UIUC Physics 406 Acoustical Physics of Music

Vibrations of Ideal Circular Membranes (e.g. Drums) and Circular Plates:

Solution(s) to the wave equation in 2 dimensions — this problem has cylindrical symmetry =
Bessel function solutions for the radial (r) wave equation, harmonic {sine/cosine-type} solutions
for the azimuthal () portion of wave equation. Please see/read “Mathematical Musical Physics
of Wave Equation — Part 11" p. 16-20 for further details...

Boundary condition: Ideal circular membrane (drum head) is clamped at radius a = must have
transverse displacement node at r = a.

FIGURE 3.4 ‘tion of a stri '
SURE 3.4. Reaction of a string and membrane to a force applied at a peint

The 2-D wave equation for transverse waves on a drum head — approximated as a cylindrical
membrane has Bessel function solutions in the radial (r) direction and cosine-type functions in
the azimuthal (¢) direction (see P406 Lect. Notes “Mathematical Musical Physics of the Wave

Equation — Part 17, p. 16-20): wav (r,@,t)= A, ., (K, ,r)cos(me)cos(m, ,t) where Jm(Xmn) =

Jm(Kmnr), Xmn = kmnr (n.b. dimensionless quantity), kmn = wavenumber = 277/ Anm. The integer index
m =0,1,2,3... refers both to the order # of the {ordinary} Bessel function (in the radial, r-
direction) and also the azimuthal (¢-direction) node #. The index n = 1,2,3,4... refers to the n™
non-trivial zero of the Bessel function Jm(Xmn), i.e. when Xmn = kmna = 0.0. The boundary
condition that the circular membrane is rigidly attached at its outer radius r = a requires that
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FIGURE 3.5. First three Bessel functions.

there be a transverse displacement node at r = a, i.e. w:;‘fnp (r = a,(o,t) =0. This gives rise to
distinct modes of vibration of the drum head (see 2-D and 3-D pix on next page):
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Thus, we need two indices (m, n) to fully specify the 2-D modal vibration harmonics of the
circular membrane because it is a 2-dimensional object. Low-lying eigenmodes of 2-D
transverse displacement amplitudes are shown in the figures below:
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Flcure 3.6. First 14 modes of an ideal membrane. The mode designation (m,

n) is given above each figure and the relative fre uency below. To convert these
vT/

to actual frequencies, multiply by (2.405/2na) o, where a is the membrane

radius.
MWermal whration medes of a circular membrane
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The modal frequencies of a circular membrane are f, =, /27 =Vk /27, but we also
have the relation k,  =x_ /a where x_ is the value of the n™ non-trivial zero of the m"—order

m,n

Bessel function J, (x,,)=J, (k,,a)=0,eg.form=0andn=1,234,5... then
3o (%0 ) =35 (Ko@) =0 when x,, =k, ,a =2.405,5.520,8.654,11.793,14.931, ... respectively.

The speed of propagation of transverse waves on a (perfectly-compliant) circular membrane
clamped at its outer edge is v =/T,/o where T,(N/m) is the surface tension (per unit length)

of the membrane and a(kg/mz) is the areal mass density of the membrane/drum head. Thus:

w ,
e Y L kA T
' 27r 27 27za 27ra

Example: A frequency scan of the resonances associated with the modal vibrations of a Phattie
12” single-head tom drum using the UIUC Physics 193/406POM modal vibrations PC-based
data acquisition system is shown in the figures below:

Phattie 12" Single-Head Tom Drum - Standard Cut Bearing Edge Phattie 12" Single-Head Tom Drum - $tandard Cut Bearing Edge
VNI vs. Frequency UIUC Physics 1931406 426/2007 V| v, Fraqnum:y URIC Physics 193406 4262007
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Data vs. Theory Comparison of Phattie 12 Tom Drum J.m Modal Frequencies:

f_dnm vs Mode # for Normal Modes of Vibration f_Jnmf_J01 vs Mode & for Normal Modes of Vibration
12" Phattie Tom Drum vs ideal Circular Membrane 12" Phattie Tom Drum vs ideal Circular Membrane
UIUC Physics 183POM/4S6POM  11/6/2008 UIUC Physics 193POM/40EPOM 117872008

1 2 3 4 5 [ T 8 » 10 " 12 1 2 3 M H M 7 M s 10 n 12
+—1_dnm (Hz) teas 1_dnm (Hz) —a—1_Jdnet_sot Meas Ratio] f_Jrmt_Jo1)
Jo1 o a2 e 1 a1z 4 2z Jo3 J81 2 253 s01 M r-3 202 1 nz 41 Jaz Jo3 451 432 J81

n.b. The clear mylar drum head on the Phattie 12” tom drum does have finite stiffness, i.e. it is
not perfectly compliant, as for an ideal circular membrane... which affects/alters the resonance
frequencies of modes of vibration of drum head....
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Vibrations of Circular Plates - clamped vs. free vs. simply supported edges:

Vibration frequencies of a circular plate with clamped edge.

fa1 = 6.82fg
faz = 13.7T1fm
faz = 24T fm

TABLE 3.1.

fa1 = 5.00fp
faa = 10.87fg
lf“ ] 1E.ﬁ3‘ﬂ}]

f11 = 2.08fp1 f1 = 3.41fqg
fl12 =5.85fp1 foo = 8.2Bfm
fi3 = 1L.75fp1 faz = 15.06fp

fo1 = 0.4694cph/a®
Joz = 3.89fpm
foz = B.72f;n

TaBLE 3.2. Vibration frequencies of a circular plate with free edge.

fao = 0.2413cphja® fag = 2.328f20 fao = 4.11f20 fso = 6.80fag
fa1 = 10.0Tfag fq1 = 13.82fap fs1 = 18.24 [y

fag = 21.19f9n faz = 2T.18fap frz = 33.31 fap

fi1 = 391

for = L.73f20
foz = 7T-34f0 fiz = 11.40fgp

f21 = 6.71fy
faz = 15.97fa0

TaBLE 3.3. Vibration frequencies of a circular
plate with a simply supported edge. .
fa1 = 5.15fm

for = 0.2287cp h/a®  f1; = 2.80f0
foz = 5.98fqy fi2 =9.75f;1  faz = 14.08fp,
fiz3 = 2066fo1  f23 = 26.99fp

Joz = 14.91fm

Vibrations of a Circular Plate:

Free Edge

Chladni’s Law (1802):
fn = v(m+-2n)P

Mode # (n, m) are (¢, r) integers

(e.g.=0,1,2,3, ... etc.)
0, 1) mnn 2,1
For  flatcircular plates: p = 2 ® E} @

For non-flat circular plates: p < 2
(2.2)

(e.g. cymbals) 0.1 (.1
B © @D

(b)

FIGURE 3.8. Vibrational modes of circular plates: (a) free edge and (b) clamped
or simply supported edge. The mode number (n, m) gives the number of nodal

diameters and circles, respectively.
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Modal Vibrations of Cymbals: (continued)

w0t
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those of a flat plate. but after that the resonances tend to be combinations « 0

two or more modes (Rossing and Peterson, 1982).
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FIGURE 20,2, Medes of vibration of a 38-em eymbal. The first six modes resembl 1 i i i ool L
T T
1

Modal frequencies of a 46-cm-diameter medium crash cymbal as a function of m and &

Theory:

Chladni's Law: f,, = C(m+an)? vs. mforn =01, ... Chladni's Law: f, = Cim+an)? vs. mforn=0,1, ...
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Modal Vibrations of Flat 2-D Rectangular Plates
& Stretched 2-D Rectangular Membranes:

B.C.’s: Edges of a flat rectangular plate can be fixed or free, or simply supported...
= different boundary conditions for 2-D wave equation on rectangular plate...
= different allowed solutions for vibrational modes — again, two indices m, n

1 |
| |
I B s
| |
| |
fi L4t fy 1731, 2.00f,
[ | | | | I 11
I WS S (i SN RN ) T A
e e | | | L1
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Fic. 15. Some of the modes of vibration of a stretched rectangular membrane.
The length of the membrane is 1.41 times the width.
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Fic. 16. Some of the modes of vibration of a square plate fixed at the center
and set into oscillation by bowing,
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) S, Lwo-Dimensional Systems: Membranes, Plates, and Shells
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+  2RE 3.12. Graphical construction of combination modes in a square isotropic
plate: (a) (2.0) — (0,2), = mode; (b) (2,0) + (0,2), ring mode; (¢) (2,1) = (1,2)
mode: and (d) (2, 1) + (1, 2) mode.

(1. 1) (2.0 —(0.2) (2,00 (0, 2) (1) 11.2)
Lt | ‘ | |
| - | |

1.00 1.52 |94 27 27

(22 (3.0 0.3 31y = (1.3 (3.1 = (L3

T = D AL
L N 1A

4381 5.10 3.10 5.30 6.00

FIoURE 3.13. The first 10 modes of an isotropic square plate with free edges.
The modes are designated by m and n, the numbers of nodal lines [n the two
directions, and the relative frequencies for a plate with ¥ = 0.3 are given below
the fgures.
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Chladni Patterns of {Real} 2-D Vibrating Plates:

2 3 a

—! Sy
- Ewl nE
— S p— =l i
a | 2 3 4
0
1
Z
3

FicurE 3.9, Chladni patterns showing the vibrational modes of rectangula
plates of different shapes: {(a) L=/Ly = 2 (b) Lz/Ly = 3/2 (Waller, 1949).

(2,0)—(0,2)

L= IIINY

1311 2120

(1]
s
(5=

(2.0) + (0. 2)

S =1=I=|ele

F'I(J'URF, 3.10. Mixing of the (2, 0) and (0, 2) modes in rectangular plates with
different L. /L, ratios (after Waller, 1961).
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Modal Vibrations of Handbells & Church Bells

BTT

21 Modes of Vibration of Church Bells

(2,0) (2, 18) (3, 1) (3, 1%) 4, 1)
o= = N == S ==
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MnmhAxJ__ls/ Qwi ;L/} \QH_PH)) N EIjj“ : L
hum prime minor third filth oclave
0.5 1.0 1.2 15 2.0

The first five vibrational modes of a tuned church bell or carillon

Figure 21.1. The
bell. Dashed lines indicate the nodes, Frequencies (Hz) relative to the prime
wnd names of the corresponding partials are given below each diagram (Rossing,

1984b)

A

SlaleRs

sy

219
FiGurE 21.2. Mation of a bell for Inextensional modes of small m. Modes with
l] and m = 1 require one or more nodal cireles (n > 0).

The two integers (m, n) respectively denote the number of complete nodal (m)
azimuthal meridians extending over the top of bell (n.b. = %2 of such nodes along
a circumference) and n = number of nodal circles. Note that since have two
integers, the handbell/churchbell effectively vibrates as a 2-D object — it is simply

bent/deformed into a 3-D spatial object...
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Modal Vibrations of Handbells/Churchbells: (continued)
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FleUre 2116, Time-average hologram mterferograms of vibrational modes in a
(5 handbell (Rossing et al., 1984)
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Vibrational Modes of an Acoustic Guitar:
Top surface, all by itself:

SOBBNE

60 Hz 72

175 Hz
240 Hz 38 138 352 426 478 Hz

FiGure 9.6, Vibration modes of a guitar plate blank (without braces) with a
free edge (adapted from Rossing, 1982D).

98 Hz T | s " 20 306 Hz
198 He 51 3 )

— ===

Figure 9.7. Vibration modes of a classical guitar top plate with traditional fan
bracing (adapted from Richardson and Roberts, 1985).

Ficure 9.8. Vibration modes of a classical guitar top plate glued to fixed ribs
but without the back (Jansson, 1971).
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Modal Vibrations of Acoustic/Classical Guitars:

Top 0.0 ©.0 (1,0 (02 (L) 03 12,0
@ % % V/) g g
Bracing 163 Hz 276 643, 685 TJ? 756 Hz
pattern
Back 0,0y (O (02 (L0 03 (1.0 {U 4 (2 I} 1| "l
F ’/J
(b) ( r:
= A
Bracing 165 Hz 257 509 602 6?8 693 Hz
patiern
H[Au}
+
D
(e Air cavity \ .
14‘ + l+
121 Hz 122 256 Hz

Ficure 9.9. (a) Modes of a folk guitar top (Martin D-28) with the back and ribs
in sand. (b) Modes of the back with the top and ribs in sand. (¢) Modes of the
air cavity with the guitar body in sand. Modal designations are given above the
figures and modal [requencies below {Rossing et al., 1985).

<, g -~ ) — - = i -
W68 Hz(Q=52)  SS3Hz(Q=66) 628 Hz(Q=83) 672 Hz.(Q = 61) 73T He (@ =72

$73 Hz(Q=T73) 980 Hz (Q =48) 1010 Hz (Q =80) 1174 Hz (Q = 58) 1194 Hz (Q=139)

FIGURE 9.16. Time-averaged holographic interferograms of top-plate modes of a
guitar (Guitar BR11). The resonant frequencies and @ values of each mode are
shown below the interferograms (Richardsen and Roberts, 1985).
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FIGURE 9.17. Holographic interferograms showing top plate distortions for (a) a
static force at 1.0 N applied to the sixth string parallel to the bridge, (b) a force
of 0.5 N applied to the first string perpendicular to the bridge, (c) a longitudinal
force of 2.0 N applied to the first string, and (d) a torque caused by twisting the
third string one full turn (Jansson, 1982).

Example: Frequency scan comparison of the mechanical resonances associated
with the modal vibrations of a Martin D16 vs. a Martin 000C16 guitar using the
UIUC Physics 193/406 POM modal vibrations PC-based data acquisition system:

Martin D16 & 000C16 Comparison Martin D16 & D00C16 Comparisan
[VITH vs. Frequency [Vif)j vs. Fraquency
UIUC Physics 193POM  April 19.20, 2007 UIIC Physics 193POM  Aprll 19.20, 2007
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Modal Vibrations of Violins/Violas/Cellos, etc.

SN~ .
0.0 0.1 1,0 02 1.1 .
284 Hz 400 1077 1190 1240 1646 I887

FIGURE 10.13. Modes of a vigliy air cavity. Mode frequencies are from Roberts
and Rossing (1997).

Rk Top Hick F'op

(4)

FIGURE 3.18. Chladni patterns showing two modes of vibration in the top and
back of a viola (ITutehins, 1977).

FIcure 10.12. Interferograms of two air modes in violins using electronic TV
holography. (a) Aa mode excited by sound from a loudspeaker {-frr.:m Saldner et
al., 1996); (b) Ay mode excited by applying a sound pressure internally (Roberts
and Rossing, 1007,

-34-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2002 - 2017. All rights reserved.



UIUC Physics 406 Acoustical Physics of Music

TOP PLATE

838 8 &
LOL0E08

BACK PLATE

FiGgure 10.14. Time-average holographic interferpgrams of a [ree violin top plate
and back plate (Hutchins et al., 1971),

Fi6URE 10.15. Interferograms of the top and back plates of a violin at 100 ps.
195 us. 250 ps, and 450 s after application of a bridge impulse parallel to the top
plate. Note the wave propagation in the top plate is outward from both bridge
faet and in the back plate it is outward from the soundpost (Molin et al, 1990)
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Legal Disclaimer and Copyright Notice:

Legal Disclaimer:

The author specifically disclaims legal responsibility for any loss of profit, or any
consequential, incidental, and/or other damages resulting from the mis-use of information
contained in this document. The author has made every effort possible to ensure that the
information contained in this document is factually and technically accurate and correct.

Copyright Notice:

The contents of this document are protected under both United States of America and
International Copyright Laws. No portion of this document may be reproduced in any manner for
commercial use without prior written permission from the author of this document. The author
grants permission for the use of information contained in this document for private, non-

commercial purposes only.

-36-
©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2002 - 2017. All rights reserved.



