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Abstract 16 

The invasive fruit fly Bactrocera invadens Drew, Tsuruta & White, and the Oriental fruit fly 17 

Bactrocera dorsalis (Hendel) are highly destructive horticultural pests of global significance. 18 

Bactrocera invadens originates from the Indian subcontinent and has recently invaded all of sub-19 

Saharan Africa, while B. dorsalis principally occurs from the Indian subcontinent toward southern 20 

China and Southeast Asia. High morphological and genetic similarity has cast doubt over whether B. 21 

invadens is a distinct species from B. dorsalis. Addressing this issue within an integrative taxonomic 22 

framework, we sampled from across the geographic distribution of both taxa and: (i) analysed 23 

morphological variation, including those characters considered diagnostic (scutum colour, length of 24 

aedeagus, width of post-sutural lateral vittae, wing size, and wing shape); (ii) sequenced four loci 25 

(ITS1, ITS2, cox1, and nad4) for phylogenetic inference; and (iii) generated a cox1 haplotype network 26 

to examine population structure. Molecular analyses included the closely related species, Bactrocera 27 

kandiensis Drew & Hancock. Scutum colour varies from red-brown to fully black for individuals from 28 

Africa and the Indian subcontinent. All individuals east of the Indian subcontinent are black except 29 

for a few red-brown individuals from China. The post-sutural lateral vittae width of B. invadens is 30 

narrower than B. dorsalis from eastern Asia, but the variation is clinal with sub-continent B. dorsalis 31 

populations intermediate in size. Aedeagus length, wing shape, and wing size cannot discriminate the 32 

two taxa. Phylogenetic analyses failed to resolve B. invadens from B. dorsalis, but did resolve B. 33 

kandiensis. Bactrocera dorsalis and B. invadens shared cox1 haplotypes, yet the haplotype network 34 

pattern does not reflect current taxonomy or patterns in thoracic colour. Some individuals of B. 35 

dorsalis/B. invadens possessed haplotypes more closely related to B. kandiensis than to conspecifics, 36 

suggestive of mitochondrial introgression between these species. The combined evidence fails to 37 

support the delimitation of B. dorsalis and B. invadens as separate biological species. Consequently, 38 

existing biological data for B. dorsalis may be applied to the invasive population in Africa. Our 39 

recommendation, in line with other recent publications, is that B. invadens be synonymised with B. 40 

dorsalis.   41 
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Background 42 

Fruit flies of the sub-family Dacinae (Diptera: Tephritidae) include some of the world’s most 43 

important horticultural pests (White & Elson-Harris, 1992). Within Dacinae, species of the genus 44 

Bactrocera Macquart (Drew & Hancock, 2000) have diversified prolifically in the Southeast Asian 45 

and Pacific regions over the last 40 million years (Drew & Hancock, 2000; Krosch et al., 2012). To 46 

differentiate diversity in this species-rich genus, it has been divided taxonomically into 22 subgenera 47 

and over 20 species complexes (informal species groups within subgenera) (Drew, 1989). The best 48 

known is the Oriental Fruit Fly, Bactrocera (Bactrocera) dorsalis (Hendel) complex, because it 49 

includes the most widely distributed and damaging pest species in the genus (Drew, 1989; Clarke et 50 

al., 2005).  51 

The B. dorsalis species complex (hereafter the ‘dorsalis complex’) contains over 100 taxa that share a 52 

defined set of morphological characters, principally a mostly black scutum and  abdominal terga III-V 53 

with a medial longitudinal dark band and variable dark patterns on the lateral margins (Drew & 54 

Hancock, 1994; Drew & Romig, 2013). While most members of the complex are readily identifiable 55 

and of little to no economic importance, the recently described B. invadens Drew, Tsuruta & White is 56 

morphologically very similar to B. dorsalis, and with similar economic pest status. This species was 57 

first detected in Africa in 2003 and has since become a destructive and highly invasive member of the 58 

complex, attacking over 40 fruit species and recorded from more than 30 African countries (Lux et 59 

al., 2003; Goergen et al., 2011; Khamis et al., 2012). 60 

When first reported in Kenya, B. invadens was considered an “unusually variable” invasive 61 

population of B. dorsalis (Lux et al., 2003: p. 358). These flies were initially identified as B. dorsalis 62 

because they were collected in methyl eugenol baited traps (no other African tephritid was known to 63 

respond to methyl eugenol) and they possessed morphological characters consistent with B. dorsalis 64 

(Lux et al., 2003). The African fly was considered a new species and named B. invadens following 65 

examination of specimens of the same B. dorsalis-like species from Sri Lanka, the purported native 66 

range (Drew et al., 2005; Drew et al., 2007). According to the formal taxonomic description by Drew 67 
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et al. (2005) and a recent major revision of tropical fruit flies by Drew & Romig (2013), B. invadens 68 

is distinguished from B. dorsalis by: 1) a mostly dark orange-brown scutum with a dark fuscous to 69 

black lanceolate pattern, 2) a longer aedeagus, 3) a scutum with narrower postsutural vittae, 4) a dark 70 

transverse band on the abdominal tergite III which broadly reaches tergite IV, and 5) a dark 71 

antereolateral marking on abdominal tergite V extended mesally. The abdominal characters are not 72 

referred to in Drew & Romig (2013), with scutum colour, aedeagus length, and postsutural lateral 73 

vittae the only diagnostic features provided. These morphological characters are, however, 74 

sufficiently variable to render some individuals of B. invadens virtually inseparable from B. dorsalis 75 

(Drew et al., 2005). The question therefore remains: how reliable are diagnostic characters of B. 76 

invadens in distinguishing it from B. dorsalis? And if not, is B. invadens a distinct species? 77 

Due to its economic impact, most studies on B. invadens have an applied focus on host use, 78 

seasonality and invasion dynamics (Mwatawala et al., 2006; Ekesi et al., 2007; Rwomushana et al., 79 

2008; Khamis et al., 2009; De Meyer et al., 2010), temporal occurrence and comparative 80 

demographic parameters (Vayssières et al., 2005; Salum et al., 2014), interactions with other fruit fly 81 

species and their parasitoids (Mohamed et al., 2008; Ekesi et al., 2009; Rwomushana et al., 2009; 82 

Van Mele et al., 2009), and the development of market access protocols (Grout et al., 2011; Hallman 83 

et al., 2011). These considerable research efforts are based on the assumption that B. invadens is a 84 

biologically distinct species from B. dorsalis, a fundamental issue which is receiving increased 85 

attention. If B. invadens and B. dorsalis are the same species, the considerable existing regulatory 86 

arrangements and literature on B. dorsalis may be applied to the invasive population in Africa.  87 

Of those studies investigating the biological relationship between B. invadens and B. dorsalis, results 88 

show that: 1) aedeagi of B. invadens from Sri Lanka are significantly longer than those of B. dorsalis 89 

from Taiwan (Drew et al., 2008), 2) male pheromone constituents following methyl eugenol feeding 90 

between B. dorsalis and B. invadens are identical (Tan et al., 2011), 3) there exists extremely low 91 

wing-morphometric differences between these two species together with the lowest estimate of 92 

evolutionary divergence between B. dorsalis and B. invadens following mitochondrial DNA analysis 93 

among multiple taxa (including Bactrocera kandiensis Drew & Hancock, another dorsalis-complex 94 
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species) (Khamis et al., 2012), 4) molecular analyses across a range of tephritid taxa have found no 95 

significant genetic differentiation between B. invadens and B. dorsalis (Frey et al., 2013; Leblanc et 96 

al. 2013; San Jose et al. 2013), and 5) B. invadens and B. dorsalis are fully sexually compatible as 97 

demonstrated by random mating and viable offspring to the second hybrid generation (Bo et al., 98 

2014). Despite mounting evidence supporting their conspecificity, a recent major revision of South-99 

east Asian fruit flies maintains B. invadens as a valid species which is no longer considered a member 100 

of the dorsalis complex (Drew & Romig, 2013).  101 

Given that morphological characters based on a limited amount of material collected from Africa 102 

(Kenya, Benin, Cameroon, and Uganda) and Sri Lanka (Asia) were the only features used to 103 

originally separate B. invadens from B. dorsalis (Drew et al., 2005), we re-examined purportedly 104 

diagnostic characters of both taxa from across a much wider geographic range to determine if 105 

variation was indeed discontinuous and supportive of two biologically distinct species or in fact 106 

continuous and supportive of a single morphologically variable species. We therefore focussed on the 107 

characters previously used to differentiate the two putative species most recently by Drew & Romig 108 

(2013) (i.e., scutum colour, width of postsutural lateral vittae, and aedeagus length). Additionally, we 109 

applied geometric morphometric wing shape analysis due to its demonstrated capacity in resolving 110 

fine-scale variation between real and putative cryptic insect taxa, as well as intraspecific population 111 

structure (Aytekin et al., 2007; Schutze et al., 2012b; Krosch et al., 2013). 112 

We generated genetic datasets in addition to morphological and morphometric analyses, because 113 

morphologically identical populations may consist of multiple cryptic biological species (Bickford et 114 

al., 2007). Using two nuclear and two mitochondrial loci, which have proven discriminatory power 115 

for cryptic taxa within the dorsalis complex (Boykin et al., 2014), we carried out Bayesian and 116 

Maximum Likelihood phylogenetic analyses to test if samples of B. invadens and B. dorsalis form 117 

distinct and well supported clades as predicted for two species, or if individuals of B. invadens emerge 118 

unresolved within a larger B. dorsalis clade as predicted for one species. Moreover, we used one 119 

mtDNA locus (cox1) to construct a minimum spanning haplotype network; this form of analysis is 120 

well suited to inferring intraspecific relationships (Bandelt et al., 1999). Wherever possible, we used 121 
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the same individuals as for morphological analysis to strengthen conclusions drawn within an 122 

integrative taxonomic framework (Schlick-Steiner et al., 2010; Yeates et al., 2011). 123 

Samples of Bactrocera papayae Drew & Hancock from our previous work on the dorsalis complex 124 

from the Indo/Malay Archipelago (Schutze et al., 2012b; Krosch et al., 2013) were included in 125 

analyses due to considerable evidence that B. papayae is the same biological species as B. dorsalis 126 

(Perkins et al., 1990; Medina et al., 1998; Tan, 2003; Mahmood, 2004); hence inclusion of this 127 

material in a geographically wide-ranging study involving B. dorsalis is justified. We interpret our 128 

results in the context of the unified species concept (sensu de Queiroz, 2007), for which no single 129 

species character (e.g., mate compatibility, genetic divergence, or morphological difference) is relied 130 

upon for their delimitation; rather, multiple lines of data are independently analysed to evaluate 131 

evidence for, or against, separately evolving metapopulation lineages. We discuss our findings within 132 

the context of the taxonomic history of B. dorsalis, particularly the relationship between these taxa 133 

and Dacus ferrugineus Fabricius, a species described in the late 18
th
 Century and a junior synonym of 134 

B. dorsalis. 135 

Materials and methods 136 

Specimens 137 

Twenty individuals from each of 13 locations were examined for morphological variation (n = 260). 138 

Of these, 200 were newly acquired for this study (Table 1) and combined with 60 specimens from 139 

Thailand, Taiwan, and Malaysia that were part of previous studies (Schutze et al., 2012b; Krosch et 140 

al., 2013). Molecular analyses included 94 newly acquired specimens (Table 1) which were combined 141 

with 312 individuals from Taiwan, Thailand, Philippines, Indonesia, and Malaysia which formed the 142 

study of Boykin et al. (2014). Males were used for all analyses because they are readily caught using 143 

lure-traps to which females do not respond. All voucher specimens are at the Queensland University 144 

of Technology, Brisbane, Australia. 145 

African samples were collected from Benin, the Democratic Republic of Congo, Mozambique, Sudan, 146 

and Kenya. Specimens from all locations except Kenya were collected from the wild between 2005 147 
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and 2011 using methyl eugenol traps (Table 1) and supplied via Marc De Meyer of the Royal 148 

Museum for Central Africa, Tervuren, Belgium. Kenyan samples were sourced from a third-149 

generation laboratory colony maintained at the UN/FAO-International Atomic Energy Agency 150 

(IAEA) Insect Pest Control Laboratory (IPCL) (Seibersdorf, Austria), initiated in March 2012.  151 

Indian subcontinent samples were collected from Pakistan, Nepal, India, and Sri Lanka. Specimens 152 

from all locations except Dahanu (India) were methyl eugenol trap-collected from the wild between 153 

1992 and 2012 (Table 1). Samples from Dahanu were sourced from a first-generation laboratory 154 

colony maintained at the IAEA-IPCL, having been reared from wild-infested Musa sp. (banana) 155 

collected in November 2012. Twenty individuals from each location were screened for each 156 

morphological analysis whereas ten individuals per location were included for molecular analysis 157 

(although not all individuals amplified for all loci). With respect to Indian samples, only individuals 158 

from Dahanu were used in molecular analyses because we were unable to amplify DNA from 159 

Bangalore material due to its age (1992; pinned loan material from the British Museum of Natural 160 

History BMNH, London, U.K.). Bangalore specimens were used for wing-shape analysis as the wings 161 

of specimens from Dahanu were too badly damaged. Remaining morphological analyses (aedeagus 162 

and lateral vittae morphometrics and scutum colour variation) were conducted on Dahanu material. 163 

East Asian samples were from China, Thailand, Peninsular Malaysia, Taiwan, Indonesia and the 164 

Philippines. Specimens from Taiwan, Thailand, and Malaysia were used in comparative 165 

morphological analyses; specimens from all locations were used in molecular analyses. Further, 166 

specimens from Malaysia, Thailand, Indonesia, and the Philippines included individuals traditionally 167 

classified as B. papayae and Bactrocera philippinensis Drew & Hancock. However, as B. 168 

philippinensis has been synonymised with B. papayae (Drew & Romig, 2013) and there is now 169 

considerable evidence that these two species are synonymous with B. dorsalis, we deemed it 170 

appropriate to include them here as part of the wider study. All East Asian specimens were collected 171 

from the wild into methyl eugenol traps between 2009 and 2012. 172 
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We included other species from both within and outside the B. dorsalis complex as part of our 173 

molecular analysis. Those in the complex included Bactrocera carambolae Drew & Hancock (n = 174 

61), B. kandiensis (n = 9), Bactrocera opiliae (Drew & Hardy) (n = 19), Bactrocera cacuminata 175 

(Hering) (n = 19) and Bactrocera occipitalis (Bezzi) (n = 22); those from outside the complex were 176 

Bactrocera musae (Tryon) (n = 20) and Bactrocera tryoni (Froggatt) (n = 9). All sequences used for 177 

molecular analysis, except B. kandiensis, had been acquired in the earlier study of Boykin et al. 178 

(2014) with collection data reported therein. We analysed eight specimens of B. kandiensis which 179 

were collected into methyl eugenol traps in Sri Lanka (caught May 2007). Note that B. kandiensis is 180 

only included in the molecular analysis as too few samples were obtained for morphological analysis. 181 

Morphology and morphometrics 182 

Four morphological features were examined as part of this study: scutum colour variation, post-183 

sutural lateral vittae, aedeagus length, and wing size and shape. While abdominal colour pattern is 184 

listed as differing between B. dorsalis and B. invadens, we did not include it as part of our study as it 185 

was too variable. Only specimens identified as B. dorsalis or B. invadens were included for analysis 186 

(i.e., no outgroups), of which we examined twenty individuals for each morphological feature from all 187 

new locations (except Myanmar and Yunnan, China) in addition to three locations included in a 188 

previous examination of B. dorsalis: Taiwan, Thailand, and Malaysia. We excluded specimens from 189 

Myanmar and Yunnan because all individuals died as teneral adults and were unsuitable for 190 

morphological analysis.  191 

Scutum: Scutum colour is a continuous variable and defining variants is largely arbitrary. However, in 192 

an attempt to document variation across the geographic range, we divided scutum colour into one of 193 

three types based on figure 4 in Drew et al. (2005): pale, intermediate, or dark. Pale forms were 194 

entirely pale-brown or with negligible black colouration (< 10% of the scutum with black markings; 195 

see the first two images of fig. 4 in Drew et al., 2005); intermediate forms possessed a weak to strong 196 

black lanceolate pattern on an otherwise pale-brown scutum (see images 3–6 in fig. 4 of Drew et al., 197 

2005); and dark forms had entirely, or almost entirely, black scutums whereby the lanceolate pattern 198 
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was no longer discernable (> 80% of the scutum is black, see images 7-8 in fig. 4 Drew et al., 2005). 199 

This character was not subjected to statistical analysis due to the subjective nature of categorising 200 

scutum colour. Instead, the three colour forms are simply presented graphically as frequency charts. 201 

Post-sutural lateral vittae: Measurements of post-sutural vittae width were made at the widest point 202 

of the vittae using an eye-piece micrometer mounted into a Leica MZ6 stereo-microscope. Analysis of 203 

variance with post hoc Tukey test was used to assess for significant differences among sample sites. 204 

Aedeagus: Abdomens were removed and immersed in 10% KOH solution overnight to soften the 205 

integument prior to dissection. Each aedeagus was excised from remaining genitalic structures, fully 206 

straightened out on a microscope slide and measured as for vittae. Aedeagus length was measured 207 

from the base of the aedeagus to the start of (and excluding) the distiphallus, following Krosch et al. 208 

(2013). Analysis of variance with post hoc Tukey test was used to assess for significant differences 209 

among sample sites. 210 

Wing shape: One wing from each fly was removed for slide mounting, image capture, and analysis. 211 

Usually the right wing was dissected; if damaged, the left was used (~4% of specimens across the 212 

total dataset). Wings were mounted in Canada balsam and air-dried prior to image capture using an 213 

AnMo Dino-Eye microscope eye-piece camera (model # AM423B) mounted into a Leica MZ6 stereo-214 

microscope. Fifteen wing landmarks were selected followed Schutze et al. (2012a) and using the 215 

computer program tpsDIG2 v.2.16 (Rohlf, 2010). 216 

Landmark coordinate data were imported into the computer program MorphoJ v.1.04a (Klingenberg, 217 

2011) for shape analysis. Data were subjected to Procrustes superimposition to remove all but shape 218 

variation (Rohlf, 1999). Multivariate regression of the dependant wing-shape variable against centroid 219 

size (independent variable; see below) was conducted to assess the effect of wing size on wing shape 220 

(i.e., allometry) (Drake & Klingenberg, 2008; Schutze et al., 2012a). The statistical significance of 221 

this regression was tested by permutation tests (10,000 replicates) against the null hypothesis of 222 

independence (MorphoJ v.1.04a). Subsequent analyses were undertaken in MorphoJ v.1.04a using the 223 
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residual components as determined from the regression of shape on centroid size to correct for 224 

allometric effect. 225 

The size of each wing (centroid size) was calculated in MorphoJ v.1.04a. Centroid size is an isometric 226 

estimator of size calculated as the square root of the summed distances of each landmark from the 227 

centre of the landmark configuration (see fig. 1.10 in Zeldich et al., 2004). Analysis of variance with 228 

post hoc Tukey test was used to assess for significant differences among sample sites. 229 

Canonical variate analysis (CVA) on wing shape data was undertaken on 13 a priori groups based on 230 

collection location. Significant differences were determined via permutation tests (1000 permutation 231 

rounds) for Mahalanobis distances among groups (α = 0.05; Bonferroni corrected). We also tested for 232 

isolation by distance (IBD) (Wright, 1943), whereby we conducted a subset CVA using only 233 

individuals from the native range of B. dorsalis and B. invadens (i.e., all Asian and Indian 234 

subcontinent samples to the exclusion of invasive African samples) upon which we undertook 235 

regression analysis (SPSS v.21) on pair-wise geographic distance (km) vs. Mahalanobis distances 236 

calculated from CVA. We did this because B. dorsalis has demonstrated a strong IBD effect with 237 

respect to wing shape variation within a biogeographical context in Southeast Asia (Schutze et al., 238 

2012b). African samples were excluded from this analysis because they are a recent invasive 239 

population (detected in 2003) and hence geographic distance would be artificially inflated with 240 

respect to any differences in wing shape. 241 

Molecular analysis 242 

DNA extraction and PCR: Total genomic DNA was extracted from 8–14 individuals from each of the 243 

sampled locations using the Bioline Isolate II extraction kit with minor modifications. The 244 

modifications involved a pre-crushing step where three legs from each individual were placed in lysis 245 

buffer and crushed using either a micro-pestle or three mm ball bearings using a Qiagen mixer mill.  246 

Four gene fragments were amplified for the molecular component of this study, which consisted of 247 

two nuclear (ITS 1 and 2) and two mitochondrial loci (cox1 and nad4). Primer sequences for ITS1 and 248 

ITS2 are as per Boykin et al. (2014), cox1 as per Folmer et al. (1994) and nad4 are Teph_ND4F2 (5’-249 
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WCC WAA RGC TCA TGT WGA AGC TCC-3’) and Teph_ND4R2 (5’-WCC CCC TCT AAA 250 

TGA ATA AAY WCC-3’). Note, the same nad4 region was amplified in the present study as in 251 

Boykin et al. (2014); however, the primers reported in Boykin et al. (2014) are incorrect. Each PCR 252 

reaction contained 2.5 µL of template DNA, 1 x MyTAQ PCR buffer (Bioline), 0.5 Units of MyTAQ 253 

polymerase and 2.5 mM MgCl2, in a total reaction volume of 25 µL. PCR cycling conditions 254 

consisted of an initial denaturation step for three minutes at 94°C, followed by 25–30 cycles of 94°C 255 

for 30 seconds, 47–52°C for 30 seconds and 72°C for 30 seconds, and a final extension at 72°C for 256 

five minutes. PCR products for each gene fragment were purified using a Bioline Isolate PCR 257 

purification kit. Cycle sequencing of purified PCR products were conducted using ABI Big Dye® 258 

Terminator v.3.1 chemistry. Following a standard isopropanol precipitation clean-up, fragments were 259 

sequenced on an ABI 3500 genetic analyser. Trace files were corrected and contigs formed using 260 

Sequencher ver. 5.0 (GeneCodes Corporation, 2004).  261 

Phylogenetic Methods: Individual sequences for each of the four loci were aligned in MEGA 5.2.2 262 

(Tamura et al., 2011). Alignments of cox1 and nad4 were trivial as no indels were found in this study; 263 

ITS1 and ITS2 were aligned by eye (alignments available from the authors upon request). Individual 264 

alignments were concatenated in MEGA and partitioned by codon position for protein-coding genes 265 

or loci for ribosomal RNA genes. Evolutionary models were inferred for each partition using 266 

ModelTest ver 3.6 (Posada & Crandall, 1998) ) (ITS1: HKY+G; ITS2: GTR+I+G; cox1-1
st
: GTR-I; 267 

cox1-2
nd

: F81; cox1-3
rd

: GTR; nad4-1
st
: GTR+G; nad4-2

nd
: GTR; nad4-3

rd
: HKY). Phylogenetic 268 

analyses were run using likelihood and Bayesian inference methods. Likelihood analyses used the 269 

RAxML Blackbox webserver (http://phylobench.vital-it.ch/raxml-bb/index.php) (Stamatakis et al., 270 

2008), using separate partitions, a gamma model of rate heterogenetic, estimated proportions of 271 

invariant sites, and branch-lengths optimised on a per locus basis. Bayesian analyses used MrBayes 272 

ver 3.2 (Ronquist et al., 2012) using unlinked partitions, two independent runs each with three hot and 273 

one cold chains, for 10 million generations. Convergence between runs was monitored within 274 

MrBayes (standard deviation of split frequencies <0.001) and in Tracer v1.5.4 (Rambaut & 275 

Drummond, 2010). Two parallel datasets were analysed, one composed of all specimens for which at 276 

http://phylobench.vital-it.ch/raxml-bb/index.php
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least two of the four loci had been sequenced (Dataset #1, 406 specimens) and one in which all 277 

specimens had been sequenced for all four loci (Dataset #2, 293 specimens). Our previous analyses of 278 

B. dorsalis group flies (Boykin et al., 2014) has shown that phylogenetic analyses is robust to such 279 

missing data for this gene set.  280 

A haplotype network using cox1 data was constructed using the median-joining method followed by 281 

maximum parsimony post-processing in Network Version 4.6.1.1 (Bandelt et al., 1999). This allows 282 

evolutionary relationships among individuals to be inferred under a statistical framework that does not 283 

force bifurcation and was thus compared with relationships resolved using phylogenetic methods. 284 

Results 285 

Morphology and morphometrics 286 

Scutum colour variation: All three colour variants were observed for flies collected from sites across 287 

Africa and the Indian subcontinent, albeit with varying relative proportions (Fig. 1). For instance, 288 

most individuals from Benin, India, and Nepal had black scutums, whereas most Sri Lankan and 289 

Congolese flies had intermediate scutums (black lanceolate pattern). Pale forms were the least 290 

frequently observed form, except for the Kenyan sample; however, note that these flies were taken 291 

from a laboratory colony. 292 

All east-Asian flies (with one exception) possessed predominantly black scutums with no pale or 293 

intermediate forms present. The one exception was the sample from Wuhan for which two flies (out 294 

of 20 screened) had a pale scutum. While not examined here, all specimens of B. dorsalis collected 295 

from further along the Indo-Malay Archipelago and into the Philippines previously examined by the 296 

authors possessed a fully black scutum.  297 

Post-sutural lateral vittae: Post-sutural lateral vittae of African B. invadens specimens ranged from 298 

0.13 – 0.21 mm, B. dorsalis and B. invadens from the Indian subcontinent ranged from 0.13 – 0.22 299 

mm, and B. dorsalis from eastern Asia ranged from 0.15 – 0.23 mm. Post-sutural lateral vittae width 300 

varied significantly across sample sites (F12,247 = 10.76, P < 0.001; Fig. 2A) with no significant 301 
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differences among flies from Africa, Pakistan, India, and Sri Lanka; flies from these locations had the 302 

narrowest vittae, ranging from an average width of 0.16 mm (Benin) to 0.17 mm (Pakistan). Nepalese 303 

flies had significantly wider lateral vittae (mean width = 0.18 mm) than flies from some African 304 

locations (Benin, D.R. Congo, and Kenya) and Sri Lanka; however, they did not differ from 305 

Mozambican, Sudanese, Indian, or Pakistani samples. The widest vittae belonged to individuals from 306 

all east-Asian locations (Thailand, Taiwan, Malaysia, and China; ranging from an average of 0.19 – 307 

0.20 mm for Thai and Chinese flies, respectively) and males from these sites differed significantly 308 

from those from every other location in Africa and the Indian subcontinent (except for Nepal and 309 

Pakistan). 310 

 Aedeagus: While similar to the vittae analysis, in that there was a significant difference among 311 

populations for aedeagus length (F12,247 = 15.45, P < 0.001), there was no west-to-east trend from 312 

Africa to eastern Asia for aedeagus length (Fig. 2B). Aedeagi from African B. invadens specimens 313 

ranged from 2.41 – 2.97 mm, B. dorsalis and B. invadens from the Indian subcontinent ranged from 314 

2.38 – 2.91 mm, and B. dorsalis from eastern Asia ranged from 2.35 – 3.00 mm. Significant aedeagus 315 

length variation was observed within Africa; for example, Congolese males had significantly shorter 316 

aedeagi (average of 2.64 mm) compared to Mozambican or Kenyan colony flies (2.71 mm and 2.76 317 

mm, respectively). Furthermore, there was significant variation in aedeagus length among samples 318 

from eastern Asia: Malaysian aedeagi were significantly longer (above 2.8 mm long) compared to 319 

those from other locations in the region (all under 2.8 mm long). Only males from the Indian 320 

subcontinent possessed aedeagi of statistically similar lengths among all locations from within the 321 

region; there were varying levels of overlap in aedeagus length among populations from this region 322 

and those from Africa and eastern Asia. 323 

Wing shape: Wing centroid size significantly varied among sampled populations (F12,247 = 5.013, P < 324 

0.001) and there was a significant allometric effect (4.09%; P < 0.0001). While there were differences 325 

in wing size among locations, there was no longitudinal trend from Africa to eastern Asia as observed 326 

for vittae (Fig. 2C). Similar to the aedeagus analysis, we found significant variation among samples 327 
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from Africa and eastern Asia, respectively, whereas all samples from the Indian subcontinent did not 328 

significantly vary from each other.  329 

Congolese wings were the smallest of all African locations (average centroid size of 6.06) and they 330 

were significantly different from Kenyan and Mozambican flies that possessed the largest wings 331 

(average centroid sizes of 6.49 and 6.61, respectively). Sudanese and Beninese flies had wings that 332 

were not significantly different from any other African location or from each other (average centroid 333 

sizes of 6.39 and 6.35, respectively). There was significant variation in the east-Asian samples, with 334 

the smallest wings belonging to Malaysian flies (average centroid size of 5.96; the smallest wings of 335 

the entire dataset) which were significantly different from Taiwanese and Chinese flies (average 336 

centroid sizes of 6.40 and 6.46, respectively). Contrary to African and east-Asian samples, all wings 337 

sampled from the Indian subcontinent were not significantly different from each other with respect to 338 

size; ranging from an average centroid size of 6.34 (Nepalese wings) to 6.48 (Indian wings).  339 

Canonical variate analysis following correction for allometric effect (due to the significant result 340 

reported above) produced 12 canonical variates of which the first two explained 63% of the variation 341 

(Fig. 3). Group Mahalanobis distances were significantly different for all comparisons except among 342 

the following locations: i) Sudan, Benin, and the Democratic Republic of the Congo and ii) Nepal and 343 

Pakistan. All African groups were closest neighbours except for Kenya, which separated in 344 

multidimensional space from other African samples relative to both Pakistan and Nepal (i.e., Pakistani 345 

and Nepalese wings were more similar in shape to Sudanese, Congolese, Beninese, and Mozambican 346 

wings than Kenya was to any of the other African locations). The remaining Indian subcontinent 347 

groups (India and Sri Lanka) were relatively different from both African samples and those from the 348 

northern Indian subcontinent (i.e., Pakistan and Nepal). Further, despite their relative geographic 349 

proximity, wings from Indian flies were considerably different to Sri Lankan wings. Malaysian, 350 

Taiwanese and Thai wings were more similar in shape to wings from Pakistan and Nepal than those 351 

from India or Sri Lanka. Chinese wings were highly similar in shape to those from the southern Indian 352 

subcontinent, particularly Sri Lanka (Mahalanobis distance between China and Sri Lanka = 2.51). 353 
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Canonical variate analysis on Asian samples (i.e., excluding Africa) was conducted on eight a priori 354 

defined groups: Pakistan, Nepal, India, Sri Lanka, Thailand, Wuhan, Taiwan, and Malaysia, resulting 355 

in seven canonical variates of which the first two explained 74% of the variation. There was no 356 

significant association between Mahalanobis distance and geographic distance (r
2
 = 0.001; P = 0.850; 357 

Fig. 4). 358 

Molecular analysis 359 

Phylogenetics: New sequences were generated for up to four loci per specimen  and combined with 360 

sequences from a previous study (Boykin et al., 2014) for phylogenetic analyses (GenBank accession 361 

numbers JX099580-JX099755; KC446030-KC447278; KM 453245- KM453574; see Table S1). 362 

Bayesian and Maximum likelihood analyses for both Dataset #1 (two out of the four loci analysed, 363 

406 individuals) and Dataset #2 (all four loci, 293 individuals) yielded similar phylogenetic 364 

topologies; albeit with varying levels of nodal support with highest values generally obtained for the 365 

Bayesian analysis using Dataset #1 (Fig. 5). All outgroups were well resolved, including B. 366 

carambolae recovered as sister to the larger B. dorsalis clade. The ingroup clade contained previously 367 

sequenced data for B. dorsalis, B. papayae and B. philippinensis from Southeast Asia (collectively 368 

termed ‘B. dorsalis s.l.’) (Boykin et al., 2014), in addition to de novo data from individuals obtained 369 

from the expanded range of east Asia (B. dorsalis), the Indian subcontinent (B. dorsalis, B. invadens, 370 

and B. kandiensis) and Africa (B. invadens). Specimens of B. dorsalis additional to the study of 371 

Boykin et al. (2014) were from Myanmar, China (Wuhan and Yunnan), India, Nepal, and Pakistan. 372 

All newly included B. dorsalis and African specimens of B. invadens fell within the broader B. 373 

dorsalis clade with no evidence of statistically supported subclades. All African B. invadens 374 

specimens were either completely unresolved within the broader B. dorsalis clade or emerged as two 375 

weakly supported clades that included individuals from across all African countries sampled and 376 

representing the range of scutum colour variation (see Suppl. Figs 1 and 2). The same was true for Sri 377 

Lankan B. invadens specimens which were either fully unresolved within the B. dorsalis clade or 378 

formed small, poorly supported groups nested within the larger clade. Scutum colour (i.e., red-brown, 379 

black, or intermediate) did not align with the phylogeny in any consistent pattern (Fig. 5 inset). 380 
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Bactrocera kandiensis is the only subclade within B. dorsalis s.l. with significant nodal support (Fig. 381 

5). This was driven by a unique indel pattern present in the ITS1 locus which, while diagnostic, is 382 

shorter than the indel that which occurs in the same locus in B. carambolae (Boykin et al., 2014). 383 

Further, some specimens of B. dorsalis possessed cox1 haplotypes more closely related to B. 384 

kandiensis than other B. dorsalis haplotypes; these included five specimens from Sri Lanka (Bd1561-385 

1564 and Bd1566), two from Myanmar (Bd1580 and Bd1582) and seven from India (Bd1691-1697). 386 

As these specimens did not possess the ‘B. kandiensis ITS1 indel’, they resolved with the remainder 387 

of B. dorsalis in multi-locus analyses. 388 

The median-joining network largely conformed to that presented in Schutze et al. (2012b) that 389 

comprised east Asian B. dorsalis s.l. haplotypes, with new sequences from this paper placed 390 

throughout (Fig. 6). The central starburst-like pattern remained, with numerous singletons radiating 391 

from a common, widespread haplotype. Individuals of B. kandiensis formed a divergent and diverse 392 

cluster and were connected to the network by a very long branch, demonstrating that the position of 393 

this taxon in the multilocus phylogeny is not driven solely by ITS1 indel patterns. Within the B. 394 

kandiensis cluster were several haplotypes from B. dorsalis flies from Sri Lanka, India, and Myanmar; 395 

although, no haplotypes were shared between B. dorsalis and B. kandiensis flies. There was no 396 

apparent separation of haplotypes from flies identified morphologically as B. invadens or B. dorsalis; 397 

haplotypes of these two taxa generally were scattered throughout the network. Indeed, four cox1 398 

haplotypes were shared between the two taxa; one sampled from Nepal and Thailand populations, one 399 

from Sudan and Thailand, one from Taiwan, Malaysia, Nepal, and Pakistan and the common 400 

widespread haplotype sampled from all locations except Benin, Mozambique, Kenya, and Sudan 401 

(Suppl. Fig. 3). Likewise, there was no clear geographical pattern in the network, although there were 402 

few haplotypes shared among individuals from broadly different regions. No clustering of haplotypes 403 

was apparent for individuals with different scutum colours (Suppl. Fig. 2). Five haplotypes were 404 

shared by individuals that differed at this trait (often the same haplotype was shared among sites 405 

and/or among B. dorsalis and B. invadens flies).   406 
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Discussion 407 

The interpretation of our combined results strongly suggests that B. dorsalis and B. invadens are one 408 

biological species. Genetic data, both at the multi-locus and haplotype levels, fail to show evidence of 409 

distinct clades or unique haplotypes, respectively, consistent with the presence of two species as 410 

reported in other studies (Khamis et al., 2012; Frey et al., 2013; San Jose et al., 2013). Examination of 411 

morphology shows a great deal of variation among populations, some with apparent geographic 412 

structuring that relates to current taxonomy (especially scutum colour), but with other traits showing 413 

no such structure; in all cases the patterns in morphology do not align with any apparent genetic 414 

variation. To place our results within the broader context of B. dorsalis taxonomy and species 415 

delimitation over the centuries, a brief summary of the confusing taxonomic history of B. dorsalis is 416 

provided. 417 

Taxonomic history of Bactrocera dorsalis 418 

The species now known as B. dorsalis was first described by Fabricius in the late 18
th
 Century as a 419 

rust-red coloured fly from ‘India Orientali’ under the name Musca ferruginea (Fabricius, 1794). Note 420 

that whilst India Orientali can be interpreted as the East Indies (Pont, 1995), the type specimen 421 

described by Fabricius is considered to be from East India (Drew & Romig, 2013). Further, treatments 422 

of other Fabrician collections, e.g., hymenopterans (van der Vecht, 1961), state that India Orientali 423 

usually refers to India, rather than other parts of Southeast Asia (e.g., Indonesia). Fabricius (1805) 424 

subsequently transferred this species to the genus Dacus Fabricius, a combination that persisted until 425 

the 20
th
 Century. In the early part of the 1900s, however, the morphological variability of D. 426 

ferrugineus was noted by Froggatt (1910), specifically the scutum colour which ranged from black to 427 

rust-red. The black scutum variety was soon described by Hendel (1912) as a new species, D. dorsalis 428 

Hendel, following examination of specimens from Formosa (= Taiwan) and with a black scutum the 429 

chief discriminatory character separating it from D. ferrugineus (which possessed a red-brown 430 

scutum). 431 

Nevertheless, the view of the ‘Formosan type’ as a distinct species was not universally accepted, with 432 

studies over the next 50 years regarding D. dorsalis as either a species in its own right (Perkins, 1938) 433 
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or simply a dark variety of D. ferrugineus (Bezzi, 1916; Miyake, 1919; Shiraki, 1933; Munro, 1939). 434 

Critically, Hendel himself accepted that D. dorsalis represented a black variety of D. ferrugineus and, 435 

after examining more specimens, explicitly stated that specimens from Taiwan corresponded with the 436 

Fabrician description (Hendel, 1915). Munro (1939) found north-west Indian specimens to exhibit a 437 

full range of thoracic colour forms (from pale, through intermediates, to dark) with no additional 438 

structural characters present to further distinguish any of these forms from each other, leading him to 439 

conclude they all belonged to the same species. 440 

In the late 1960s, Hawaiian taxonomist D.E. Hardy undertook a revision of what was, by then, 441 

commonly known as the ‘Oriental Fruit Fly’ (Hardy, 1969). The key outcomes of this revision were 442 

the following: i) the species name ferrugineus was invalid as it was preoccupied by another fly 443 

described by Scopoli (1763); ii) the only valid name available for the Fabrician species was Hendel’s 444 

D. dorsalis; iii) that D. ferrugineus must therefore become a junior synonym of D. dorsalis; iv) that 445 

individuals of this species with a red-brown scutum colour were teneral adults yet to develop their 446 

final black-scutum colouration; v) D. dorsalis was characterised as possessing only a black (or mostly 447 

black) scutum; and finally, vi) a number of closely-related species existed which were to be placed in 448 

the newly formed, 16 member, D. dorsalis species complex. It was at this critical point that red-brown 449 

scutum forms were subsumed in subsequent treatments of D. dorsalis, including in major revisions 450 

towards the end of the 20
th
 Century by which time D. dorsalis had been reassigned to genus 451 

Bactrocera and the complex expanded to more than 70 species with a black, or mostly black, scutum 452 

one of their defining characters (Drew, 1989; Drew & Hancock, 1994; Drew & Romig, 2013). 453 

Importantly, Hardy’s (1969) revision referred to previous work which detailed the range of colour 454 

forms, such as the Indian study by Munro (1939); however, Hardy specifically noted that Munro 455 

examined a limited sample range of 39 specimens, and that Hardy himself never observed such 456 

variability in the many thousands of specimens he examined from India and Pakistan (Hardy, 1969). 457 

A morphologically variable fly closely allied to B. dorsalis was reported from Africa in 2003 (Lux et 458 

al., 2003). Although the newly detected species was considered highly variable, it showed 459 

morphological characters that were consistent with B. dorsalis (Lux et al., 2003). Our examination of 460 
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specimens from Sri Lanka in comparison to African specimens has led to the conclusion that the 461 

invasion likely originated from the Indian subcontinent (n.b., the same region from which D. 462 

ferrugineus was likely first described by Fabricius) and that these morphologically variable flies were 463 

a new species which was described by Drew et al. (2005) as B. invadens. An important side note for 464 

taxonomic consideration is that the type locality of B. invadens is Kenya (i.e., invasive range), not 465 

Asia (i.e., native range and type locality).  466 

Morphological variation 467 

Clearly there was confusion during the last century over the identity of B. dorsalis in relation to D. 468 

ferrugineus, particularly with respect to scutum colour variation. Earlier studies, such as that of 469 

Munro (1939), described specimens from the Indian subcontinent as exhibiting a range of thoracic 470 

colour forms, yet towards East Asia the darker, mostly black form, predominated. Our assessment of 471 

scutum colour variation of newly acquired specimens reflects this pattern, with a range of colour 472 

forms across the Indian subcontinent (Fig. 1) and entirely black forms occurring eastward into the rest 473 

of Asia, with the exception of a small number of individuals from China. All flies in our study were 474 

collected from traps placed in the wild or sourced from colony material and were fully mature 475 

specimens, thereby conflicting with Hardy’s (1969) view that mature red-brown specimens of B. 476 

dorsalis do not exist. Indeed, the presence of a range of thoracic colour forms is similarly 477 

documented, either directly or through inference, in contemporary studies of material from the Indian 478 

subcontinent. Drew et al. (2007) recorded B. invadens in Bhutan, but considered as doubtful by Drew 479 

& Romig (2013); and a recent illustrated key on Indian fruit flies states that while B. invadens does 480 

not occur in India, specimens keying out as B. dorsalis may more closely match descriptions given for 481 

B. invadens (David & Ramani, 2011). Further, a detailed survey of B. dorsalis from Bangladesh 482 

clearly demonstrated individuals to possess the range of thoracic and abdominal colour forms typical 483 

of African and Sri Lankan B. invadens (Leblanc et al., 2013). Given the evidence at hand, it is 484 

difficult to accept Hardy’s assertion that such colour variation does not exist in B. dorsalis. 485 
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Other presumably diagnostic morphological characters measured here, namely aedeagus length and 486 

width of post-sutural lateral vittae, do not conform to variation expected under a two-species 487 

hypothesis. Bactrocera invadens is reported to possess longer aedeagi and narrower post-sutural 488 

lateral vittae than B. dorsalis (Drew et al., 2008; Drew et al., 2005). Our results demonstrate neither 489 

of these characters possesses diagnostic value as they show either no pattern at all (i.e., aedeagus 490 

length, Fig. 2B) or they are continuously variable across a geographic cline (i.e., vittae width, Fig. 491 

2A). Such results may, therefore, be indicative population level variation rather than species level 492 

variation, similar to the latitudinal variation in aedeagus length documented for B. dorsalis in 493 

Southeast Asia (Krosch et al., 2013). 494 

Geometric morphometric shape analysis is a more sensitive tool for assessing morphological variation 495 

than simple linear measurements (Krosch et al., 2013; Schutze et al., 2012b). This study extends wing 496 

shape analysis from East Asia into the Indian subcontinent and Africa, revealing potentially insightful 497 

patterns of variation and points of origin. For example, while wing shape is highly similar among all 498 

African populations of B. invadens (as expected for a relatively newly established invasive 499 

population), there is greater difference in wing shape among populations of B. dorsalis throughout the 500 

native range of the Indian subcontinent and East Asia (Fig. 3). Furthermore, the wing shape of African 501 

flies is most similar to those from the northern range of the Indian subcontinent, namely Nepal and 502 

Pakistan (Fig. 3), while those from further south (i.e., India and Sri Lanka) have wings that are 503 

relatively different in shape from African and northern Indian subcontinent populations (Fig. 3). Wing 504 

shape can, under some circumstances, demonstrate a highly significant isolation by distance signature, 505 

as found in the study of B. dorsalis s.l. in Southeast Asia (Schutze et al., 2012b). In that study, wing 506 

shape was superior to population genetic data at resolving isolation by distance signatures given a 507 

specific biogeographic hypothesis, demonstrating that as geographic distance between populations 508 

increased so did relative differences in wing shape. We therefore consider wing shape analysis to be a 509 

valuable tool for inferring the origin of an invasive species such as B. invadens, and that the African 510 

invasion may have come from the northern Indian subcontinent rather than Sri Lanka, as previously 511 
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thought. This hypothesis could be tested further by a targeted population genetic study using markers 512 

of contemporary gene flow (e.g., microsatellites or RAD-tag). 513 

A ‘one-species’ hypothesis is supported by molecular data 514 

While the significant morphological variation could be interpreted as the forms present in Africa and 515 

the Indian subcontinent representing different species (i.e., B. invadens in the west, B. dorsalis in the 516 

east), it is not supported by the molecular evidence. These data fail to resolve specimens from Africa 517 

and the Indian subcontinent as distinct from the broader B. dorsalis clade, a clade incorporating 518 

material from across the geographic range of B. dorsalis and B. invadens (Fig. 5). Moreover, mapping 519 

scutum colour onto individuals from the dorsalis clade reveals little to no pattern in the distribution of 520 

colour forms (Fig. 5 inset). Previous molecular studies have found similar results. Neighbour-joining 521 

analysis of the cox1 barcoding gene, for instance, resolved specimens from a Hawaiian lab colony of 522 

B. dorsalis as a group within a larger clade of B. invadens from Africa and Sri Lanka, while splitting 523 

B. invadens into two clades, one with specimens from Africa and Sri Lanka (along with B. dorsalis), 524 

the other grouping Sri Lankan B. invadens with Sri Lankan B. kandiensis (Khamis et al., 2012). While 525 

Khamis et al. (2012) did not conclude that B. dorsalis and B. invadens were the same species, a more 526 

recent multi-locus phylogenetic study of a number of Bactrocera species found the following: i) B. 527 

invadens to be polyphyletic within the B. dorsalis s.l. clade, ii) that B. invadens was genetically 528 

indistinguishable from many of the pest species within the group and therefore, iii) did not support the 529 

placement of B. invadens as an independent species outside of B. dorsalis s.l. (San Jose et al., 2013). 530 

This conclusion was also reached by Frey et al. (2013) who explicitly stated that B. invadens should 531 

be synonymised with B. dorsalis as a result of their cox1 barcode study. These earlier molecular 532 

studies, while extensive in their own right, have incorporated a relatively limited sample range for 533 

either B. dorsalis or B. invadens, yet they nevertheless demonstrate that B. dorsalis and B. invadens 534 

are most likely a single species. This conclusion is reinforced in our phylogenetic study, which 535 

represents the most extensive molecular analysis of B. invadens and B. dorsalis from across much of 536 

their native and invasive geographic ranges. We also found haplotypes to be shared between 537 

individuals identified as either B. dorsalis or B. invadens in our analysis of the cox1 haplotype 538 
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network (Fig. 6). Furthermore, the most common and widespread haplotype includes individuals that 539 

exhibit the full range of scutum colour forms from Thailand, Malaysia, India, Nepal, China, Pakistan, 540 

Sri Lanka, and the Democratic Republic of the Congo (Supplemental Figs. 2 and 3).  541 

The curious case of B. kandiensis – evidence of introgression? 542 

Our analysis of the cox1 gene revealed an unexpected association between B. kandiensis, B. dorsalis, 543 

and B. invadens, in that some Sri Lankan, Indian, and Burmese specimens that were morphologically 544 

identified as either B. dorsalis or B. invadens possessed cox1 sequences more closely related to B. 545 

kandiensis haplotypes than conspecifics (Fig. 6). This was not reflected by nuclear data which, to the 546 

contrary, revealed an indel that consistently separated all B. kandiensis specimens from B. 547 

dorsalis/invadens. Our results reflect the barcode study of Khamis et al. (2012), who found a large 548 

proportion of Sri Lankan B. invadens specimens to be more closely related to B. kandiensis than to 549 

African B. invadens or Hawaiian B. dorsalis. Importantly, however, Khamis et al. (2012) examined a 550 

single gene, cox1 and on only Sri Lankan specimens rather than those from other locations across the 551 

Indian subcontinent. 552 

The presence of B. kandiensis haplotypes among B. invadens or B. dorsalis individuals raises the 553 

possibility of introgression: the permanent incorporation of genes from one population into another 554 

via hybridization (Dowling & Secor, 1997). Introgression in dacine fruit flies has been proposed for 555 

other taxa, such as the Australian species, B. tryoni, for which horizontal introgression of genetic 556 

material from its sister species, Bactrocera neohumeralis (Hardy), was proposed as a potential 557 

adaptive mechanism allowing the expansion of B. tryoni into new climate regions (Lewontin & Birch, 558 

1966). Under the current scenario, the presence of B. kandiensis mtDNA haplotypes in the genome of 559 

B. dorsalis, but not the reverse (i.e., B. dorsalis haplotypes in B. kandiensis), implies that such 560 

hybridisation, if it has occurred, was unidirectional. Moreover, this pattern must have resulted from 561 

sex-biased couplings whereby B. dorsalis males mate with B. kandiensis females to produce offspring 562 

with B. dorsalis morphology but with B. kandiensis mtDNA. Preliminary field cage mating tests 563 

examining compatibility between B. kandiensis and B. dorsalis revealed no evidence of assortative 564 
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mating between these two species (unpublished data), reinforcing the potential for them to interbreed 565 

in sympatry. Bactrocera kandiensis is recorded only from Sri Lanka; however, it is suspected to also 566 

exist in southern India (Kapoor, 2005) and may occur sympatrically with B. dorsalis potentially as far 567 

east as Myanmar. This remains a hypothesis in need of further testing, with the incorporation of a 568 

wider sample range and continued research into mating compatibility between these taxa. 569 

Furthermore, we advocate additional studies including other species of the dorsalis complex, such as 570 

Bactrocera caryeae (Kapoor). This economically important species is considered allopatric to B. 571 

kandiensis as it is recorded from India but not Sri Lanka, yet they emerge as sister taxa in 572 

phylogenetic analyses (Krosch et al. 2012) and are distinguished based on abdominal colour pattern 573 

(Drew & Romig, 2013).  574 

Conclusions 575 

Our integrative molecular and morphological study of B. invadens and B. dorsalis from across a wide 576 

geographic distribution supports the hypothesis that they represent a single biological species. These 577 

data, in accordance with mounting evidence from other studies (Bo et al., 2014; Frey et al., 2013; 578 

Khamis et al., 2012; San Jose, 1999; Tan et al., 2011), highlight the need for formal synonymy 579 

between B. dorsalis and B. invadens and a subsequent revision of the current description of the 580 

Oriental fruit fly to encompass a wider range of morphological colour variants, particularly with 581 

respect to scutum colour. Further, given the taxonomic history of this species, we argue that the fly 582 

described as B. invadens is likely conspecific with that described by Fabricius (1794) as M. 583 

ferrugineus. The type specimen of ferrugineus designated by Fabricius and held by the Natural 584 

History Museum of Denmark is almost completely destroyed and so this proposition cannot be 585 

directly tested. However, what remains of this specimen (a thorax and partial abdomen) bears a strong 586 

resemblance to present-day B. invadens (Fig. 7), and a later-collected individual from Sri Lanka (coll. 587 

1899 and labelled by Hendel as Chaetodacus ferrugineus F.; specimen in the Natural History 588 

Museum, Vienna, Austria) has been confirmed as B. invadens (Drew & Romig, 2013). Synonymising 589 

these species will have a profound impact on quarantine and trade access, especially for sub-Saharan 590 

Africa which has been devastated by the rapid and destructive expansion of this species across the 591 
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continent. However, we stress that although B. invadens is the same biological species as B. dorsalis, 592 

the potential for biological differences among populations remains, especially considering the broad 593 

geographic distributions and environmental conditions where these species are found. Finally, our 594 

data revealing the potential of hybridising introgression between B. dorsalis/invadens and B. 595 

kandiensis further exemplifies the need for further research into the mechanisms of speciation and the 596 

evolution of the B. dorsalis species complex.   597 



25 
 

Acknowledgements 598 

We sincerely thank Marc De Meyer, S. Vijaysegaran, Sundar Tiwari, Disna Gunawardana, Ramesh 599 

Hire, and the Insect Pest Control Laboratory of the UN-FAO International Atomic Energy Agency 600 

(IAEA) for providing specimens used in this project. We also thank Thomas Pape and Ole Karsholt of 601 

the Natural History Museum of Denmark for providing an image of the type specimen of D. 602 

ferrugineus; and the British Museum of Natural History for material loaned from their collections. 603 

This research was undertaken with the support of the UN-FAO IAEA Coordinated Research Project 604 

‘Resolution of cryptic species complexes of tephritid pests to overcome constraints to SIT application 605 

and international trade’. MKS was supported by the Australian Government CRC National Plant 606 

Biosecurity and Plant Biosecurity CRC. SLC was supported by the Australian Research Council, 607 

Future Fellowships scheme (FT120100746).   608 



26 
 

References 609 

Aytekin, A.M., Terzo, M., Rasmont, P., et al. (2007) Landmark based geometric morphometric 610 

analysis of wing shape in Sibiricobombus Vogt (Hymenoptera: Apidae: Bombus Latreille). 611 

Annales de la Société Entomologique de France, 43, 95–102.  612 

Bandelt, H-J., Forster, P. & Röhl, A. (1999) Median-joining networks for inferring intraspecific 613 

phylogenies. Molecular Biology and Evolution, 16, 37–48. 614 

Bezzi, M. (1916) On the fruit flies of the genus Dacus (s.l.) occurring in India, Burma, and Ceylon. 615 

Bulletin of Entomological Research, 7, 99–121. 616 

Bickford, D., Lohman, D.J., Sodhi, N.S., et al. (2007) Cryptic species as a window on diversity and 617 

conservation. Trends in Ecology and Evolution, 22, 148–155.  618 

Bo, W., Ahmad, S., Dammalage, T., et al. (2014) Mating compatibility between Bactrocera invadens 619 

and Bactrocera dorsalis (Diptera: Tephritidae). Journal of Economic Entomology, 107, 623–620 

629. 621 

Boykin, L.M., Schutze, M.K., Krosch, M.N., et al. (2014) Multi-gene phylogenetic analysis of south-622 

east Asian pest members of the Bactrocera dorsalis species complex (Diptera: Tephritidae) 623 

does not support current taxonomy. Journal of Applied Entomology, 138, 235–253. 624 

Clarke, A.R., Armstrong, K.F., Carmichael, A.E., et al. (2005) Invasive phytophagous pests arising 625 

through a recent tropical evolutionary raditation : the Bactrocera dorsalis complex of fruit 626 

flies. Annual Review of Entomology, 50, 293–319. 627 

Gene Codes Corporation (2004) Sequencher. 5.0 ed.: Gene Codes Corporation, Inc, Madison, 628 

Wisconsin. 629 

David, K.J. & Ramani, S. (2011) An illustrated key to fruit flies (Diptera: Tephritidae) from 630 

Peninsular India and the Andaman and Nicobar Islands. Zootaxa, 3021, 1–31. 631 

De Meyer, M., Robertson, M.P., Mansell, M.W., et al. (2010) Ecological niche and potential 632 

geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera, Tephritidae). 633 

Bulletin of Entomological Research, 100, 35–48. 634 

Dowling, T.E. & Secor, C.L. (1997) The role of hybridization and introgression in the diversification 635 

of animals. Annual review of Ecology and Systematics, 28, 593–619. 636 



27 
 

Drake, A.G. & Klingenberg, C.P. (2008) The pace of morphological change: Historical 637 

transformation of skull shape in St. Bernard dogs. Proceedings of the Royal Society of 638 

London, B Biological Sciences, 275, 71–76. 639 

Drew, R.A.I. (1989) The tropical fruit flies (Diptera: Tephritidae: Dacinae) of the Australasian and 640 

Oceanian regions. Memoirs of the Queensland Museum, 26, 1–521. 641 

Drew, R.A.I. & Hancock, D.L. (1994) The Bactrocera dorsalis complex of fruit flies (Diptera: 642 

Tephitidae: Dacinae) in Asia. Bulletin of Entomological Research Supplement Series, Suppl. 643 

No. 2, i–iii + 1–68. 644 

Drew, R.A.I. & Hancock, D.L. (2000) Phylogeny of the Tribe Dacini (Dacinae) based on 645 

morphological, distributional, and biological data. In: Aluja M, Norrbom, A.L (ed) Fruit Flies 646 

(Tephritidae): Phylogeny and Evolution of Behavior. Boca Raton: CRC Press, 491–504. 647 

Drew, R.A.I. & Romig, M.C. (2013) Tropical fruit flies of South-east Asia. CAB International, 648 

Wallingford, UK. 649 

Drew, R.A.I., Raghu, S. & Halcoop, P. (2008) Bridging the morphological and biological species 650 

concepts: studies on the Bactrocera dorsalis (Hendel) complex (Diptera: Tephritidae: 651 

Dacinae) in South-east Asia. Biological Journal of the Linnean Society, 93, 217–226. 652 

Drew, R.A.I., Romig, M.C. & Dorji, C. (2007) Records of dacine fruit flies and new species of Dacus 653 

(Diptera: Tephritidae) in Bhutan. Raffles Bulletin of Zoology, 55, 1–21. 654 

Drew, R.A.I., Tsuruta, K. & White, I.M. (2005) A new species of pest fruit fly (Diptera: Tephritidae: 655 

Dacinae) from Sri Lanka and Africa. African Entomology, 13, 149–154. 656 

Ekesi, S., Billah, M.K., Nderitu, P.W., et al. (2009) Evidence for competitive displacement of 657 

Ceratitis cosyra by the Invasive Fruit Fly Bactrocera invadens (Diptera: Tephritidae) on 658 

mango and mechanisms contributing to the displacement. Journal of Economic Entomology, 659 

102, 981–991. 660 

Ekesi, S., Nderitu, P.W. & Rwomushana, I. (2007) Field infestation, life history and demographic 661 

parameters of the fruit fly Bactrocera invadens (Diptera: Tephritidae) in Africa. Bulletin of 662 

Entomological Research, 96, 379–386. 663 

Fabricius, J.C. (1794) Entomologia systemica emendata et aucta: Hafniae. 664 



28 
 

Fabricius, J.C. (1805) Systema antliatorum secundum ordines, genera, species: Brunsvigae. 665 

Folmer, O., Black, M., Hoeh, W., et al. (1994) DNA primers for amplification of mitochondrial 666 

cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine 667 

Biology and Biotechnology, 3, 294–299. 668 

Frey, J.E., Guillén, L., Frey, B., et al. (2013) Developing diagnostic SNP panels for the identification 669 

of true fruit flies (Diptera: Tephritidae) within the limits of COI-based species delimitation. 670 

BMC Evolutionary Biology, 13. 671 

Froggatt, W.W. (1910) Fruit flies (Family Trypetidae): Department of Agriculture, New South Wales. 672 

Grout, T.G., Daneel, J.H., Mohamed, S.A., et al. (2011) Cold susceptibility and disinfestation of 673 

Bactrocera invadens (Diptera: Tephritidae) in oranges. Journal of Economic Entomology, 674 

104, 1180–1188. 675 

Goergen, G., et al.  (2011) Bactrocera invadens (Diptera: Tephritidae), a new invasive fruit fly pest 676 

for the Afrotropical region: host plant range and distribution in West and Central Africa. 677 

Environmental Entomology, 40, 844–854. 678 

Hallman, G.J., Myers, S.W., Jessup, A.J., et al. (2011) Comparison of in vitro heat and cold tolerances 679 

of the new invasive species Bactrocera invadens (Diptera: Tephritidae) with three known 680 

tephritids. Journal of Economic Entomology, 104, 21–25. 681 

Hardy, D.E. (1969) Taxonomy and distribution of the Oriental fruit fly and related species 682 

(Tephritidae-Diptera). Proceedings of the Hawaiian Entomological Society, 20, 395–428. 683 

Hendel, F. (1912) H. Sauter's Formosa-Ausbeute. Genus Dacus (Dipt.). Suplementa Entomologica, 1, 684 

13–24. 685 

Hendel, F. (1915) H. Sauter's Formosa-Ausbeute. Tephritinae. Annales Musei Nationalis Hungarici, 686 

13, 424–467. 687 

Kapoor, V.C. (2005) Taxonomy and biology of economically important fruit flies of India. Israel 688 

Journal of Entomology, 35–36, 459–475. 689 

Khamis, F.M., Karam, N., Ekesi, S., et al. (2009) Uncovering the tracks of a recent and rapid 690 

invasion: the case of the fruit fly pest Bactrocera invadens (Diptera: Tephritidae) in Africa. 691 

Molecular Ecology, 18, 4798–4810. 692 



29 
 

Khamis, F.M., Masiga, D.K., Mohamed, S.A., et al. (2012) Taxonomic identity of the invasive fruit 693 

fly pest, Bactrocera invadens: concordance in morphometry and DNA barcoding. PLoS ONE 694 

7, e44862. 695 

Klingenberg, C.P. (2011) MorphoJ: an integrated software package for geometric morphometrics. 696 

Molecular Ecology Resources, 11, 353–357. 697 

Krosch, M.N., Schutze, M.K., Armstrong, K.F., et al. (2013) Piecing together an integrative 698 

taxonomic puzzle: microsatellite, wing shape and aedeagus length analyses of Bactrocera 699 

dorsalis s.l. (Diptera: Tephritidae) find no evidence of multiple lineages in a proposed contact 700 

zone along the Thai/Malay Peninsula. Systematic Entomology, 38, 2–13. 701 

Krosch, M.N., Schutze, M.K., Armstrong, K.F., et al. (2012) A molecular phylogeny for the Tribe 702 

Dacini (Diptera: Tephritidae): systematic and biogeographic implications. Molecular 703 

Phylogenetics and Evolution, 64, 513–523. 704 

Leblanc, L., Hossain, M.A., Khan, S.A., et al. (2013) A preliminary survey of the fruit flies (Diptera: 705 

Tephritidae: Dacine) of Bangladesh. Proceedings of the Hawaiian Entomological Society, 45, 706 

51–58. 707 

Lewontin, R.C. & Birch, L.C. (1966) Hybridization as a source of variation for adaptation to new 708 

environments. Evolution, 20, 315–336. 709 

Lux, S.A., Copeland, R.S., White, I.M., et al. (2003) A new invasive fruit fly species from the 710 

Bactrocera dorsalis (Hendel) group detected in East Africa. Insect Science and its 711 

Application, 23, 355–361. 712 

Mahmood, K. (2004) Identification of pest species in Oriental fruit fly, Bactrocera dorsalis (Hendel) 713 

(Diptera: Tephritidae) species complex. Pakistan Journal of Zoology, 36, 219–230. 714 

Medina, F.I.S., Carillo, P.A.V., Gregorio, J.S., et al. (1998) The mating compatibility between 715 

Bactrocera philippinensis and Bactrocera dorsalis. In: Tan K.H. (ed) Abstracts, 5th 716 

International Symposium on Fruit Flies of Economic Importance, 1-5 June. Penang, 717 

Malaysia, 155. 718 

Miyake, T. (1919) Studies on the fruit flies of Japan. Bulletin of the Imperial Central Agricultural 719 

Experiment Station in Japan, 2, 85–164. 720 



30 
 

Mohamed, S.A., Ekesi, S. & Hanna, R. (2008) Evaluation of the impact of Diachasmimorpha 721 

longicaudata on Bactrocera invadens and five African fruit fly species. Journal of Applied 722 

Entomology, 132, 789–797. 723 

Munro, H.K. (1939) The fruit fly, Dacus ferrugineus Fabr., and its variety dorsalis Hendel in 724 

northwest India. Indian Journal of Entomology, 1, 101–105. 725 

Mwatawala, M.W., De Meyer, M., Makundi, R.H., et al. (2006) Seasonality and host utilization of the 726 

invasive fruit fly, Bactrocera invadens (Dipt., Tephritidae) in central Tanzania. Journal of 727 

Applied Entomology, 130, 530–537. 728 

Perkins, F.A. (1938) Studies in oriental and Australian Trypaneidae. Part 2. Adraminae and Dacinae 729 

from India, Ceylon, Malaya, Sumatra, Java, Borneo, Philippine Islands, and Formosa. 730 

Proceedings of the Royal Society of Queensland, 49, 120–144. 731 

Perkins, M.V., Fletcher, M.T., Kitching, W., et al. (1990) Chemical studies of rectal gland secretions 732 

of some species of Bactrocera dorsalis complex of fruit flies (Diptera: Tephritidae). Journal 733 

of Chemical Ecology, 16, 2475–2487. 734 

Pont, A.C.  (1995) The dipterist C.R.W. Wiedemann (1770-1840). His life, work and collections. 735 

Steenstrupia, 21, 125–154. 736 

Posada, D. & Crandall, K.A. (1998) MODELTEST: Testing the model of DNA substitution. 737 

Bioinformatics, 14, 817–818. 738 

Rambaut, A. & Drummond, A.J. (2010) Tracer v1.5.4. Available at: http://beast.bio.ed.ac.uk/Tracer. 739 

Rohlf, F.J. (1999) Shape statistics: Procrustes superimpositions and tangent spaces. Journal of 740 

Classification, 16, 197–223. 741 

Rohlf, F.J. (2010) tpsDIG2, digitize landmarks and outlines. 2.16 ed. Department of Ecology and 742 

Evolution, State University of New York at Stony Brook. 743 

Ronquist, F., Teslenko, M., van der Mark, P., et al. (2012) MrBayes 3.2: Efficient Bayesian 744 

phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 745 

539–542. 746 

Rwomushana, I., Ekesi, S., Callistus, K.P.O.O., et al. (2009) Mechanisms contributing to the 747 

competitive success of the invasive fruit fly Bactrocera invadens over the indigenous mango 748 



31 
 

fruit fly, Ceratitis cosyra: the role of temperature and resource pre-emption. Entomologia 749 

Experimentalis et Applicata, 133, 27–37. 750 

Rwomushana, I., Ekesi, S., Gordon, I., et al. (2008) Host plants and host plant preference studies for 751 

Bactrocera invadens (Diptera: Tephritidae) in Kenya, a new invasive fruit fly species in 752 

Africa. Annals of the Entomological Society of America, 101, 331–340. 753 

San Jose, M., Leblanc, L., Geib, S.M., et al. (2013) An evaluation of the species status of Bactrocera 754 

invadens and the systematics of the Bactrocera dorsalis (Diptera: Tephritidae) complex. 755 

Annals of the Entomological Society of America, 106, 684–694. 756 

Salum, J.K., Mwatawala, M.W., Kusolwa, P.M. & De Meyer, M. (2014) Demographic parameters of 757 

the two main fruit fly (Diptera: Tephritidae) species attacking mango in Central Tanzania. 758 

Journal of Applied Entomology, 138, 441–448.  759 

Schlick-Steiner, B.C., Steiner, F.M., Seifert, B., et al. (2010) Integrative taxonomy: a multisource 760 

approach to exploring biodiversity. Annual Review of Entomology, 55, 421–438. 761 

Schutze, M.K., Jessup, A. & Clarke, A.R. (2012a) Wing shape as a potential discriminator of 762 

morphologically similar pest taxa within the Bactrocera dorsalis species complex (Diptera: 763 

Tephritidae). Bulletin of Entomological Research, 102, 103–111. 764 

Schutze, M.K., Krosch, M.N., Armstrong, K.F., et al. (2012b) Population structure of Bactrocera 765 

dorsalis s.s., B. papayae and B. philippinensis (Diptera: Tephritidae) in southeast Asia: 766 

evidence for a single species hypothesis using mitochondrial DNA and wingshape data. BMC 767 

Evolutionary Biology, 12, DOI: 10.1186/1471-2148-1112-1130. 768 

Shiraki, T. (1933) A systematic study of Trypetidae in the Japanese empire. Memoirs of the Faculty of 769 

Science and Agriculture Taihoku Imperial University, 8, pp. 509. 770 

Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML 771 

webservers. Systematic Biology, 75, 758–771. 772 

Tamura, K., Peterson, D., Peterson, N., et al. (2011) MEGA5: molecular evolutionary genetics 773 

analysis using maximum likelihood, evolutionary distance, and maximum parsimony 774 

methods. Molecular Biology and Evolution, 28, 2731–2739. 775 



32 
 

Tan, K.H. (2003) Interbreeding and DNA analysis of sibling species within the Bactrocera dorsalis 776 

complex. Recent trends on sterile insect technique and area-wide integrated pest 777 

management - economic feasibility, control projects, farmer organization and Bactrocera 778 

dorsalis complex control study: pp. 113–122. 779 

Tan, K.H., Tokushima, I., Ono, H., et al. (2011) Comparison of phenylpropanoid volatiles in male 780 

rectal pheromone gland after methyl eugenol consumption, and molecular phylogenetic 781 

relationship of four global pest fruit fly species: Bactrocera invadens, B. dorsalis, B. correcta 782 

and B. zonata. Chemoecology, 21, 25–33. 783 

van der Vecht, J. (1961) Hymenoptera Sphecoidea Fabriciana. EJ Brill. 784 

Van Mele, P., Vayssières, J-F., Adandonon, A., et al. (2009) Ant cues affect the oviposition behaviour 785 

of fruit flies (Diptera: Tephritidae) in Africa. Physiological Entomology, 34, 256–261. 786 

Vayssières, J.-F., Goergen, G., Lokossou, O., et al. (2005) A new Bactrocera species in Benin among 787 

mango fruit fly (Diptera: Tephritidae) species. Fruits, 60, 371–377. 788 

White, I.M. & Elson-Harris, M.M. (1992) Fruit flies of economic significance: their identification and 789 

bionomics, Wallingford UK: CAB International. 790 

Wright, S. (1943) Isolation by distance. Genetics, 28, 114–138. 791 

Yeates, D.K., Seago, A.E., Nelson, L.A., et al. (2011) Integrative taxonomy, or iterative taxonomy? 792 

Systematic Entomology, 36, 209–217. 793 

Zeldich, M.L., Swiderski, D.L. Sheets, H.D, & Fink, W.L. (2004) Geometric Morphometrics for 794 

Biologists: A Primer. Elsevier Academic Press, New York, U.S.A. 795 



33 
 

Table 1. Collection data for newly acquired specimens of Bactrocera dorsalis and Bactrocera invadens used for morphological and molecular analyses in the 

current study.  

      
Molecular Morphological 

 
Country Location Latitude Longitude Date COI ND4-3 ITS1 ITS2 Aedeagus Lateral vittae Scutum 

Wing 
shape 

 
Benin Mts. Kouffé 8.73 2.07 25 Sept 2005 5 5 5 2 20 20 20 20 

 
D.R. Congo Kisangani 0.52 25.2 March-April 2011 4 4 5 4 20 20 20 20 

 
Kenya IAEA Colony n/a n/a 

Initiated March 
2012** 5 5 4 4 20 20 20 20 

 
Mozambique Cuamba -14.8 36.53 Nov 2007 - Jan 2008 4 4 5 4 20 20 20 20 

 
Sudan Singa 13.16 33.96 Aug-Oct 2009 4 4 5 5 20 20 20 20 

 
Pakistan Islamabad 33.72 73.05 25 July 2012 9 8 10 7 20 20 20 20 

 
Nepal Dhankuta 27.00 87.33 5 Sept-20 Oct 2012 10 9 10 10 20 20 20 20 

 
India Bangalore 13.05 77.60 May 1992 0 0 0 0 0 0 0 20 

 
India Dahanu 19.76 72.97 Nov 2012 9 9 9 7 20 20 20 0 

 
Sri Lanka Central Province 7.27 80.64 May 2007 9 10 10 9 20 20 20 20 

 
China Wuhan 30.58 114.30 1 Nov 2012 5 5 4 5 20 20 20 20 

 China Yunnan n/a n/a Nov 2012 5 5 3 5 0 0 0 0 

 
Myanmar n/a n/a n/a Nov 2012 10 10 9 8 0 0 0 0 
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Figure captions 

Figure 1. Geographic distribution of scutum phenotypes for Bactrocera dorsalis and Bactrocera 

invadens from 1) Benin, 2) Democratic Republic of Congo, 3) Kenya, 4) Mozambique, 5) Sudan, 6) 

Pakistan, 7) Nepal, 8) India, 9) Sri Lanka, 10) Thailand, 11) Taiwan, 12) Malaysia, and 13) China. 

Twenty specimens of either species were examined per location with relative proportion of pale, 

intermediate, or fully black scutums shown. 

Figure 2. Morphometric results for (A) post-sutural lateral vittae width, (B) aedeagus length, and (C) 

wing centroid size for Bactrocera dorsalis and Bactrocera invadens collected from Africa and Asia. N 

= 20 for each location with error bars 1 standard error about the mean. Locations sharing the same 

letter are not statistically different (α = 0.05) following ANOVA with post hoc Tukey test. 

Figure 3. Plot of first two variates following canonical variate analysis of geometric morphometric 

wing shape data for Bactrocera dorsalis and Bactrocera invadens collected from Africa, Indian 

subcontinent, and Eastern Asia. Twenty wings were analysed per location, with respective regions 

shaded in each of the three plots. 

Figure 4. Regression of Mahalanobis distance (between pairwise geographic localities generated from 

CVA of wing shape data) against geographic distance (km) for Bactrocera dorsalis and Bactrocera 

invadens collected from the Indian subcontinent and eastern Asia. 

Figure 5. Phylogenetic tree generated from Bayesian and Maximum Likelihood analysis for 

Bactrocera dorsalis, Bactrocera invadens, and outgroups. *East Asian specimens include Bactrocera 

papayae and Bactrocera philippinensis. Nodal supports presented for each analytical approach and for 

both 2/4 and 4/4 loci analyses. Ingroup specimens from the Indian subcontinent, Africa, and eastern 

Asia are highlighted in light grey, dark grey, and black, respectively. Specimen identities have been 

removed for clarity (provided in supplementary figure 1). Inset figure shows scutum colour pattern 

mapped onto Bactrocera dorsalis/invadens clade. 
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Figure 6. Median joining haplotype network generated from cox1 sequence data of Bactrocera 

dorsalis, Bactrocera invadens, and Bactrocera kandiensis collected from Africa, the Indian 

subcontinent, and eastern Asia. 

Figure 7. Holotype of Dacus ferrugineus Fabricius located in the Natural History Museum of 

Denmark. While nearly entirely destroyed, the taxonomically informative ‘red-brown’ colour of the 

thorax is still evident. Photo credit: Verner Michelsen.  

Supplementary Figure S1. Phylogenetic tree generated from Bayesian and Maximum Likelihood 

analysis for Bactrocera dorsalis, Bactrocera invadens, and outgroups. Nodal supports presented for 

each analytical approach and for both 2/4 and 4/4 loci analyses. Ingroup specimens from the Indian 

subcontinent, Africa, and eastern Asia are highlighted in light grey, dark grey, and black, respectively. 

Supplementary Figure S2. Median joining haplotype network generated from cox1 sequence data of 

Bactrocera dorsalis and Bactrocera invadens collected from Africa, the Indian subcontinent, and 

eastern Asia. Different colours represent different scutum phenotypes from pale brown, to 

intermediate, to fully black. 

Supplementary Figure S3. Median joining haplotype network generated from cox1 sequence data of 

Bactrocera dorsalis and Bactrocera invadens collected from Africa, the Indian subcontinent, and 

eastern Asia. Different colours represent different collection countries. 

 


