&
Swansea University ‘C rO n fa

Prifysgol Abertawe Setting Research Free

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:
IEEE Transactions on Power Delivery

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa39692

Paper:

Furlani Bastos, A., Lao, K., Todeschini, G. & Santoso, S. (2018). Novel Moving Average Filter for Detecting rms
Voltage Step Changes in Triggerless PQ Data. IEEE Transactions on Power Delivery, 1-1.
http://dx.doi.org/10.1109/TPWRD.2018.2831183

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms
of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/


http://cronfa.swan.ac.uk/Record/cronfa39692
http://dx.doi.org/10.1109/TPWRD.2018.2831183
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 
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Novel Moving Average Filter for Detecting rms
Voltage Step Changes 1n Triggerless PQ Data

Alvaro Furlani Bastos, Student Member, IEEE, Keng-Weng Lao, Member, IEEE,
Grazia Todeschini, Senior Member, IEEE, and Surya Santoso, Fellow, IEEE

Abstract—The voluminous amount of raw waveform data
recorded by triggerless power quality monitors contain con-
spicuous and inconspicuous disturbance events. Data reduction
and detection techniques are needed to efficiently extract useful
information hidden in the raw data and identify power quality
disturbances. The overall objective of this study is to use step
changes in the rms voltage profile as an alternative triggering
feature for automatically detecting switching events. The full
characterization of the event is based on processing a small
portion of the voltage waveform selected around the detected rms
voltage step change. A filtering method is proposed to smooth out
rapid fluctuations in the rms voltage profile during steady-state
operation, while preserving the sharp edges caused by rms voltage
step changes. Once the rms voltage profile has been filtered,
adaptive limits based on the median absolute deviation are com-
puted for detecting rms voltage step changes. The effectiveness
of the proposed technique is evaluated using triggerless voltage
waveforms to detect capacitor switching events. The use of the
filtered rms voltage profile allows accurate detection of capacitor
energizing and de-energizing events, while more than 50% of the
detections in the unfiltered profile correspond to false-positives.

Index Terms—capacitor switching, power quality, moving av-
erage and median filters, rms voltage profile, triggerless data,
voltage step change

I. INTRODUCTION

OWER quality monitors traditionally employ specific

triggering features to detect disturbances and store them
as individual events. The disturbances are often recorded as
instantaneous voltage and current waveforms, a few cycles
preceding and following the trigger time. A recent trend in
power quality monitoring shows a growing interest in trig-
gerless continuous measurements of instantaneous voltage and
current waveforms. This approach allows capturing all possible
disturbance events, even if they are not accompanied by
conspicuous transients [1]. However, such method inevitably
results in voluminous amount of data [2], [3]. Novel triggering
methods are necessary to parse through the voluminous data
and detect conspicuous and inconspicuous disturbance events.
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Well-known methods such as wavelet transform and com-
parison of consecutive cycles of data are efficient tools in de-
tecting conspicuous disturbances in the instantaneous voltage
and current waveforms [4]. On the other hand, these methods
are not suitable for triggerless data, due to their inability
to detect inconspicuous disturbances. For example, capacitor
energizing operations can be identified by the transient in
voltage and current waveforms, while the transient-free de-
energizing operations must be identified through a step change
in the rms voltage profile [5]. Other events that cause an rms
voltage step change and may present little to no transients
are, for example, transformer tap-changing, voltage regulator
operation, and switching of large loads [6].

IEC and IEEE standards establish that the rms voltage
values should be computed over one-cycle sliding window,
and updated every half-cycle, denoted as Uyy,s(1/2) [7], [8].
In 2015, IEC released recommendations for detection and
characterization of voltage variation events that do not belong
to the sag/swell categories due to their small voltage magnitude
variation (below 10%), including the rms voltage step changes
mentioned previously. It established that a transition in rms
voltage between two steady-state conditions occurs when the
difference between the latest computed U,.,;,5(1/2) value and a
reference voltage exceeds a variable threshold. This threshold
is defined as a percentage of the arithmetic mean of the
Urms(1/2) values computed during the previous 1 second (120
rms values for a 60 Hz system). The standard recommends a
threshold between 1% and 6%, and this value is set by the user
according to the desired application. This recommendation
cannot be generalized to detect a wide variety of events,
as the magnitude of the rms voltage step change may be
lower than 1%. For example, voltage regulators commonly
provide a range from -10% to +10% with 32 steps, each
step representing a 0.625% variation in the voltage level [9].
Another example is the steady-state voltage variation caused
by switching a capacitor bank, which is usually in the range
0.36% - 4% at the capacitor terminals, and decreases at points
further upstream the bank location [10].

Since the events mentioned above cannot be identified by
applying the methods used for conspicuous disturbances, and
the corresponding rms voltage variations are usually lower
than the threshold for sag/swell detection, this paper proposes
an event detection technique adopting the rms voltage step
change as an alternative triggering feature. The definition of
Urms(1/2) results in a non-smooth rms voltage profile, as
the loads vary intermittently between consecutive rms voltage
computations [6]. The presence of high levels of fluctuation
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in the rms voltage profile hinders the detection of rms voltage
step changes, possibly affecting the performance of algorithms
developed for identification of power quality disturbances.
Therefore, prior to being used in the disturbances identification
process, the rms voltage profile must be processed to remove
the rapid voltage fluctuations. The desired output of this
process is an rms voltage profile with high signal-to-noise ratio
and sharp edges during the step changes.

Filtering the input signal through a moving average filter
is a simple and easily implementable approach to remove the
rapid rms voltage fluctuations. This low pass filter removes
the noise component from the data by averaging M samples
(the filter length) to produce a single output value. Although
the smoothness of the output signal increases with M, the
sharp edges become blunt; therefore, this approach is unfit for
detecting switching events [11], [12]. Increasing beyond one-
cycle the length of the sliding window used to compute the
rms voltage profile results in a similar smoothing effect [6].

Another approach consists in applying a median filter, which
removes impulsive noise while preserving sharp edges and
trends. However, an unsuitable choice of the filter length may
result in the output signal undesirably following the rapid
voltage fluctuations [13], [14]. As voltage fluctuation happens
randomly in the system, there is no straightforward way to
optimize the length of the median filter.

Given the limitations discussed above, the goal of this
paper is to: (a) propose a novel filter to attenuate the rapid
fluctuations observed in rms voltage profiles, while preserving
the sharp edges during rms voltage step changes; and (b)
develop a technique to automatically detect these rms voltage
step changes, which can be applied to triggerless power quality
measurement data to detect all rms voltage variations. Its main
contribution is the ability to detect not only conspicuous, but
also inconspicuous disturbances. RMS voltage profile com-
putation and inconspicuous disturbances caused by capacitor
de-energizing operations are described in Section II. Removal
of the rapid voltage fluctuations in the rms voltage profile
is performed by a novel digital filter as discussed in Section
III. Additionally, an approach to compute adaptive limits for
automatic detection of rms voltage step changes is presented.
Rather than setting a hard threshold for the minimum variation
in voltage between two steady-state conditions, these adaptive
limits are based on statistical tests and rms values computed
prior to the current instant. Finally, a data reduction technique
is described: portions of the voltage and current waveforms
without a detected rms voltage step change do not represent
a switching event; therefore, they can be disregarded from
detailed analysis, reducing the time and computational effort
required to identify and characterize switching events. The
proposed technique is applied to the analysis of triggerless
voltage field data, and the results are discussed in Section I'V.

II. PROBLEM DESCRIPTION
A. Instantaneous Voltage and rms Profile Models

The instantaneous voltage in power systems is commonly
composed of fundamental and harmonic frequency compo-
nents, and, less frequently, a dc offset. The sampled phase

voltage, v[n], can be modeled as the sum of time-varying
sinusoids and superimposed noise, as represented in (1).

v[n] = Z Vin[n] sin (wmn + ¢m[n]) + d[n] (1)

where V,,,, wy,, and ¢,, are the magnitude, angular frequency,
and phase angle of the m™ harmonic, respectively, and d[n] de-
notes superimposed noise. The choice of the highest harmonic
order H depends on the event under analysis; a frequently
adopted value is 50 [15]. The noise d[n] is introduced by
interference in the measuring device. Note that this model also
describes short-duration and high-frequency transient events,
as the magnitudes V,,, of the corresponding high order com-
ponents increase during the event.

The voltage magnitude V,, can be decomposed into four
terms: steady-state nominal voltage provided by the genera-
tors (V2°™), slow and fast variations caused by fluctuations
in the aggregate load connected to the system (V3% and
VJast respectively), and step change component caused by
capacitor switching, voltage regulator operations, or connec-
tion/disconnection of large loads (V,5!°P). Not all components
are present simultaneously; for example, V5P is non-zero
only during voltage step change events.

The rms voltage value at instant k is computed from the
instantaneous voltage values over a one-cycle long sliding
window and updated every half cycle [7], [8]:

Vimslk] = % >

p=k—N+1

vlpl? 2)

where N is the number of samples per cycle. The rms voltage
profile can be divided into components equivalent to each
term of V,,, (V,iom, Vslow 'y fast y/stepy and superimposed
noise (dyms). The term d,.,s includes two components: noise
introduced by the measuring device, and non-integer number
of cycles within the sliding window for rms computation. The
latter is due to the non-synchronization of the fixed sampling
frequency to the varying power frequency [8].

The goal of this paper is to develop a technique to detect rms
voltage step changes, i.e., instants at which V,5/P is non-zero.
Since rms voltage step changes correspond to fast variations
in the system voltage level, V5P occurs at the same time
scale as VJ25t and d,,,s. Therefore, these two components

rms
must be attenuated to obtain a robust algorithm for detection
of non-zero V3P, V310w does not affect the detection of rms

voltage step changes due to its slow-varying characteristic.

B. Capacitor Switching Operation

Capacitor banks switching causes one of the most common
rms voltage step change observed in transmission and distribu-
tion systems. Capacitor banks provide voltage support under
heavy load conditions, instantaneously increasing the system
steady-state voltage after they are energized.

Capacitor energizing operations are accompanied by tran-
sients in voltage and current waveforms. Such behavior is
caused by the interaction between the bank capacitance and the
power system inductance. The voltage is initially pulled toward
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Fig. 1. Typical voltage and current waveforms, rms voltage profile, and

reactive power flow during capacitor (al-a4) energizing and (bl-b4) de-
energizing operations.

zero and oscillates at the system natural frequency (usually
between 300 Hz and 1000 Hz). This transient typically lasts
for 0.25-0.5 cycle, during which the voltage usually overshoots
between 1.0 and 1.4 pu, depending on the system damping
[16]. The reactive power support provided by the capacitor
bank is translated into a reduction of reactive power flow
between the source and the capacitor bank location.

On the other hand, normal de-energizing operations do not
result in any voltage or current transient oscillations. These
events are characterized by the reduction of system voltage
and reactive power support (the latter is applicable only to
banks located downstream from the monitoring location) [5].

Typical voltage and current waveforms, rms voltage profile,
and reactive power flow during capacitor energizing and de-
energizing operations are represented in Fig. 1.

The transients observed during a capacitor energizing op-
eration can be used as signatures for identifying and char-
acterizing these events through a discrete wavelet transform
(DWT) [5]. Although this method is very robust and accurate,
it requires significant computational effort, as the DWT of the
voltage signal must be computed continuously. Additionally,
this method is not applicable to detect capacitor de-energizing
operations due to the absence of transients.

A step change in rms voltage is the only parameter common
to all capacitor switching operations. The technique proposed
in this paper enables an efficient and robust detection of

steady-state rms voltage variation during capacitor switching
events, including the transient-free de-energizing operations.
This process assists in the identification of capacitor switching
events by selecting a smaller portion of the voltage and
current waveforms. Applying the DWT to the selected data —
rather than to the continuously sampled voltage — significantly
reduces the computational effort required to identify and
characterize these events. Although the proposed methodology
is illustrated in relation to capacitor switching, it is applicable
to the identification of any events that create an rms voltage
step change.

III. METHODOLOGY

This section presents the algorithm developed for filtering
the rms voltage profile. The filter input consists of the rms
voltage profile computed as in (2), and stored in the vector
Vinput, while the output filtered rms voltage profile is stored
in V,/ilt The filtering process is performed by sliding a w-
samples (filter length) long window through the entire input
signal. The filtered output at index k is computed using rms
voltage values at indices ranging from k— |w/2] to k+|w/2],
where |.| denotes the floor function. The sliding window is
defined as (3), for |w/2| < k < length(Vinpu) — |w/2].

X = Vinput [k — [w/2] : b+ [w/2]] (3)

Fig. 2 depicts the pseudocode for the piecewise moving
average filter, and the operations performed within each sliding
window are discussed in the following subsections.

A. Outlier Removal

Search and removal of outliers are the first steps in pre-
processing the rms voltage profile. Outliers are commonly
present in real measurement data, mainly originated from
inappropriate treatment of missing data. In the scope of
this work, rms voltage values during instantaneous voltage
variation events are also considered outliers. This assumption
is made because these events do not create a long-term step
change in the system rms voltage level.

The presence of outliers may hinder statistical properties
of the original data, such as mean and standard deviation
[17]. Outlier detection and removal are performed through
the Hampel identifier, which is a robust and efficient outlier
detector, and does not require prior knowledge of the data dis-
tribution [18]. According to this technique, the value Vy,py: [k]
is considered an outlier if

[Vinput [k] — median(X)]
MAD(X)

where MAD represents the median absolute deviation and it
is calculated as MAD(X) = median(|X — median(X)|). If
the condition in (4) is satisfied, the outlier is removed and
replaced by its expected value, i.e., Vipput[k] = median(X).

Fig. 3 illustrates the outlier detection process through the
Hampel identifier for a simulated random signal with w = 21.
Note that the minimum and maximum limits in this identi-
fier follow the variation observed in the rms voltage signal
(Vinput)- The final samples in the observation window present

>3 “4)
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Algorithm 1 Piecewise moving average filter

Inputs:
Vinput: unfiltered rms voltage profile
w: length of the piecewise moving average filter
Wmedian: length of the final median filter

Outputs:
V. Jilt: filtered rms voltage profile
1: for all k£ do
2 X — Vinputlk — |w/2] 1 k+ |w/2]]
3 %efo're <~ ‘/input[k - |_1U/2J k- 1]
4 Vaster < Vinputlk +1: k+ [w/2]]
5: wy +— |w/4]
6: if Vipput[K] is an outlier then > Hampel identifier
7 Vinput (k] < median(X)
8 end if
9 while length(Viefore) > wy do
10 if HPViesore = HVagter and VAT Ve gore = VATV pier
then > Using two-sample t-test and F-test
11: V. k] = mean(X)
12: break
13: else
14: %efore — WlefOTe [2 : end}
15: Vaster < Vafter[l : end — 1]
16: X + [Vbefore7 ‘/input[k]a Vafter}
17: end if
18: end while
19: if length(Viefore) = wy then
20: Compute D(Viefore) and D(Vgsier)
21: Vieteet < {V € {Vbefore7 Vafter}|D(V) is min-}
22: V4t k] < mean(Vieleet)
23: end if
24: end for

25: Apply final median filter with length wy,edian

Fig. 2. Pseudocode for the piecewise moving average filter.
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Fig. 3. Illustration of the Hampel identifier in detecting and removing outliers.

less fluctuations than the initial ones, resulting in a narrower
range of values for non-outliers at the end of the signal. This
behavior is caused by a reduction in the value of MAD.
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Fig. 4. Simulated random signal used to illustrate the application of the t-test
and F-test during steady-state and rms voltage step change conditions.

TABLE I. TEST DECISION FOR THE NULL HYPOTHESES FOR
TWO-SAMPLE T-TEST AND F-TEST FOR w = 8 SAMPLES

Decision for the null hypothesis

Index
t-test F-test
k1, ks Accept Accept
k2 Possibly reject  Possibly reject
k3, ka Reject Accept

B. Detection of Possible rms Voltage Step Changes

The detection of an rms voltage step change at index k
is based on rms voltage values immediately before and after
index k. In order to perform this detection, the sliding window
X is divided into 2 subsets: unfiltered rms values before and
after index k, respectively, as represented in (5). The number
of samples in each subset is at most half of the filter length.

Vbefore = input[k - LU}/QJ ck— 1}
Vafter = input[k' +1:k+ \_U}/QH

These 2 subsets are compared through the two-sample t-
test (mean equality) and F-test (variance equality). The null
hypotheses are that both subsets have equal mean and variance,
respectively. Both tests assume a normal distribution; in other
words, the rms voltage profile is assumed to converge to a
normal distribution if the number of samples is sufficiently
large (central limit theorem). It will be shown in Subsection
IV-A that this assumption holds mostly true.

The application of the two-sample tests is discussed through
Fig. 4, which represents a random simulated signal with an
rms voltage step change at k3. The test decision for the
null hypotheses for each selected index is shown in Table I,
assuming a filter length w = 8 samples.

Viefore and Vg rie, are assumed to originate from the same
distribution (i.e., no rms voltage step change occurred at
instant k) if both means and variances are equal with the
typical significance level of 5% [19]. In this case, both null
hypotheses are not rejected, and the filtered rms value for the
current iteration is defined as the average of the entire window,
ie., VJit[k] = mean(X). This case corresponds to k; and
ks in Fig. 4. This operation corresponds to an iteration of a
moving average filter.

On the other hand, if at least one of the null hypotheses
is rejected, the first element of Viefore and the last element

&)
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of Vifter are removed, and X is updated accordingly. The
goal of this process is to obtain smaller subsets that do not
contain an rms voltage step change, resulting in statistically
equal means and variances. For example, both null hypotheses
for k1 would possibly be rejected if w = 12 in Fig. 4; however,
they would be accepted if the last sample of V¢, is removed.
This process is repeated until one of the following conditions
occurs:

1. Both means and variances are statistically equal. In this
case, neither Viefore nor Vg yree, contain an rms voltage
step change. Thus, V£ [k] = mean(X).

2. The reduced subsets contain less than w; = |w/4]
samples. This value is adopted to prevent performing
statistical tests on very short datasets, since Vpefore and
Vafter deviate from a normal distribution when their
length decreases. When w; < |w/4], a voltage step
change may have occurred at index k, as it is discussed
in the next subsection.

C. Filtering rms Voltage Profile Nearby Step Changes

Once a possible rms voltage step change has been identified,
it is necessary to determine if this shift occurred immediately
before or after instant k. The D factor is defined as the sum
of the absolute differences between Viyp.[k] and all other
elements in each subset, i.e.:

we
D) =3 [V*y)

p=1

- ‘/input [k] ‘ (6)

where V* represents either Vicrore O Vgper. This factor
indicates how much Vj;,,,,..[k] deviates from the other elements
in each subset. The rms voltage step change occurred imme-
diately before instant k if D(Viesore) > D(Vister); other-
wise, it occurred immediately after instant k. For example,
Fig. 5a illustrates the case when the step change occurred
immediately after k. It is possible to verify visually that
Vinput[k1 —4 : k1 — 1] have values similar to Vj,, . [k1], while
Vinput[k1 + 1 : k1 + 4] values are significantly lower. In this
case, D(Viefore) = 0.0206 and D(V,fir) = 0.1837. Fig.
5b represents the opposite situation, where the rms voltage
step change occurred immediately before ko; in this case,
D(Voefore) = 0.1783 and D(Vgser) = 0.0233.

The subset with the minimum D factor is selected as Vieject,
and V7" [k] = mean(Vieiecr). Note that this operation corre-
sponds to an iteration of a moving average filter. However, it
does not affect the sharp edges of the rms voltage step change
because Vet contains either values pre- or post-voltage step
change, but not both.

The sliding window is moved 1 sample to the right and
the process restarts to compute V,.p,s[k + 1], until the moving
window reaches the end of the input vector. Lastly, a median
filter is applied to reduce any remaining noise in the smoothed
signal. The resulting filter is referred to as piecewise moving
average filter.

D. Adaptive Limits for Step Change Detection

The inferior and superior limits for rms voltage step change
detection are computed through the median absolute deviation

(a) rms voltage step change after the sample under analysis (k1)
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Fig. 5. Simulated random signal used to illustrate the determination of the
rms voltage step change instant through the D factor.

approach. This is a robust method mostly unaffected by the
presence of extreme values in the data set [18]. Its essence is to
use s past values to determine the allowable range of values at
the current instant r. It is determined that an rms voltage step
change has occurred at the instant r if any of the conditions
in (7) is satisfied, where Vygap = VLU [r — s —1].

rms

yfilt [r] < median(Vadap) — 3 X MAD(Vadap)

rms

Vfilt[r] > median(Vadap) + 3 X MAD(Vadap)

™ms

)

Note that this method is similar to the Hampel identifier
described previously. However, the computation of adaptive
limits uses exclusively past values to estimate the current
expected value, while the Hampel identifier uses both past
and future values to identify outliers in a time series.

IV. VALIDATION AND APPLICATIONS

This section demonstrates the application of the piecewise
moving average filter proposed in Section III, and compares
its performance to the moving average and median filters.
The test data consist in 28-minute continuous phase voltage
measurements at the 25-kV substation transformer of a radial
distribution system with multiple parallel feeders. The power
quality monitor is installed at the feeder head, and its sampling
frequency is 7.68 kHz. There are 9 rms voltage step changes
during the measurement interval, resulting from 4 capacitor
energizing and 5 capacitor de-energizing operations. Recurring
capacitor switching operations in such a short time interval
is not observed in the system under normal conditions. The
dataset used in this section corresponds to test data, where
the system operator manually overrode the capacitor switching
control to obtain a desired sequence of switching events.
The rms voltage profile is obtained by computing rms values
over one-cycle sliding windows; multiple rms update rates,
ranging from half-cycle to 1 second, were tested. Note: all the
following plots have an rms update rate of 1 second, except the
load energizing case (the update rate in this case is half-cycle).
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Fig. 6. Histogram and normal probability plot of an rms voltage profile with
21 samples and without an rms voltage step change, and p-values for multiple
dataset sizes.

A. Assumption of Normality for the rms Voltage Profile

The statistical tests mentioned in Subsection III-B — two-
sample t-test and F-test — are commonly applied for sets of
data that follow a normal distribution. The method proposed
in this paper assumes that any portions of the rms voltage
profile without a step change converge to a normal distribution.
Fig. 6 illustrates the histogram and normal probability plot for
an rms voltage profile set composed of 21 samples. Visual
inspection of Fig. 6a and 6b shows that the assumption made
above is reasonable, as the histogram resembles a bell curve
and the normal probability plot is a good approximation of
a straight line. Moreover, the Shapiro-Wilk test [20] does
not reject the null hypothesis that the samples come from
a normally distributed population at a 5% significance level
for all distributions with at least 3 samples. Note in Fig. 6¢
that longer datasets have higher p-values, i.e., they are closer
to an ideal normal distribution, as stated by the central limit
theorem. Nevertheless, the p-value may drop depending on the
most recent rms voltage values added to the distribution, as
observed for datasets with more than 20 samples.

B. Moving Average and Median Filters

Moving average and median filters are initially tested to
illustrate their poor performance during rms voltage step
changes. The rms voltage values at index k filtered through
moving average and median filters with length M are com-
puted as shown in (8a) and (8b), respectively.

k
1
Vil =57 Y Vinputlp) (82)
p=k—M+1
Vmed(k) = median(Vipput[k — M +1:k])  (8b)

Fig. 7(al) and 7(a2) show the filtered rms voltage profile
using moving average filters with lengths M = 3, 7, and
11 during capacitor de-energizing and energizing operations,
respectively. While the steady-state rms voltage values become
less noisy as the filter length increases, the step changes are

(a1) Moving avg. filter - Cap. de-energ. (a2) Moving avg. filter - Cap. energ.
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Fig. 7. RMS voltage profile filtered by (al-a2) moving average and (bl-b2)
median filters with lengths M = 3, 7, and 11 during capacitor de-energizing
and energizing operations.

also attenuated, i.e., blurred. In fact, a moving average filter
with length M introduces (M —1) intermediary points between
the two voltage levels.

Median filters also have drawbacks in filtering the rms
voltage profile. Fig. 7(bl) and 7(b2) represent the filtered
rms voltage profile using median filters with lengths M =
3, 7, and 11 during capacitor de-energizing and energizing
operations, respectively. Unlike the moving average filter, the
median filter is able to retain the sharp edges during rms
voltage step changes. However, these plots illustrate how the
choice of an appropriate filter length is critical. With M = 3,
the filter is not able to eliminate most of the noise in the
rms voltage profile; in this case, the filtered voltage profile
follows the trend of rapid fluctuations observed in the original
signal. On the other hand, longer median filters are able to
remove the noise, while potentially reducing the magnitude
of the step change. For example, consider the case M = 11
in Fig. 7(b1), where the filtered rms voltage starts decreasing
prior to the true rms voltage step change (this initial voltage
reduction is 14.8% of the actual step change magnitude). In
this case, even though the event is detected, its characterization
is not accurate. Moreover, underdetection may occur for larger
initial voltage reductions, as the filtered rms voltage profile
would have one intermediary point between the two steady-
state voltage levels, similar to moving average filters.

C. Piecewise Moving Average Filter

The rms voltage profile obtained by the proposed piecewise
moving average filter is shown in Fig. 8a. The filter length, w,
is chosen as 21; therefore, the minimum number of samples
for performing the t-test and F-test is 5, as defined Section III.
The median filter applied at the end of the smoothing process
has length wyedian = 11.

The detailed rms voltage profile during capacitor de-
energizing and energizing, and steady-state operations are
shown in Fig. 8b, 8c, and 8d, respectively. Note that the filtered
output satisfies both requirements: removal of the rapid fluc-
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Fig. 8. RMS voltage profile filtered by the piecewise moving average filter with length w = 21 (a) for the entire monitoring period, during capacitor (b)
de-energizing, (c) energizing, and (d) steady-state operations. The median filter has length w,edian = 11.

tuations during steady-state, and preservation of sharp edges
during rms voltage step changes, without affecting the step
magnitude. In Fig. 8b, the filtered value immediately before
the step change is lower than the original value; however, there
is no reason to believe that the step change magnitude has
been reduced in the filtered profile, as it follows the trend of
unfiltered values.

D. Adaptive Limits for rms Voltage Step Change Identification

The inferior and superior limits for rms voltage step change
detection are computed as described in Subsection III-D,
adopting s = 15 samples. An rms voltage step change is
detected whenever the rms voltage value lies outside the
range defined by these limits. Fig. 9a shows rms voltage
step changes corresponding to either a capacitor energizing
(positive rms voltage variation) or de-energizing (negative rms
voltage variation) operation.

Note that the inferior and superior limits are represented
by a horizontal, straight line immediately after an rms voltage
step change has been detected. As mentioned before, the rms
voltage profile converges to a normal distribution with different
mean after a step change; therefore, computation of these
limits after the step change should not include the rms voltage
values prior to the step change. In fact, consider that an rms
voltage step change has been identified at index r, and these
limits are computed using the previous s samples. Thus, the
limit values for indices ranging from (r 4+ 1) to (r + s) will
be set equal to the limit values at index (r + s+ 1).

For comparison purposes, the proposed detection algorithm
is tested with the unfiltered rms voltage profile. While the
piecewise moving average filter contains O false-positive de-
tections, using the unfiltered rms voltage profile resulted in
17 false-positive rms voltage step changes. The hollow orange
squares in Fig. 9b, 9c, and 9d correspond to some of these
overdetections.

Due to the drawbacks discussed previously, rms voltage step
change detection is not accurate if the signal is filtered using
either a moving average filter (misses step changes because of
the smoothed edges) or median filter (overdetects step changes
because the filtered signal tends to follow the trend of the
rapid voltage fluctuations). The performance of each filter is
quantified through its true positive (TP) and false positive (FP)
values. Ideally, TP should be 9 (total number of rms voltage
step changes in the dataset under analysis; the rms voltage
increase near the end of the measurement interval corresponds
to two capacitor energizing operations and it is discussed in
details in Subsection IV-E) and FP sould be 0. The results
are presented in Table II; note that both moving average and
median filters perform poorly, regardless of the rms update
rate. The filter length for the piecewise moving average filter
corresponds to the length of the median filter applied at the
end of the smoothing process, Wmedian (s€€ Subsection III-C);
note that this value has little influence on the output profile.

Although the median filter with length M = 11 seems a
good option for rms voltage step change detection, it may
misrepresent the step change magnitude in some cases, as
shown in Fig. 7(bl). Moreover, it is not possible to determine
the minimum length of a median filter that reduces false
positive detections in all cases due to the randomness of the
rapid voltage fluctuations. For example, Fig. 10 represents
the rms voltage profile filtered by median (M = 3, 7, and
11) and piecewise moving average filters for a portion of the
signal without any rms voltage step changes. The false positive
detections for the median filter with M = 3 and 7 occurred
shortly before 4:10 PM, where the filtered rms values are
slightly higher than the superior limit. Increasing the filter
length to M = 11 eliminated this false positive detection;
however, the filtered profile in this case is still significantly
affected by the rapid voltage fluctuations, and its performance
cannot be generalized to all datasets. On the other hand, the
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Fig. 9. Detection of rms voltage step changes (a) for the entire monitoring period, during capacitor (b) de-energizing, (c) energizing, and (d) steady-state
operations. The solid and hollow orange squares represent the step changes detected by the proposed method using filtered and unfiltered profiles, respectively.

TABLE II. NUMBER OF TRUE POSITIVE (TP) AND FALSE POSITIVE (FP) 1.036 Unfiltered
RMS VOLTAGE STEP CHANGE DETECTIONS FOR EACH FILTER Piecewise moving average filter
1.0355 Median filter (M = 3) q
Median filter (M = 7)
: rms Filter length Median filter (M = 11)
Filter update 3 7 1 1.035 Inf and sup limits J i
type rate (s) P . e
TP FP | TP FP | TP FP S 103451 { . <— Faise positive
= *me detection
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0.8 8 2 8 0 7 0 Fig. 10. RMS voltage profile filtered by median (M = 3, 7, and 11) and
1 8 1 8 1 8 0 piecewise moving average filters during steady-state operation.
1/120* 9 0 9 0 9 0
o 0.2 9 0] 9 0|9 o0 o
Piecewise 0.4 8 0 8 0 8 0 measuring interval (between 4:16:30 PM and 4:16:40 PM),
movin . . o o .
averag% 0.6 8 0 8 0 8 0 there are 2 successive capacitor bank energizing operations
0.8 8 0 8 0 8 0 less than 3 seconds apart from each other. Therefore, when
1 8 0|8 08 0 analyzing the first energizing operation, Vs, contains rms

* Update rate is half-cycle, as in the Uy, 5(1/2) definition

absence of rms voltage step changes in this portion of the
signal indicates that the null hypothesis of both t-test and F-test
are not rejected; and, therefore, the proposed filter uses average
operations to obtain the output profile. The resulting profile is
smooth and unaffected by the rapid voltage fluctuations.

E. Limitations

In the previous examples, the interval between consecutive
rms computations, At,.,s, is 1 second. At the end of the

values computed after the second one. This fact may prevent
the correct rms voltage step change identification, as repre-
sented in Fig. 11a. On the other hand, Fig. 11b shows the rms
voltage profile for At,,,s = 0.2 second; in this case, both rms
voltage step changes are correctly identified.

The identification of successive rms voltage step changes
is possible if the filter time resolution, 7 = |w/2| X Atyps,
is smaller than the minimum interval between successive step
changes. In fact, the second capacitor energizing is detected if
re < 3(.e., Atyms < 0.3 second), which is confirmed in Table
II. The choice for At,,,s represents a compromise between
computational effort and robustness, as larger values decrease
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Fig. 12. RMS voltage profile filtered by the piecewise moving average filter
with length w = 21 during a load energizing.

the computational effort but allows for the underdetection of
successive rms voltage step changes, and vice-versa.

F. Load Energizing Application

As a final case, Fig. 12 represents the rms voltage profile
during a load energizing (the corresponding increase in active
power flow is about 18 kW). Detecting the rms voltage step
change caused by this load energizing is challenging if the rms
voltage profile is unfiltered. In fact, note that the valleys before
the energizing and peaks after the energizing have similar
values. On the other hand, this step change was successfully
identified on the filtered rms voltage profile using the adaptive
limits and the piecewise moving average filter.

V. CONCLUSION

The piecewise moving average filter proposed in this paper
is robust in attenuating the rapid fluctuations observed in rms
voltage profiles, while preserving the sharp edges during rms
voltage step changes. This approach reduces the time required
to identify power quality switching events in instantaneous

voltage waveforms. A detailed search is needed only when an
rms voltage step change has been detected. The rms update rate
has small influence on the detection of these step changes, as
long as the interval between consecutive events is larger than
the filter time resolution. In general, switching events create
a sustained change in the voltage level, which persists until a
new operation occurs; therefore an rms update rate of 1 second
is suitable. Switching of large loads is an exception, as the
voltage recovers to the pre-event value in few seconds; in this
case, the rms voltage profile must have a higher time resolution
(for example, rms values updated every half-cycle, as in the
Urms(1/2) definition). A lower rms voltage time resolution may
be chosen when it is not required to detect the switching of
large loads. Although the proposed method is illustrated for
the identification of capacitor switching events, it is applicable
to any event that creates an rms voltage step change.
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