of type
Array〈a1〉. Likewise, c2 and c3 represent the two signatures
of the overloaded splice method on arrays. The [type-field]
rule propagates types along the four outgoing edges from the
node with type Array〈a1〉, for example, the type num along
the length edge.

5.3 Dynamic Property Accesses
A JavaScript expression of form e1[e2] is called a dynamic
property access. When evaluated, the result of evaluating the
expression e2 is coerced to a string, which is then looked up
as a property on the object obtained from e1. This type of
expression is also used to access the elements of an array.
To handle this construct in the library code, we generate
constraints of form (aobj, aprty, ares) ∈ DynAccess where

DynAccess ⊆
object︷︸︸︷
atom ×

property name︷︸︸︷
atom ×

result︷︸︸︷
atom

We use the types of the property name to determine what
properties might be addressed. For concrete primitive values
we convert the value to a string and use that as a property
name (where ToString models coercion of primitive values
but ignores objects):

(aobj, aprty, ares) ∈ DynAccess, x ∈ Types(aprty)

aobj � ToString(x) ≡ ares
[dyn-val]

If the property is a computed number, we merge all numeric
properties of the object:

(aobj, aprty, ares) ∈ DynAccess, num ∈ Types(aprty)

∀i ∈ N : aobj � i ≡ ares
[dyn-num]

If the property is a computed string, we merge all properties
of the object:

(aobj, aprty, ares) ∈ DynAccess, str ∈ Types(aprty)

∀s ∈ S : aobj � s ≡ ares
[dyn-str]

The last two rules are implemented by keeping two flags
on every root in the union-find data structure indicating
whether its numeric properties, or all its properties, respec-
tively, should be merged.

5.4 Function Calls
Functions are first-class objects in JavaScript. To reason
about the possible targets of a function call inside the library
we therefore track a set of functions for each atom:

Funcs : atom ≡−→ P(fun)

The set Funcs(a) contains the user-defined and native func-
tions that may flow into a.

We use the function FunDef to map function names U to
the atoms representing the input and output of the function:

FunDef : U →
fun. instance︷︸︸︷

atom ×
this arg︷︸︸︷
atom ×

arg tuple︷︸︸︷
atom ×

return︷︸︸︷
atom

The first three atoms represent inputs to the function: the
function instance itself, the this argument, and the arguments
object that contains the actual argument in its properties. The
last atom represents the function’s return value.

Similarly, we maintain a set Calls, also consisting of
tuples of four atoms:

Calls ⊆
fun. instance︷︸︸︷

atom ×
this arg︷︸︸︷
atom ×

arg tuple︷︸︸︷
atom ×

return︷︸︸︷
atom

The first three atoms represent the function instance, the
this argument, and the arguments object passed to the
called function, and the last atom denotes where to put the
value returned by the function. Each syntactic occurrence of
a function or a function call gives rise to an element in Funcs
or Calls , respectively. Constructor calls (i.e. calls using the
new keyword) will be discussed separately in Section 5.8.

For every potential call target at a function call, we unify
the corresponding atoms:

(afun, athis, aarg, aret) ∈ Calls, user(u) ∈ Funcs(afun)

(afun, athis, aarg, aret) ≡̇FunDef(u)
[call]

The symbol ≡̇ should be read as the pointwise application
of ≡, for example, the arguments of the call are unified with
the arguments from the function definition. Note that our
treatment of function calls is context insensitive.

Closure variables (i.e. variables defined in an outer scope)
are accessible to the called function through the function
instance argument, whose env field points to its enclosing
environment object. Each environment object is represented
by an atom whose env field points to its own enclosing
environment, ending with the global object.

As an example, the diagram below shows some of the
constraints generated for the function on lines 71–77. The
call to paths.push is omitted for brevity. The DA node
represents an entry in DynAccess generated for the links[i]
expression, and the Call node represents the entry in Calls
that was generated for the call to d3_layout_bundlePath
(though we omit its associated this and return atoms):

num aenv
i

oo

links��
env

))TTTTTTTTTTT afun

env
��

DA
prty

obj

res
Array〈GraphLink〉

0��

aenv1

env

��

GraphLink

Call
fun

arg
0

OO

aenv2
d3_layout_bundlePath

oo

5.5 Entry Calls
The analysis maintains a set of entry calls that denote places
where the library code gets invoked by an external caller (i.e.

from the client code or the native environment). An entry call
consists of two atoms and a function signature:

EntryCalls ⊆
function︷︸︸︷
atom ×

this arg︷︸︸︷
atom × fun-sig

The first atom denotes the function instance being invoked,
and the other denotes the this argument used in the call.
The function signature associated with an entry call provides
type information for the parameters.

Initially, a single entry call exists to the function being
checked against a function signature. This serves as the start-
ing point of the analysis, but more entry calls may be added
during the analysis, as will be discussed in Section 5.6.

The following rule describes how entry calls are handled
(for simplicity, ignoring variadic functions, optional param-
eters, and constructor calls):

(afun, athis, (τ)⇒ τ ′) ∈ EntryCalls,
user(u) ∈ Funcs(afun),

FunDef(u) = (a′fun, a
′
this, aarg, aret)

afun ≡ a′fun, athis ≡ a′this, ∀i.τi ∈ Types(aarg � i)
[entry]

In the previous example, the [entry] rule was responsible for
adding the Array〈GraphLink〉 type.

Note that calls between two library functions are handled
as explained in Section 5.4, not as entry calls, even if the
called function has a signature in the declaration file.

5.6 Exit Calls
When we encounter a function call to a native function or a
function that was provided through an argument, we handle
the call using the function signature for the function. We
refer to these as exit calls as they target functions that are
defined outside the library code. For brevity, we give only an
informal description of our treatment of exit calls.

When resolving a call (afun, athis, aarg, aret) ∈ Calls where
Types(afun) contains an object type with a function signature
c, we check if the arguments might satisfy the parameter
types of c by an assignment compatibility check, and if the
check succeeds, the return type of the function signature is
added to Types(aret). The check helps handle overloaded
functions by filtering out signatures that are not relevant
for a given call site. To model callbacks made from the
external function, whenever an atom a is compared to an
object type with a function signature c and there is a function
user(u) ∈ Funcs(a), we register a new entry call to a with
the function signature c.

If the function signature being invoked is polymorphic,
the compatibility check against the parameter types also
serves to instantiate the type variables in the function sig-
nature. Whenever a type variable V is compared to an atom
a in the compatibility check, a is registered as a bound on
V . If the entire compatibility check succeeds then all atoms
that bind the same type variable are unified.

The standard library is modeled using the types from the
TypeScript compiler’s lib.d.ts file, except for call and
apply which are given special treatment by the analysis.

The example below demonstrates how exit calls can han-
dle array manipulation:

110 var array = [];
111 var w = 42;
112 array.push(w);
113 var z = array[0];

Below is the state of the constraint system before the call
to push has been resolved (here we use :: to separate atom
names from their types):

array :: Array〈a1〉

push

��

0 // a1, z w :: 42

(a1)⇒ void Callafun aarg

0

OO

The assignment on line 113 has caused array � 0 to be
unified with z. The [type-field] rule has then propagated a1
as a type to z, and [type-same] then caused a1 and z to
become unified.

The call to push is an exit call to a function with signature
(a1) ⇒ void. The atom a1 occurs as parameter type in this
signature, and when it gets matched against the argument w
the two atoms are unified. The dotted box above shows this
unification.

This demonstrates how the value 42 propagated from w
through the array into the variable z. Note that such destruc-
tive update of the arguments only happens when an atom
occurs as part of a parameter type. This feature is our only
way of modeling the side effects of exit calls.

5.7 Prototypes
One possible way to handle JavaScript’s prototype-based
inheritance mechanism is to unify two atoms a1 and a2 if
one inherits from the other. In practice, however, almost all
objects would then become unified with Object.prototype,
thereby destroying precision entirely. We instead represent
inheritance by maintaining a set of prototypes for each atom:

Protos : atom ≡−→ P(atom)

Intuitively, the set Protos(a) indicates what objects may re-
side on the prototype chain of a. The following rule ensures
that properties that exist on a1 will be shared with a2:

a1 ∈ Protos(a2), NonEmpty(a1 � f)
a1 � f ≡ a2 � f

[inherit]

The predicate NonEmpty(t) holds if the current type associ-
ated with t is nonempty; we use it to check the existence of
fields in the prototype.

NonEmpty(t) = (Types(t) 6= ∅ ∨ ∃a. t ≡ a)

Without this check, by transitivity all instances of the same
prototype would share all properties, effectively making in-
heritance the same as unification.

5.8 Constructor Calls
Like regular functions calls, constructor calls are recorded in
a set of tuples:

NewCalls ⊆
fun. instance︷︸︸︷

atom ×
arg tuple︷︸︸︷
atom ×

return︷︸︸︷
atom

Constructor calls have no explicit this argument; instead, a
newly created object is passed as this and is (in most cases)
returned by the call.

(afun, aarg, aret) ∈ NewCalls, user(u) ∈ Funcs(afun)

(afun, aret, aarg, aret) ≡̇FunDef(u)
[new]

The prototype of the newly created object is the object re-
ferred to by the prototype property of the function being
called. For every constructor call we generate an atom aproto
to represent the prototype of the newly created object, and
add this as a prototype of the created object:

afun � prototype ≡ aproto, aproto ∈ Protos(aret)

As an example, consider this program fragment:

114 function Foo(x) { /* ... */ }
115 Foo.prototype.bar = function() { /* ... */ }
116 var foo = new Foo();
117 foo.bar();

Below is the constraint system before applying the [inherit]
rule (not showing the Calls constraint):

Foo
prototype // aproto

bar //

NewCall

afun

aret
foo

[proto]

OO

bar //

The dotted box on the right shows the two atoms that will
be unified when applying the [inherit] rule. The topmost of
these corresponds to the function created on line 115 and the
bottommost one corresponds to the bar property mentioned
on line 117.

5.9 Generating Constraints from the Snapshot
We now briefly discuss how information from the heap snap-
shot is embedded in the constraint system. Recall that there
exists an atom for every object in the heap. The following
rule connects pointers between objects:

p ∈ L(k, ∗), p.value = obj(k′)
k � p.name ≡ k′

[obj-value]

For getters or setters, we generate a call to the getter/setter
and unify the result/argument with the term representing the

property. Thereby the effects of the getters and setters will
be taken into account whenever the property is referenced,
without needing to generate calls at every use site:

p ∈ L(k, ∗), p.get = obj(k′)
(k′,k, aarg, aret) ∈ Calls, aret ≡ k � p.name

[obj-get]

p ∈ L(k, ∗), p.set = obj(k′)
(k′,k, aarg, aret) ∈ Calls, aarg � 0 ≡ k � p.name

[obj-set]

For properties that contain primitive values, we add the prim-
itive to the types of the corresponding term:

p ∈ L(k, ∗), p.value = x, IsPrimitive(x)

x ∈ Types(k � p.name)
[obj-primitive]

Finally, the function objects are registered in Funcs:

k ∈ O
s(k).function ∈ Funcs(k)

[obj-func]

5.10 Assignment Compatibility
TypeScript defines assignment compatibility between types
as a more liberal version of subtyping. It can be seen as
a bi-directional subtyping check, that is, two types are
assignment compatible if either type is a subtype of the
other. When checking object types for assignment com-
patibility, the rule is applied recursively for each prop-
erty. As an example, the types {optx : num; y : num} and
{opt z : num; y : num} are assignment compatible despite
neither being a subtype of the other.

We extend the notion of assignment compatibility to han-
dle atoms and values (the two new types introduced in this
section). The full definition is too verbose for this presen-
tation, so we will briefly describe how atoms are checked
against types. When checking an atom a (or any term that
has been unified with an atom a) for assignment compati-
bility with an object type o, we recursively check the types
of a � f against the type of every property f on o. When
checking the type of a non-atom term t against a type τ , the
check succeeds if any of the types in Types(t) is assignment
compatible with τ .

6. Evaluation
Our approach is implemented in the tool chain JSNAP,4

TSCORE,5 and TSCHECK,5 for producing snapshots, extract-
ing TypeScript Declaration Core declarations from declara-
tion files, and checking a snapshot against the declarations,
respectively. All tools are implemented in JavaScript.

With these tools, we conduct experiments to establish
the usefulness of our approach. Specifically, we wish to
determine how many warnings our technique produces in
practice, and how many of these warnings are indicators of
real bugs.

4 https://github.com/asgerf/jsnap
5 https://github.com/asgerf/tscheck

We selected the 10 largest declaration files from the Def-
initely Typed repository (mentioned in the introduction) for
which we were able to obtain the correct version of the li-
brary code. We ran our tool on each benchmark and manu-
ally classified each warning as one of the following:

Declaration: This warning is due to a bug in the declaration
file.

Library: This warning is due to a mismatch between the
library implementation and its official documentation.

Spurious: This is a false warning, i.e. it does not indicate an
actual bug in the declaration file or library code.

Note that when multiple warnings are due to the same bug
in the declaration file, they are only counted as one, since
duplicate warnings provide no additional value to the user.

We observe that some bugs in the declaration file are
of little significance in practice, so we further classify the
declaration warnings according to their impact:

High impact: The bug causes tools to misbehave, e.g. the
TypeScript compiler may reject correct client code, or
code completion may provide misleading suggestions.

Low impact: Although the declaration is technically incor-
rect, the TypeScript compiler and its code completion ser-
vices will behave as intended. A typical example of this
is a boolean property that should be declared optional.

Likewise, the spurious warnings are also classified further:

Initialization: The warning is due to the initialization as-
sumption, i.e. parts of the API are not available until
some other functions have been called or an event has
fired.

Platform: The warning is due to the platform assumption,
i.e. parts of the API are deliberately only made available
on certain platforms.

Unsound analysis: The warning was produced because the
static analysis did not infer a proper over-approximation
of a function’s possible return values and the compatibil-
ity check subsequently failed.

The results are shown in Table 1. The H and L columns
show the number of declaration bugs found, respectively
of high impact and low impact. The lib column shows the
number of library bugs found. The I, P, and U columns
show the number of spurious warnings due to initialization,
platform, and unsound analysis, respectively.

With 142 high-impact bugs, this evaluation shows that
our technique is capable of finding a large number of bugs in
TypeScript declaration files, and even detect some bugs the
library code. Only 22% of the warnings are spurious, most of
which pertain to the sugar library, which uses some native
JavaScript functions in a way that our analysis currently does
not support.

The running time is dominated by the static analyzer,
which took an average of 1.1 seconds per checked function

lines of code decl lib spurious
benchmark .js .d.ts H L I P U
ace 13,483 615 1 0 0 0 0 0
fabricjs 8,584 740 8 0 0 0 1 1
jquery 6,043 526 0 1 0 0 0 1
underscore 885 641 0 4 0 0 0 0
pixi 5,829 361 4 0 1 1 0 0
box2dweb 10,718 1,139 9 0 0 0 0 3
leaflet 5,873 707 13 4 0 0 0 1
threejs 19,065 2,651 49 29 2 1 0 10
d3 9,225 1,558 21 1 0 0 0 6
sugar 4,133 650 (37) 0 1 0 0 28
TOTAL 142 39 4 2 1 50

Table 1. Classification of warnings on the 10 benchmarks.

signature on a Intel Core i3 3.0 GHz PC. The average anal-
ysis time was 176 seconds per benchmark, with the slowest
being the sugar library whose 420 function signatures took
628 seconds to check.

Of the high-impact bugs, 68 were detected by the snap-
shot analysis (Section 4), and the remaining 74 were de-
tected by the static analysis (Section 5).

6.1 Examples
A recurring type of high-impact bug was found when the re-
sult of a function gets passed through an asynchronous call-
back rather than being returned immediately. For instance,
in fabricjs, we found the declaration (simplified here):

118 declare var Image : { ...
119 fromURL(url: string): IImage;
120 }

Image.fromURL in fact takes a callback argument to be in-
voked when the image has been loaded (asynchronously);
the function call itself returns nothing.

An example of a spurious warning was found in the
following fragment of the leaflet library (simplified):

121 // declaration file:
122 declare var DomUtil : {
123 setPosition(el: HTMLElement, point: Point);
124 getPosition(el: HTMLElement): Point
125 }
126 // implementation:
127 var DomUtil = { ...
128 setPosition: function(el, point) {
129 el._leaflet_pos = point;
130 /* rest of code omitted */
131 },
132 getPosition: function (el) {
133 return el._leaflet_pos;
134 }
135 }

A comment in the source code suggests that getPosition
should only be used after setPosition and based on this
rationale assumes that the position stored in setPosition

line 129 is available. However, since we check each func-
tion signature in isolation, our static analysis does not ob-
serve the field established in setPosition when checking
getPosition. The expression el._leaflet_pos is thus de-
termined to return undefined, which fails to check against
the Point type, and our analysis thus issues a spurious warn-
ing regarding the return type of getPosition.

6.2 Limitations in TypeScript
The high-impact warnings for the sugar library are shown
in parentheses because it is clear from the declaration file
that the developer is already aware of all of them. The bugs
are currently unfixable due to a limitation in TypeScript that
makes it impossible to extend the type of a variable that was
defined in TypeScript’s prelude declaration file (the prelude
is implicitly included from all other declaration files, similar
to the java.lang package in Java). These warnings were all
reported by the first phase of the algorithm.

We observed another limitation of TypeScript in the dec-
laration file for the leaflet library. This library configures
itself based on the presence of certain global variables, such
as L_DISABLE_3D, intended to be set by the client. It is help-
ful for the declaration file to document these variables, but
the variables are absent by default, and global variables can-
not be declared optional in TypeScript (though our core lan-
guage allows it). To spare the user from such low-impact
warnings that cannot be fixed, we configured our analyzer
to omit all warnings regarding missing boolean properties if
the property occurs in a position where it cannot be declared
optional.

Lastly, we observed that the threejs library declares
several enum types with no members, because the members
of the enum are not encapsulated in a namespace object like
TypeScript expects, as shown in the following fragment:

136 enum CullFace { }
137 var CullFaceBack: CullFace;
138 var CullFaceFront: CullFace;

To compensate, we configured our analyzer to treat empty
enums as the any type.

None of these limitations exist in TypeScript Declaration
Core (Section 2.1), so a more liberal syntax for TypeScript
would alleviate the issues.

7. Related Work
Most high-level programming languages provide interfaces
to libraries written in low-level languages. The challenge of
ensuring consistency between the low-level library code and
the high-level interface descriptions has been encountered
for other languages than TypeScript and JavaScript. Furr
and Foster have studied the related problem of type check-
ing C code that is accessed via the foreign function inter-
faces of Java or OCaml [3]. Due to the major differences
between JavaScript and C and between the notion of types
in TypeScript compared to those in Java or OCaml, their

type inference mechanism is not applicable to our setting.
St-Amour and Toronto have proposed using random testing
to detect errors in the base environment for Typed Racket
numeric types, which are implemented in C [13]. We be-
lieve it is difficult to apply that technique to TypeScript types
and JavaScript libraries, since TypeScript types are consider-
ably more complex than the numeric types in Typed Racket.
Another essential difference between these languages is that
JavaScript libraries are initialized dynamically without any
static declaration of types and operations, which we have
chosen to address by the use of heap snapshots.

The dynamic heap type inference technique by Pol-
ishchuk et al. [11] is related to our snapshot type check-
ing phase (Section 4), but is designed for C instead of
TypeScript, which has a different notion of types. Unlike
C, JavaScript and TypeScript are memory-safe languages
where all runtime values are typed (with JavaScript types,
not TypeScript types), and we can disregard the call stack,
which leads to a simpler algorithm in our setting.

To the best of our knowledge, no previous work has ad-
dressed the challenge of automatically finding errors in li-
brary interface descriptions for JavaScript, nor for dynami-
cally typed programming languages in general. TypeScript
is by design closely connected to JavaScript, but other stati-
cally typed languages, such as Dart [5] or Java via GWT [4],
contain similar bindings to JavaScript, to enable applications
to build upon existing JavaScript libraries. Despite the young
age of TypeScript, the immense volume of the Definitely
Typed repository testifies to the popularity of the language
and the importance of interacting with JavaScript libraries.

Several more expressive type systems for JavaScript
than the one in TypeScript have been proposed, including
TeJaS [9] and DJS [1]. We only use TypeScript’s meaning
of types, not its rules for type checking program code, and
it may be possible to adapt our system to such alternative
type systems, if they were to introduce language bindings to
JavaScript libraries.

The static analysis in Section 5 is a unification-based
analysis in the style of Steensgaard [14] and bears some re-
semblance to the one used in our previous work on refac-
toring [2], although that work did not deal with function
calls, prototype-based inheritance, dynamic property access,
heap snapshots, or types. Many other static analysis tech-
niques have been developed for JavaScript, for example,
TAJS, which is designed to detect type-related errors in
JavaScript applications [7], WALA [12], and Gatekeeper [6].
None of these incorporate type declarations into the analysis,
and they focus on soundness, not performance.

A potential alternative to our approach could be to apply
hybrid type checking [8] by instrumenting the program code
to perform runtime checks at the boundary between Type-
Script applications and JavaScript libraries. By the use of
static analysis, we avoid the need for instrumentation and
high-coverage test suites.

8. Conclusion
We have presented an approach to automatically detect er-
rors in TypeScript declaration files for JavaScript libraries.
Our key insights are that the API of such a library can be
captured by a snapshot of the runtime state after the initial-
ization and that the declarations can be checked on the basis
of this snapshot and the library function code using a light-
weight static analysis. Our experimental evaluation shows
the effectiveness of the approach: it successfully reveals er-
rors in the declaration files of most of the libraries we have
checked using our implementation.

In addition to being a useful tool for authors of TypeScript
declaration files for JavaScript libraries, our implementation
has led us to identify some mismatches between the Type-
Script language specification and common uses of types in
declaration files, and some practical limitations of the ex-
pressiveness of its type system, which may be helpful in the
future development of the language.

Acknowledgments This work was supported by Google
and the Danish Research Council for Technology and Pro-
duction.

References
[1] R. Chugh, D. Herman, and R. Jhala. Dependent types for

JavaScript. In Proc. 27th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Ap-
plications, 2012.

[2] A. Feldthaus and A. Møller. Semi-automatic rename refac-
toring for JavaScript. In Proc. 28th ACM SIGPLAN Confer-
ence on Object Oriented Programming Systems Languages,
and Applications, 2013.

[3] M. Furr and J. S. Foster. Checking type safety of foreign func-
tion calls. ACM Transactions on Programming Languages
and Systems, 30(4), 2008.

[4] Google. GWT - JavaScript Native Interface, March
2013. http://www.gwtproject.org/doc/latest/
DevGuideCodingBasicsJSNI.html.

[5] Google. The Dart programming language specification,
March 2014. https://www.dartlang.org/docs/spec/.

[6] S. Guarnieri and V. B. Livshits. Gatekeeper: Mostly static
enforcement of security and reliability policies for JavaScript
code. In Proc. 18th USENIX Security Symposium, 2009.

[7] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis
for JavaScript. In Proc. 16th International Static Analysis
Symposium, 2009.

[8] K. L. Knowles and C. Flanagan. Hybrid type checking. ACM
Transactions on Programming Languages and Systems, 32(2),
2010.

[9] B. S. Lerner, J. G. Politz, A. Guha, and S. Krishnamurthi.
TeJaS: retrofitting type systems for JavaScript. In Proc. 9th
Symposium on Dynamic Languages, 2013.

[10] Microsoft. TypeScript language specification, Febru-
ary 2014. http://www.typescriptlang.org/Content/
TypeScript%20Language%20Specification.pdf.

[11] M. Polishchuk, B. Liblit, and C. W. Schulze. Dynamic heap
type inference for program understanding and debugging. In
Proc. 34th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 2007.

[12] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip.
Correlation tracking for points-to analysis of JavaScript. In
Proc. 26th European Conference on Object-Oriented Pro-
gramming, 2012.

[13] V. St-Amour and N. Toronto. Experience report: applying ran-
dom testing to a base type environment. In Proc. 18th ACM
SIGPLAN International Conference on Functional Program-
ming, 2013.

[14] B. Steensgaard. Points-to analysis in almost linear time. In
Proc. 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 1996.

