@ python’

Built-In Functions

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0

ralse type (message)

ralse Exception (message)

Exceptions

AssertionError

Typekrror

NamekError

ValueError

IndexError

SyntaxError

ArithmeticError

@, python’

http://docs.python.org/library/exceptions.html#bltin-exceptions

o We already know about the __str__ () method that allows a
class to convert itself into a string

rectangle.py

class Rectangle:
def init (self, x, y, width, height):

gglf.x = X
self.y =y

self.width = width

__str (self):
return " (x=" + str(self.x) + ",y=" +
str(self.y) + ",w=" + str(self.width) +

",h=" + str(self.height) + ")"

© 0 Jd o 1 dWDNBK

Underscored methods

e There are many other underscored methods that allow the
built-in function of python to work

e Most of the time the underscored name matches the built-in
function name

Built-In Class Method
str () __str ()
len () __len ()
abs () __abs ()

@, python’

e For built-in types like ints and strings we can use
operators like + and *.

e Qur classes so far were forced to take back routes and use
methods like add () or remove ()

e Python is super cool, in that it allows us to define the usual
operators for our class

e This brings our classes up to first class citizen status just
like the built in ones

@, python’

Underscored methods

e There are underscore methods that you can implement in
order to define logical operations and arithmetic operations

Binary Operators Comparison Operators
Operator Class Method Operator Class Method
- neg (self,other) == __egq (self,other)
+ __pos (self, other) = ~_ne (self, other)
* ~_mul (self, other) < 1t (self, other)
/ _truediv_ (self, other) > gt (self, other)
Unary Operators <= __le (self, other)
Operator Class Method >= __ge (self, other)
- __neg_ (self) N/A __nonzero (self)
pos (self)

A p+gt|”on"

http://docs.python.org/reference/datamodel.html#sequence-types

ArraylntList Operations

Lets write a method that we could add to arrayintlist.py that
would allow us to apply the /= operation to the list. The
operation would simply divide all elements of the list by the
argument of the operator

Method: itruediv (self, num)

Example run

print (int list)
int list /= 2

print (int list)

arrayintlist.py

def itruediv (self, num):
1f num ==
ralise ArithmeticError (“Can't divide by zero.")
for 1 in list(range(len(self)))
self.elementData[i] /= num

return self

@, python’

e Sometimes you need a simply arithmetic function
o Its silly to write a method for it, but redundant not too
o With lambda we can create quick simple functions

e Facts

— Lambda functions can only be comprised of a single
expression

— No loops, no calling other methods
— Lambda functions can take any number of variables

Syntax:

lambda paraml, .., paramn : expression

@, python’

Lambda Syntax

lambda.py

#Example 1
square func = lambda x : x**2
square func (4) #return:

#Example 2
close enough = lambda x, y : abs(x - y) <
close enough (2, 4) #freturn:

#Example 3
def get func(n)
return lambda x : X * n + X
my func = get func(13)
my func (4) #return:

1
2
3
4
5
6
7
8
)
0
1
2
3

@, python’

10

Higher-Order Functions

e A higher-order function is a function that takes another
function as a parameter

e They are “higher-order” because it’s a function of a function
e Examples

— Map

— Reduce

— Filter

e Lambda works great as a parameter to higher-order
functions if you can deal with its limitations

@, python’

11

filter (function, iterable)

A

The filter runs through each element of iterable (any
iterable object such as a List or another collection)

It applies function to each element of iterable

If function returns True for that element then the
elementis put intoa List

This list is returned from filter in versions of python under
3

In python 3, filter returns an iterator which must be cast
to type list with list()

python’

12

Filter Example

@, python’

13

Filter Problem

NaN = float ("nan")

scores = [[NaN, 12, .5, 78, math.pi],
(2, 13, .5, .7, math.pi / 21,
(2, NaN, .5, 78, math.pi],
(2, 14, .5, 39, 1 - math.pi]]

Goal: given a list of lists containing answers to an
algebra exam, filter out those that did not submit a
response for one of the questions, denoted by NaN

@, python’

14

Filter Problem

Solution

NaN = float ("nan")
scores = [[NaN, 12, .5, 78, pi]l,[2, 13, .5, .7, pi / 21,
[2,NaN, .5, 78, pil,I[2, 14, .5, 39, 1 - pi]]

#solution 1 - intuitive
def has NaN (answers)

for num in answers

if isnan (float (num))
return False

return True
valid = list (filter (has NaN, scores))
print(valid?2)
#Solution 2 - sick python solution
valid = list(filter (lambda x : NaN not in X, scores))

1
2
3
4
5
6
7
8
9
0
1
2
3
4

print (valid)

map (function, iterable, ...)

« Map applies function to each element of iterable
and creates a list of the results

* You can optionally provide more iterables as
parameters to map and it will place tuples in the
result list

» Map returns an iterator which can be cast to list

@, python’

16

Map Example

list (map (lambda x

print (nums)
#[OI 4/ 2/

Map Problem

Goal: given a list of three dimensional points in the
form of tuples, create a new list consisting of the
distances of each point from the origin

Loop Method:
- distance(X, y, z) = sqrt(x**2 + y**2 + 7**2)
- loop through the list and add results to a new list

@, python’

18

Map Problem

Solution

from math import sqgrt
points

def distance (point)

X, y, z = point
return sqrt(x**2 + y**2 + z**2)

1
2
3
4
5
6
7
8
)

distances = list (map(distance, points))

@, python’

19

reduce (function, iterable|,initializer])

« Reduce will apply function to each element in iterable
along with the sum so far and create a cumulative sum of the

results
« function must take two parameters

« If initializer is provided, initializer will stand as the first
argument in the sum

« Unfortunately in python 3 reduce() requires an import
statement

* from functools import reduce

@, python’

20

Reduce Example

Example

nums

nums

@, python’

21

Reduce Problem

Goal: given a list of numbers I want to find the
average of those numbers in a few lines using
reduce ()

For Loop Method:
- sum up every element of the list
- divide the sum by the length of the list

@, python’

22

Reduce Problem

Solution

(%2, 27, o3, 43, 88, 8, 38, 91, 47, 74, 18, 1o,
29, 21, o0, 27, 62, 59, 86, 50]

reduce (lambda x, v : x + y, nums) / len (nums)

23

