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Differential SAR interferometry, a popular technique formeasuring displacements of the Earth's surface, is poten-
tially influenced by changes in soil moisture. Different mechanisms for this impact have been proposed, but its
magnitude, sign and even presence remain poorly understood. In this study the dependence of the phase, the co-
herence magnitude as well as the phase triplets on soil moisture was inferred empirically with regression tech-
niques: this was done for two airborne data sets at L-band. The phase dependence was significant (at a
significance level of 0.05) formore than 70% of the fields at HH polarization, its sign corresponding to an increase
in optical path upon wetting, and the magnitude of the associated deformation commonly exceeding 2 cm for a
change in soil moisture of 20%. This trend was similar in both campaigns, whereas the prevalence of soil
moisture-related decorrelation differs. These results are only consistent with a dielectric origin of the soil mois-
ture effects, and not with soil swelling or the penetration depth hypothesis. Changes in vegetation impact the
phase depending on the crop and polarization, with the vegetation influence at VV being more pronounced for
the agricultural crops present in the study area.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Radar interferometry is an established technique for the observation
of a broad range of phenomena. These include volcanology (Massonnet,
Briole, & Arnaud, 1995), tectonics (Massonnet et al., 1993), permafrost
studies (Liu, Zhang, & Wahr, 2010), or the analysis of groundwater-
related subsidence (Galloway&Hoffmann, 2007). Itworks by coherent-
ly combining two radar images. When these images are acquired at dif-
ferent times, the technique is sensitive to displacements on the scale of
the radar wavelength, i.e. typically 1–10 cm (Gabriel, Goldstein, &
Zebker, 1989; Rosen et al., 2000). These two images can also be taken
from different positions, in which case height information can be de-
rived from the data (Bamler & Hartl, 1998).

When there is a time gap between the two acquisitions, not only can
there be deformations, but also the vegetation and soil moisture can
change. If this is the case, such soil moisturemv changes can lead to sys-
tematic errors in the estimated deformations. However, the prevalence
and magnitude of these influences are not well understood. A possible
influence of variations in soil moisture on the interferometric signal
was initially postulated by Gabriel et al. (1989) due to an observed cor-
respondence of the phase ϕ and thus the estimated deformations with
hydrological units such as agricultural fields. However, dedicated obser-
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vational studies have been scarce and limited to a handful of laboratory
experiments (Morrison, Bennett, Nolan, & Menon, 2011; Nesti et al.,
1998; Rudant et al., 1996; Yin, Hong, Li, & Lin, 2014), as well as a few
air- or satellite-borne campaigns (Barrett, Whelan, & Dwyer, 2012;
Barrett, Whelan, & Dwyer, 2013; Hajnsek & Prats, 2008; Hensley et al.,
2011; Nolan, 2003a). Simultaneously, differentmechanisms andmodels
that could describe some of these effects have been proposed, alongside
electromagnetic simulations based on Maxwell's equations (Rabus,
Wehn, & Nolan, 2010). These explanations attribute the change in ϕ
to deformations (Gabriel et al., 1989), changes in the optical path
due to soil moisture variations Δmv (De Zan, Parizzi, Prats-Iraola, &
Lopez-Dekker, 2014; Rudant et al., 1996), or differences in the penetra-
tion depth of electromagnetic waves (Nolan, 2003b).

Despite these analyses, there is no consensus on themagnitude, sign
and even presence of these effects (Morrison et al., 2011; Rabus et al.,
2010; Rudant et al., 1996). This is partly due to the lack of suitable
data. The speckle patterns tend to decorrelate over time, which implies
that the phase cannot be estimated reliably (Barrett et al., 2013; Zebker
& Villasenor, 1992). The lack of temporal stability of many areas (espe-
cially those covered by vegetation) has led to the development of algo-
rithms that estimate deformations using only stable, point-like
scatterers (Ferretti et al., 2011). When the data over the less stable
areas are to be analysed with respect to the influence of soil moisture
on the phase, a small time gap and preferably bare soil are required. In
addition, the radar signals are also influenced by other parameters
such as the elevation (for non-zero spatial baselines), deformations,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Model predictions for the sign of the sensitivity of an observable onmv:+ positive,− neg-
ative, 0 no influence, and ? not explicable. The volume hypothesis is used for the Diel
mechanism.

Null Defo Pene Diel

ϕ
Δmv

0 − − +
γj j

Δmvj j 0 0? ? −
Ξ(mv0 : 2) 0 0 ? ≠0

78 S. Zwieback et al. / Remote Sensing of Environment 164 (2015) 77–89
and vegetation properties. Furthermore, there are sizeable differences
between the different studieswith regards to thewavelength, incidence
angle, soil type, vegetation cover, etc., and these render comparisons
and model assessments difficult (Barrett et al., 2013). The proposed ex-
planations have not yet been assessed with extended data sets or com-
pared with each other.

In view of these open questions, we want to study these soil mois-
ture effects in two L-band airborne campaigns. The low frequency,
short revisit times, small spatial baselines, and (in one campaign) ab-
sence of vegetation cover are expected to reduce the impact of these ad-
ditional influences such as the topography and vegetation-related
processes. The soil moisture effects, by contrast, are expected to be
more dominant and thus detectable. In particular, this allows us to ad-
dress the question of the sign, magnitude and statistical significance of
these effects. We do so by using regression techniques whereby we de-
scribe the interferometric observables as a function of the change in soil
moisture Δmv. Furthermore, we want to assess the plausibility of the
different conjectured mechanisms that could describe these effects.
This assessment ismade by comparing their predictionswith the empir-
ically found impact of soil moisture on the interferometric data. As the
applicability and relevance of these explanations are not well under-
stood, we focus on the differences between these explanations rather
than particular models and parameterizations. This analysis is conduct-
ed for different polarizations, as the sensitivity to soil moisture is not
necessarily identical. In most previous studies (both observational and
models), the polarimetric aspect was not addressed explicitly, often
due to lack of suitable data or because the proposed physical explana-
tions did not involve any polarimetric differences (De Zan et al., 2014;
Nolan, 2003a).

The interferometric observables along with the notation and sign
conventions of this paper are introduced in Section 2. Subsequently,
the study sites and data sets are outlined, followed by an overview of
the SAR processing and the statistical methods. The results of these
analyses are presented in Section 6; in Section 7 they are scrutinized
and compared to the predictions of the different hypotheses.

2. Radar interferometry

In a polarimetric framework (Cloude, 2009), from which the stan-
dard single channel scenario arises as a special case, each single look
complex (SLC) pixel is described by a scattering vector q; in the lexico-

graphic basis (reciprocal backscatter situation), q ¼ SHH;
ffiffiffi
2

p
SHV ; SVV

h i
.

From two SLC images q1 and q2 – they usually differ in their acquisition
time and/or position – one derives the scalar quantity called complex
coherence (Cloude & Papathanassiou, 1998)
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where ω is a polarimetric measurement functional (e.g. [1, 0, 0]T for
HH). The 〈 ⋅ 〉 denotes an ensemble average, which can be estimated
by spatial multilooking (Bamler & Hartl, 1998; Gabriel et al., 1989).
This averaging applies if the target is treated as a distributed one, i.e.
as realization of a random process. The coherence can be factored as
γ = |γ|exp(iϕ). From this factorization, the three observables (phase
ϕ, coherence magnitude |γ|, and phase triplets Ξ) used in this study
can be derived.

The phase ϕ (the exp(iωt) convention is employed throughout) is
sensitive to the geometry and displacements. After flat earth phase re-
moval, spectral filtering, and neglecting noise and propagation effects
in e.g. the atmosphere, ϕ of a point target can be approximated as
ϕ= κzz+2k0d, where the first part determines the impact of the eleva-
tion above a reference surface z, and the second one to displacements d
along the RADAR look direction. The first coefficient of proportionality is
given byκz≡ ∂ϕ
∂z

� �
R
∝k0B⊥R

−1, where B⊥ is the antenna offset perpendic-

ular to the look direction, R the distance to the target, and k0 the wave-
number in free space. The sensitivity to displacements is given by twice
the wavenumber in free space.

The coherence magnitude |γ| can be interpreted as a measure of the
correlation of the speckle patterns in q1 and q2 (Rosen et al., 2000). A
value less than one can e.g. be caused by volume scattering for
B⊥ ≠ 0, or by changes in the arrangement and physical properties of
the target for non-simultaneous acquisitions, as well as noise (Tsang,
Kong, & Ding, 2000).

The phase triplets (De Zan et al., 2014; Ferretti et al., 2011) are a
combination of the phases of the three interferograms formed from
three SLC images Ξ123 = ϕ12 + ϕ23 − ϕ13: they are only different
from zero if |γij|≠ 1. In astronomy they are usually referred to as closure
phases (Monnier, 2007) and have proven useful due to their insensitiv-
ity to a phase offset (e.g. due to the atmosphere) in any of the
acquisitions.

3. Hypotheses

The four hypotheses about the origins of the soil moisture effects
that have been framed in the literature will each be briefly presented.
The focus will be less on the implementation of these mechanisms in
particular parameterized models, but rather on the physical basis and
the predictions that can be formulated based on them. The sign of the
dependence of the interferometric observables on soilmoisture changes
Δmv for each of themechanisms is summarized in Table 1. These expla-
nations, although distinct, are not necessarily mutually exclusive.

3.1. Null hypothesis (Null)

The null hypothesis states that there is no relationship between the
moisture content and the interferometric observables, including the
phase ϕ; this is schematically depicted in Fig. 1a. This hypothesis is im-
plicitly assumed in virtually all interferometric studies (Ferretti et al.,
2011), where soil moisture effects are either not considered, minimized
by excluding soil, or deemed negligible.

3.2. Deformation (Defo)

ϕ variations whose patterns match those of hydrological units such
as field boundaries have previously been interpreted as deformations
(Gabriel et al., 1989; Nolan, 2003a). Certain types of soils (e.g.
montmorrillonite clay) are known to swell upon wetting (Mitchell,
1991; Norrish, 1954), and such deformations have indeed been studied
(and compared with in-situ measurements) with differential interfer-
ometry (te Brake, Hanssen, van der Ploeg, & de Rooij, 2013). The influ-
ence of an expanding soil on the phase of the coherence is illustrated
in Fig. 1b. The impact on themagnitude of the coherence depends intri-
cately on the detailed mechanism: a piston-like shift would in general
not lead to decorrelation, whereas non-uniform deformations easily
could. The generality of these effects is, however, doubtful, as these
swelling and shrinking behaviours are restricted to certain types of
soil (Mitchell, 1991). Furthermore, the sensitivity of ϕ to these effects
diminishes with decreasing radar frequency. For example, at L-band



(a) Null (b) Defo (c) Pene (d) Diel

Fig. 1. Schematic depictions of the postulatedmechanisms giving rise to the interferometric phase ϕ; left image: dry soil, right one: moist soil. A positive ϕ
Δmv

corresponds to an increase in

the optical path upon wetting (e.g. due to subsidence).
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ϕ= π corresponds to a deformation of about 5 cm, at X-band to 0.5 cm.
Especially at such longerwavelengths, observed phase values that are of
this magnitude have been deemed too large to be plausibly caused by
deformations (Hensley et al., 2011).

3.3. Penetration depth (Pene)

Nolan (2003b) suggested that thepenetration into the lossy soil gov-
erns the phase signal. When the soil is treated as a homogeneous uni-
form dielectric medium, the former can be parameterized in terms of
the wavelength and the dielectric constant ε (the dependence on soil
moisture is described in terms of a mixing model, e.g. (Mironov, Kerr,
Wigneron, Kosolapova, &Demontoux, 2013)). The soilmoisture content
governs the characteristic length scale δ at which the wave attenuates
(Tsang et al., 2000). According to the penetration depth hypothesis,
the phase is then related to a difference in δ, cf. Fig. 1c. There are two in-
herent problems in this approach. Firstly, it is not clearly stated how the
change in penetration depth is related to the observableϕ: δ is a charac-
teristic length, the scaling of which is somewhat arbitrary. Furthermore,
in free space the propagation phase is related to the distance R by
φ = −2k0R: in a dielectric medium the free-space wavenumber k0
should be replaced by the one specific to this medium and frequency.
It is not clear which conversion (Nolan, 2003b) apply. Secondly, the
model does not predict the coherence |γ|. Indeed, it does not explain
how a non-zero correlation can be achieved, as there is no physical
mechanism postulated that could give rise to such correlations. One
possibility in a non-uniform soil consisting of two layers with highly
correlated rough surfaces was studied by Rabus et al. (2010) and
shown to give rise to such a phase signal but also to be exceedingly sen-
sitive to the geometrical parameters.

Let the penetration depth σ be defined to be the depth at which the
two-way propagation at an incidence angle of 34° leads to reduction in
power by a factor of 1e. At L-band the commonly used Hallikainen model
predicts a value for σ of 2 cm for wet conditions of mv = 0.4 m3 m−3,
and 4 cm for dry conditions of mv = 0.1 m3 m−3. The Peplinski model,
for which the absorption in the soil is smaller (Hallikainen, Ulaby,
Dobson, El-Rayes, & Wu, 1985; Peplinski, Ulaby, & Dobson, 1995), pre-
dicts in these conditions values of δ of 5 and 13 cm, respectively.

3.4. Dielectric mechanism (Diel)

The dielectric properties of amediumgovern the complexwave vec-
tor k: an example applicable to DInSAR are changes in atmospheric
properties that influence the measured ϕ. This idea was extended by
Rudant et al. (1996) to the vegetation overlying the soil as well as the
soil itself, as the dielectric properties of both are known to depend on
the moisture content (Tsang et al., 2000). This effect has been observed
(as well as modelled) for a buried reflector in a laboratory experiment
(Morrison, Bennett, & Nolan, 2013); it can also be interpreted as the
mechanism giving rise to the phase signal observed in a numerical elec-
tromagnetic model of an inhomogeneous soil (Rabus et al., 2010). De
Zan et al. (2014) described the soil as an aggregate of such inhomogene-
ities and derived the first-order scattering solution of the coherence γ:
the radar signal is thus modelled as the superposition of contributions
from a large number of scatterers within the soil (surface scattering is
not considered). Note that non-zero phase triplets Ξ are predicted by
this model.

Within the context of this first-order scattering model (FOSM), a
change in the dielectric constant corresponds to a change in the wave-
number k in themedium: the real part of the latter encodes how rapidly
the phase changes with position (the spacing of the wavefronts in
Fig. 1d), the absorption with depth is governed by the imaginary part
(the darkness of thewavefronts in Fig. 1d). Under the independent scat-
tering assumption and if the positions of the inhomogeneities are un-
correlated, it is the real part that gives rise to a non-zero ϕ, conversely
to the penetration depth approach (De Zan et al., 2014).

Even in the absence of inhomogeneities within the soil, a change in
the dielectric properties is predicted to lead to phase changes by
rough surface scattering models (assuming identical geometric proper-
ties for the two acquisitions). For sufficiently small wavelengths (com-
pared to the radius of curvature and root-mean-square (RMS) height
of the rough surface), the geometric optics (GO) Kirchhoff approxima-
tion applies, whereas the small perturbation model (SPM) is adequate
when the wavelength is large compared to the RMS height (Ishimaru,
1997). A small example in Fig. 2 shows that the sign of the phase depen-
dence of thesemodels is opposite to the dielectric model by Hallikainen
et al. (1985) and indeterminate for the one by Peplinski et al. (1995);
the magnitude, however, is much smaller for the surface models. This
small dependence of ϕ has often been considered negligible compared
to the noise level or other influences (De Zan et al., 2014; Rudant
et al., 1996).

4. Data sets

The airborne L-band data acquired during two campaigns are con-
sidered in this study. The first one is the Agrisar 2006 campaign in
north-eastern Germany, the second one is the Canadian Experiment
for SoilMoisture 2010. In both cases in-situ soilmoisturemeasurements
are available. The campaigns differ with respect to the temporal inter-
vals of the acquisitions and the vegetation cover. Neither was designed
for the analysis of soil moisture effects on interferometry, and this is
particularly evident with respect to vegetation dynamics and additional
sources of decorrelation such as ploughing.

4.1. Agrisar 2006

The objective of this campaign was to provide data for an improved
understanding of remote sensing measurements over agricultural vege-
tation. The study site is located around Görmin, Mecklenburg–Western
Pomerania, Germany (53° 58′N13° 16′E). The temporal extent effective-
ly covers one growing season for the crops present (German Aerospace
Center, 2008): winter wheat, maize, rape, sugar beet, and barley; several
small towns and patches of mixed forest are also included (see Fig. 3).
The topography isflat,with a slight slope towards a nearby river and sev-
eral drainage features perpendicular to the latter (Zwieback & Hajnsek,
2014). The soil is dominated by sandy loam and similar textures, with
clay contents of less than 10% (German Aerospace Center, 2008).

The airborne L-band (λ=0.23m) SAR data were acquired by the E-
SAR system in intervals of one to two weeks at a range (azimuth) reso-
lution of about 2 (1)metres (German Aerospace Center, 2008). The sub-
set of images used in this study were recorded from the same track at a



Fig. 2. Predictions for the interferometric phase due to surface scattering as a function of
slavemv for amaster soilmoisture of 0.2m3m−3. GO is thepolarization-independent Geo-
metric Optics approximation, SPM the Small Perturbation Model. Hal is the mixing model
by Hallikainen et al. (1985), Pep the one by Peplinski et al. (1995). Fig. 4. Double difference phase ϕ and coherence |γ| of Agrisar ROI 230× are shown in the

top panel; the common master acquisition at DOY 163. The changes in soil moisture mv

and biomass b with respect to this master scene are given in the lower panel.
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nominal baseline of 0m. Theywere acquired around noon local time on
the dates shown in Fig. 4. The interferometric phase and coherencewith
respect to the image taken at DOY 163 of a wheat field are shown in the
first panel.

Two corner reflectors provide a reliable phase reference in their vi-
cinity. As shown in Fig. 3, there are considerable large-scale phase
trends present in the data. The interferometric phase has clear corre-
spondences with certain field boundaries, which correspond to differ-
ential deformation estimates between the fields. The impact of the
additional phase patterns is minimized by using stable scatterers in ad-
dition to the corner reflectors, cf. Section 5.1.3.

Several soil- and plant-related parameters were measured contem-
poraneously with the airborne acquisitions: the ones used in this inves-
tigation are soil moisture, vegetation height and wet biomass. The
volumetric soil moisture mv [m3m−3] was measured manually at
three locations (by Time Domain Reflectometers (TDR); 0–5 cm
depth) within each field within 1 to 2 h of the radar acquisitions.
These measurements were subsequently averaged. The sampling of
themeasurements of thewet biomass b [kgm−2] and vegetation height
h [cm] was conducted analogously, the former being determined by
clearing 1m2 and weighing. The fields for which such data are available
are compiled in Table S1. The temporal evolution of these parameters is
shown for one of the fields in Fig. 4. The soil moisture tends to decrease
over time until June 13, when it reaches mv = 0.12 m3 m−3. Subse-
quently, there is a rain event followed by a dry-down period. The bio-
mass b of the wheat field increases monotonically until June 21, when
it reaches a value of 5.6 kg m−2, before it declines as the plants reach
the period of senescence.
222 140
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Fig. 3. Agrisar interferogram between acquisition of DOY 163 and 185: the unreferenced
phase is given by hue (full colour circle), the coherence magnitude by the intensity. Cer-
tain phase patterns correspond to field boundaries (white lines), others relate to spurious
trends, especially in near range (bottom of image). The regions of interest of each field are
given by the white and orange rectangles, the field number is annotated in white.
4.2. CanEx2010

The aim of the Canadian Experiment for Soil Moisture in 2010
(Magagi et al., 2013) was to support calibration, validation and algo-
rithm development activities for the SMOS and SMAP satellitemissions;
to this end, in-situmeasurements of soil and vegetation properties were
taken from June 2–14 2010. Among the remote sensing data gathered
are six UAVSAR acquisitions over the Kenaston, Saskatchewan,
Canada, test site (51° 30′ N, 106° 18′ W). This flat area is characterized
by predominantly rainfed agricultural fields, pastures and grassland
and at least 1.5% of open water surfaces. Before the campaign wet
weather conditions had prevailed, leading to an increase in the extent
of standingwater. Thefields had been tilled andwere covered by a vary-
ing amount of residue (Magagi et al., 2013).

The quadpol UAVSAR data (L-band: λ=0.24m)have a resolution of
1.7 m (0.8 m) in range (azimuth) (Jones & Davis, 2011). They were ac-
quired in irregular intervals between one and three dayswith a nominal
baseline of 0 m at 3 pm local time. The lack of corner reflectors implies
that the unknown phase offsets in the data have to be eliminated by e.g.
forming differences with stable scatterers. The phase patterns are more
stable than in the Agrisar campaign, which can be seen in the interfero-
gram of Fig. 5.

Volumetric soil moisturemvwasmeasured hourly at permanent sta-
tions by Environment Canada (EC) using Stevens Hydraprobe probes in
several depths, of which the 0–5 cm vertical sensor (using an improved
factory calibration)will be considered. In addition, visual assessments of
the tillage, vegetation cover and crop type are available for most fields
(Magagi et al., 2013). The fields for which suchmeasurements are avail-
able at all acquisitions are compiled in Table S2. The locations of these
109

136

201206

307

326331
0 12 3 4

km

Fig. 5. Interferogram between DOY 156 and 165 of the CanEx2010 campaign. As in Fig. 3
the near-range region is at the bottom of the image and also the colour codes correspond.
The location of the soil moisture probes is given by the red and purple dots, which are an-
notated with the code of the field.
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measurements are shown in Fig. 5 and annotated by the number of the
field. Note that the dynamic range in themeasured soil moisture, i.e. the
difference between the maximum and minimum value, varies by about
a factor of 10 between the different fields. This might be related to e.g.
variations in soil texture and other soil properties, as well as the
microtopography.

The temporal pattern of the soil moisture evolution is, by contrast,
very stable across the different probes. One example is given in Fig. 6,
where the changes with respect to the master acquisition at DOY 165
(mv = 0.23 m3 m−3) are given. They show a close correspondence to
the precipitation measured at field 136, which led to a wetting in the
middle of the campaign.

5. Data analysis

5.1. SAR processing

5.1.1. Interferogram formation
The complex interferogramswere formed for all possible pairs,which

results in a total of 28 interferograms in the Agrisar campaign, and 15 in
the CanEx2010 experiment. The number can depend on the field (due to
harvesting or ploughing) and can be found in Tables S1 and S2. A flat
earth and topographic phase correction, alongwith range spectral filter-
ing, was applied (Bamler & Hartl, 1998). The Agrisar data showed larger
deviations from the intended zero B⊥ condition,with the height sensitiv-
ity |κz| generally bounded by 0.05 m−1: a difference in the elevation
model error at two points of 2 m would thus correspond to a phase
error of 0.1 rad, which is considerably smaller than the dynamic range
observed in thedata. Larger height errors are only expected for phase ref-
erences on top of isolated man-made structures such as buildings.

5.1.2. ROI definition
Within each field a region of interest (ROI) in the shape of a rectangle

(50m in range, 100m in azimuth)was chosen in such away that the tar-
getwas as homogeneous as possible. For the Agrisar campaign, the choice
of location of the ROI was dictated by the presence of the spurious phase
patterns. The ROI was taken to be as close to a persistent scatterer as de-
scribed in Section 5.1.3 as possible. In the CanEx2010 data set, the ROI
was taken to be as close to the soil moisture probe as possible. Difficulties
and heterogeneities of the observed phases are mainly related to the
presence of water surfaces that are partially covered with vegetation.
In either campaign and at each of the four corners of this rectangle,
172 looks L were averaged to obtain the coherence information, corre-
sponding to a rectangular box car filter. These subROIs are coded by
Fig. 6. Interferometric phase ϕ and coherence magnitude |γ| at HH for ROI 326b of the
CanEx2010 experiment. These are taken with respect to the common master at DOY
165. The lower panel shows the changes in soilmoisturewith respect to thismaster acqui-
sition as measured in this field. The blue bars denote the precipitation rate measured in
field 136.
their field number (three digits) followed by a letter: v–y for Agrisar, a–
d for CanEx.

5.1.3. Phase reference
The unknown phase offset in each interferogram and for each ROI

can be removed by forming differences with respect to stable scatterers.
In the absence of corner reflectors, one commonly resorts to a data-
driven approach (Ferretti et al., 2011). We do so by finding persistent
scatterers (PS) using the amplitude-based signal-to-clutter ratio meth-
od (Kampes, 2006). As the amplitude criterion is not sufficient for a
pixel to be stable, the three closest ones are taken for each ROI, and
among these two are chosen. The first, the nearest one, is based on the
rationale that phase errors due to e.g. inaccuracies in the flight track in-
crease with distance. The second – the one among the three with the
smallest phase variance – will potentially rule out unstable targets, as
these are characterized by larger fluctuations. The impact of this deci-
sion rule is studied empirically in Section 6.4.

For a given ROI and its persistent scatterer, the difference between
the phase over the field and over the PS is formed. This so-called double
difference (Kampes, 2006) will be referred to as simply the phase ϕ of
the ROI. This implicitly assumes that the phase of the PS is stable. The
deformation associatedwith this phaseϕ thus corresponds to an appar-
ent movement of the ROI with respect to the persistent scatterer. This
phase did not have to be unwrapped as no phase wrapping was ob-
served in the data. The double-difference phase is still affected by
phase patterns associated with orbital errors and tropospheric influ-
ences. Their impact is expected to be mainly determined by the spatial
separation of the PS and the ROI (Hanssen, 2001). These distances are
given for each field in Tables S1 and S2.

In the Agrisar campaign, the spurious phase patterns have a typical
wavelength of more than 2.5 km (see e.g. Fig. 3). For an average spatial
distance to the PS of 100 m, this corresponds to a phase error of 14°,
which is not expected to be correlated with soil moisture changes. In
the CanEx2010 data, the typical separation of 300 m corresponds to a
phase error 5° given a spatial scale of the phase patterns of 20 km. The
tropospheric influence is partially included in these numbers, and is
expected to be smaller (b2°) (Emardson, Simons, & Webb, 2003;
Goldstein, 1995).

5.2. Regressions

The connection between the observables and explanatory parameters
(such asmv) is studied by regressions, whereby it is assumed that the ob-
servable can be described by simple functions of said parameters. In the
Agrisar campaign, during which sizeable vegetation growth and senes-
cence occur, the vegetation is described by thewet biomass b. This param-
eter is expected to be closely related to the backscattered power and the
optical path through the canopy (Ulaby, Tavakoli, & Senior, 1987). As the
vegetation height was also measured, it will be included in separate re-
gression to study the robustness with respect to the characterization of
the vegetation. In general, these vegetation parameters are denoted by
v. For the CanEx campaign, the fieldswere bare or covered by harvest res-
idues, so that no vegetation terms are included in the model.

5.2.1. Regression model
For the coherence |γ|∈ [0, 1], which is invariant to the choice ofmas-

ter/slave, the following structure is postulated:

log γi j

��� ���� �
¼ β0 þ βmv

Δmvj j þ βt Δtj j þ βv Δvj j þ εi j ð2Þ

i.e. the terms are assumed to affect |γ| in a multiplicative fashion, thus
rendering negative coherences impossible. The coefficient βmv

repre-
sents the decorrelation due to |Δmv|, whereas βv denotes the impact
changes in the vegetation parameter thatΔv has on the coherencemag-
nitude. The temporal decorrelation is assumed to be related to the time
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separation between the two acquisitionsΔt; it is quantified by the coef-
ficient βt. The error term of the i, j interferogram is denoted by ϵij (with
expected value of zero), and t is the temporal separation.

The phase ϕ is assumed to be governed by

ϕi j ¼ βmv
Δmv þ βvΔvþ ϵi j ð3Þ

where the absence of an intercept term is due to the expectation that no
change in the exogenous variables corresponds to zero ϕ.

The structure of the phase triplets is complicated, as they i) depend
on three acquisitions, and ii) deviate from zero only in the presence of
decorrelation. They are thus analysed separately in Section 5.3.

5.2.2. Stochastic model
The phase noise �ij is often considered to be due to two kinds of com-

ponents (Kampes, 2006): thefirst εij, due to the correlation properties of
the particular interferogram, can e.g. be described within the Gaussian
speckle model (Bamler & Hartl, 1998); the second ξi, due to a phase off-
set of each SLC image i from e.g. the atmosphere, is here assumed to be
stationary in time. Thus �ij = εij + ξi − ξj, with ε and ξ assumed uncor-
related. The second moments of ϵij then evaluate to

ϵi jϵkl
� � ¼ εi jεkl

� �þ ξiξkh i þ ξ jξl
D E

− ξ jξk
D E

− ξiξlh i
¼ σ2

i jδ i j; klð Þ þ Σ2 δ i; kð Þ þ δ j; lð Þ−δ j; kð Þ−δ i; lð Þ½ �
ð4Þ

where δ(u, v) is a Kronecker delta and the correspondence between the
two equations is termby term. The value ofσij

2 is estimated from the ob-
served γij based on the Gaussian specklemodel Cramer–Rao bound, rel-
ative to σ0

2, which is the value for the given number of looks L that
would be obtained for |γ = 0.5|. The ratio κ = Σ2/σ0

2 is estimated in
the regression model from the data. A simplified analysis without auto-
correlations is also conducted to study the robustness with respect to
the stochastic model.

5.2.3. Implementation
The regressions for |γ| are obtained by ordinary least squares, the

ones for ϕ by Maximum Likelihood estimation assuming Gaussian
noise using the nlme package in R (Pinheiro & Bates, 2000; Pinheiro,
Bates, DebRoy, Sarkar, & R Core Team, 2013). Standard regression diag-
nostics (Judge, Hill, Griffiths, Lutkepohl, & Lee, 1983) are used to remove
outliers (Bonferroni-corrected t-test of studentized residuals with α =
0.05). In addition to the point estimates of β, the decisions of the Sha-
piro–Wilk test for normality at α= 0.05, and the 95% confidence inter-
vals for β are reported. Note that the latter are i) based on the normality
hypothesis, and ii) are only approximate if κ is estimated.

5.3. Quantile regressions ofΞ

In contrast to all other hypotheses, the dielectric volumemodel pre-
dicts non-zero phase triplets. As the sign of these phase triplets depends
on the ordering of the acquisitions, we propose to focus on their magni-
tude |Ξijk| and parameterize it as a function of max |Δmv| N 0, i.e. the
maximum of all three |Δmv|:

Ξi jk

�� �� ¼ β0 þ βmv
max Δmvj j þ βv max Δvj j ð5Þ

where the vegetation change term v is only included for the Agrisar
campaign. The regressand |Ξijk| is non-negative: its spread and thus its
median is expected to increase with max |Δmv| in the dielectric frame-
work, but in a complicated fashion as it depends on all three values of
mv and the particular parameterization and model. In order to study
this behaviour in a robust way, median regression is employed to esti-
mate the coefficients β. The standard errors are computed according
to the rank-inversion method (Koenker, 2005, 2013).
6. Results

6.1. Exploratory data analysis

The impact ofmv on the different observables is exemplified in sever-
al scatter plots in Fig. 7; thesewere chosen to be representative of the dif-
ferent kinds of relations found in the data. The phase values (Fig. 7a)–h))
predominantly show a positive, approximately linear trend with Δmv.
The correlation, however, differs: in field 230x, for instance, the scatter
around the fitted curve is smaller in HH than in VV, where it seems to in-
crease with the temporal separationΔt. Differences are also conspicuous
with regards to the magnitude of the effect, e.g. field 307a.

Themagnitudes of the coherence |γ| in subfigures i) and k) both de-
crease with |Δmv|, with the apparent influence of Δt being more pro-
nounced for 230x. The influence of this temporal decorrelation is also
evident in Fig. 4, where both biomass and soil moisture return on DOY
192 to the values observed during the master scene. However, the co-
herence magnitude does not return to values close to one. By contrast,
such a return can be observed in Fig. 6, where both soil moisture and co-
herence show similar temporal behaviour.

Also the phase triplets |Ξ| exhibit such diversity: the ones in field
230x (subfigure j)) are an order of magnitude larger on average than
the ones of 136a (l)), with neither displaying a conspicuous dependence
on the maximum soil moisture.

6.2. Regression results

6.2.1. Agrisar campaign
The estimated soil moisture regression coefficients β of both phase

and correlation are plotted in Fig. 8 for the Agrisar campaign. For
log |γ| in HH, all but a single one are negative. The deviation, however,
is not necessarily significantly different from zero (α=0.05): such sig-
nificant effects are found for 50% of the samples in HH, 21% in HV, and
36% in VV. However, between these polarizations, the differences of
the size of the effect for any particularfield are generally (N90%) smaller
than the uncertainty, cf. Table S3 for a list of the differences.

The impact of soil moisture variations on the phase ϕ is found to be
significant for 71% of the samples in HH, 39% in HV, and 43% in VV. All
the estimated effects of these significant samples are positive. The size
of the effect βΔmv

exceeds 2 rad m−3 m3 (this corresponds to a phase
change of 23° for Δmv = 0.2 m3 m−3) in 82% of the samples in HH,
53% in HV and 46% in VV.

Not only the soilmoisturemv but also the biomass b is seen to impact
the observables: the estimated regression coefficients are shown in
Fig. 9. The effects on |γ| are predominantly negative (a notable excep-
tion being 101v), and significantly different from zero for about 35%–
55% of the samples. An increase in biomass is seen to affect ϕ in the
same direction as an increase in mv: all significant effects βΔb but two
are positive. This significance is found for 32% of the samples in HH,
61% in HV, and 82% in VV. The impact over all the crops except sugar
beet is less than 1 rad kg−1 m2, and more pronounced in VV than in
HH over wheat (230, 250) and barley (440), cf. Table S4.

6.2.2. CanEx campaign
The analysis of the CanEx data,where the vegetation is not subject to

significant changes, also reveals a positive dependence ofϕ onmv, albeit
with differentmagnitudes. These are also exceedingly variable, with e.g.
field 201 showing a 10 times larger impact than field 109; the magni-
tude of the latter (2–4 rad m−3 m3) being comparable to the one
found in the Agrisar data set. The fields with the highest coefficients
βΔmv

N 10 rad m−3 m3 are those in which the soil moisture measure-
ments exhibit small variations b0.1 m3 m−3, see Table A2.

These effects βΔmv
are significant at α= 0.05 for 86% in HH and HV,

and 82% in VV; between these polarizations, the difference in magni-
tude is generally smaller than the uncertainty, see Table S4. Exceptions
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Fig. 7. Scatter plots of the observables (or function thereof) versusmv. The colour for γ and ϕ encodes the temporal difference Δt in days and differs for Agrisar/CanEx.
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include field 307, where also the variation of the effect observed in dif-
ferent parts of the field exceeds the uncertainty. The estimated soil
moisture impact on the coherence magnitude is found to be significant
for around 57% of the samples in all polarizations. Negative coefficients
prevail in all polarizations, with field 201 being a notable exception.
6.3. Quantile regression

Themedian of |Ξ| turns out not to depend significantly onmax |Δmv|
in the Agrisar campaign (Fig. 11). The significant deviations from zero
are in line with what would be expected based on random variations
under the null hypothesis. This also applies to most fields in the CanEx
campaign (Fig. 12): ROIs 307 and 326 form an exception, the former
in particular in HV, the latter in HH.
6.4. Sensitivity analysis

The previous analysis is based on several algorithmic choices intro-
duced in Section 5. As the main trends and patterns turn out not to be
severely affected, the relevant figures and tables are attached as
supplementary materials. The impact of each of the identified choices
will be briefly sketched in the following.

6.4.1. Reference phase
The phase observable ϕ is sensitive to the reference phase with re-

spect to which it is determined. The second implementation of its re-
trieval, which is based on the identified persistent scatterer for which
the smallest phase variance is obtained, yields the phase sensitivities
shown in Fig. S1 for the Agrisar campaign and for the CanEx data set
in Fig. S2. For the former the sensitivities decrease for fields 230 and
440 (partially ceasing to be significant), whereas the opposite trend is
observed over field 460. A similar decrease in the effect occurs for fields
109 and 201 in the CanEx campaign, whereas fields 326 and 331 cease
to display any sensitivity to mv.

6.4.2. Vegetation parameterization
The amount of vegetation as well as changes therein can also be pa-

rameterized by the vegetation height h instead of the wet biomass b in
theAgrisar campaign. The soilmoisture sensitivities ofϕ and log(|γ|) are
plotted in Fig. S3: neither those of the coherence nor those of the phase
change by more than one standard error. In the vast majority of cases



Fig. 8. The soil moisture coefficients of the regression models for the magnitude (top row) and phase (bottom row) of the complex coherence grouped according to the fields in the
AGRISAR campaign: for each field there are four subROIs v–y. The error bars indicate the 95% confidence intervals; diamonds a significant deviation from 0.
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the differences are much smaller than that; exceptions are the phase
sensitivities of the rape fields, forwhich themodel based on h yields sig-
nificant Δmv terms in HH and HV. The results of the median regression
on |Ξ| are virtually unaffected, see Fig. S4.

6.4.3. Autocorrelation
The regressions onϕ rely on the stochasticmodel of Eq. (4): it repre-

sents correlations between the observations, and these are parameter-
ized by κ. The results of the simplified stochastic model for which this
parameter is set to 0 are shown in Figs. S5 and S6. The former shows
that for theAgrisar campaign theβΔmv

coefficients remain predominant-
ly positive and of similarmagnitude; differences include the appearance
of a significant negative instance (101 in HV and VV) or significant pos-
itive ones (e.g. 440 in VV) and the loss of significance for the field 250 in
VV. In the CanEx data set, no similar changes occur.

6.4.4. Normality
The confidence intervals of the regressions of ϕ and log |γ| rely on

the assumption of normality for the error term ϵij in e.g. Eq. (2). The re-
sults of the relevant hypothesis test (see Section 5.2) are summarized in
Table A5. The null hypothesis is discarded for around 15% of the subROIs
at α = 0.05, which in the Agrisar campaign corresponds to about 5 in-
stances. In most cases the numbers of rejections are more than what
would be expected if the error terms were normally distributed in all
subROIs and independent of each other. A closer inspection of the re-
sults, however, shows that the deviations from normality tend to be
clustered according to the fields, thus rendering the assumption of inde-
pendence inherent in the binomial test invalid. Irrespective of this viola-
tion, the total number of instances with significant deviations from
normality is rather small, e.g. 1–7 for the ϕ models in either campaign.
7. Discussion

7.1. Impact on observables

7.1.1. Phase
The positive phase coefficients βΔmv

– they tend to prevail in both
campaigns and all polarizations – are only consistent with the dielectric
hypothesis of Table 1, but not with the penetration depth or deforma-
tion explanation. Themagnitude, although highly variable, generally ex-
ceeds the sensitivities obtained from the surface-only models in Fig. 2
by about two orders of magnitude. Instead, it is more congruous with
a volume contribution. The scatter in magnitude could be partially ex-
plained by the difficulty of calibratingmv and soil permittivitymeasure-
ments, their spatial scale and the depth dependence. The connection
between the size of the phase coefficients βΔmv

and the dynamic range
of the measured soil moisture is indicative of such a problem affecting
the soil moisture measurements. It could also reflect differences in
physical properties that affect both the scattering and the hydrological
behaviour of the soil. These might be related to soil texture or surface
roughness. A non-linear dependence of the phase on soil moisture
could also result in such an apparent relation between the soil moisture
dynamic range and the interferometric phases.

The phase coefficients of the biomass term βΔb in the Agrisar cam-
paign tend to be positive as well; and all the significant ones (α =
0.05) are. This sign is also consistentwith a dielectricmechanism: an in-
crease in biomass (assumed closely related to total water content)
above affects the optical path of the wave in a similar way that an in-
crease in mv does in the soil dielectric model. This influence was ob-
served previously for vegetation at X-band in laboratory experiments
by (Rudant et al., 1996).



Fig. 9. The biomass coefficients of the regression models for the magnitude (top row) and phase (bottom row) of the complex coherence, cf. Fig. 8 for a description.
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The positive sign of the soil moisture dependence inferred from the
regression analysis was also found by Rudant et al. (1996) in the previ-
ously mentioned study: for a sandy soil the authors partitioned this
phase change into a compaction (due to the particular kind of applica-
tion of the water; measured independently) and a complementary ef-
fect, both of which had the same sign. They did likewise for a swelling
soil and concluded that the complementary effect had the same sign
as for the sandy soil, but could not provide a more quantitative analysis
due to lack of near surface soil moisture measurements. Similar mea-
surements between 1.5 and 10 GHz showed the same sign of the
phase change. The interpretation of these results is hampered by
i) lack of displacement measurements, and ii) the sizeable deviations
from uniform soil water profiles (Nesti et al., 1998; Rudant et al.,
1996). In a different experiment, Morrison et al. (2013) found only
negligible phase changes upon wetting of a homogeneous sand sample
(C-band laboratory experiment; deformationsmonitored bymonoscopic
photogrammetry). Application of the same measurement constellation
to a different homogeneous sand sample found the opposite phase
trend (Morrison et al., 2011), i.e. in line with the penetration depth hy-
pothesis or surface scattering. The sensitivity of the phase toΔmvwas ob-
served to vary by about one order of magnitude over the homogeneous
soil sample. These phases could not be explained by deformations.
They are similar in size and sign to the ones observed in a laboratory ex-
periment by Yin et al. (2014) in S-band,who concluded that the SPMsur-
face scattering model could explain the observed phases.

Based on L- and C-band satellite data over three fields in Ireland,
Barrett et al. (2013) found linear dependencies of ϕ on Δmv of both
signs. In themajority of cases, these linear dependencieswere, however,
not significant. Over a swelling soil, te Brake et al. (2013) also found a
negative dependence of ϕ on Δmv but concluded that it was consistent
with the observed deformations.
7.1.2. Coherence
Themajority of estimated |Δmv| coefficients for the coherence |γ| are

negative: this means that changes in soil moisture are associated with a
loss of correlation. Such decorrelation is consistent with the volume di-
electric hypothesis, but not with a pure surface contribution. The pene-
tration depth explanation does not allow a prediction of this trend,
whereas the latter depends on the detailed modelling assumptions for
the deformation hypothesis. Note that this dependence was found to
be significant at α = 0.05 for less than one half of the samples. This
low percentage is particularly pronounced for the Agrisar campaign at
all polarizations considered, and could be due to

1. The larger time gap between acquisitions;
2. mv and b are correlated with each other and with time: this

multicollinearity inflates the standard errors of β Δmvj j;
3. Pronounced vegetation growth dominating decorrelation;
4. Additional temporal decorrelation due to wind-induced movements

and dielectric changes within the plant.

The latter are difficult to quantify, especially given the large structur-
al changes due to plant growth and the lack of suitablewind speedmea-
surements. The impact of wind-induced decorrelation on vegetated
areas is well known (Zebker & Villasenor, 1992), in particular for forests
(Lavalle, Simard, & Hensley, 2012). In a tropical rain forest, Hamadi,
Albinet et al. (2014) and Hamadi, Borderies et al. (2014) observed that
wind-relatedmovements, structural changes of the canopy and permit-
tivity fluctuations of plant tissue led to decorrelation at different time
scales. The influence of vegetation dynamics on decorrelation was also
observed by Barrett et al. (2012) in agricultural fields in Ireland at
both C and L-bands: the effect of soil moisture changes was small in
comparison. Srivastava and Jayaraman (2001) and Weydahl (2001)



Fig. 10. The soil moisture coefficients of the regression models of the CanEx campaign, cf. Fig. 8 for a description.
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deduced that decorrelation was related to changes in plant and soil
moisture, but did not provide quantitative results due to lack of soil
moisture observations. The decorrelation observed in this study is also
consistent with the results of Hensley et al. (2011). Using the CanEx
data set but different ROI definitions and statistical techniques, they de-
duced that the time lag alone cannot explain the decorrelation but that
soil moisture information is needed. Furthermore, the magnitude of
these decorrelation effects is similar to the ones obtained by Nesti
et al. (1998) in a laboratory experiment at higher frequencies.

7.1.3. Phase triplets
The results in Figs. 11 and 12 reveal that the median of |Ξ| has

an insignificance linear dependence on max |Δmv| except for two fields
in the CanEx campaign: this is consistent with the deformation, null,
Fig. 11. The soil moisture coefficients of theΞ quantile regression
penetration depth and surface-based dielectric hypothesis, but not nec-
essarily with the volume dielectric explanation. The origins of this insig-
nificant dependence appear to be distinct for different fields. Firstly,
there arefields forwhich the linearmodel forϕ candescribe the data ex-
ceedingly accurately: in this case theΞ are close to 0 and the fit for the
median of |Ξ| is good and close to 0 as well. Among these fields are
CanEx 109, aswell as Agrisar 230 and 250. The second category includes
those fields whose fit to bothϕ and |Ξ| is inaccurate, such as Agrisar 102
and 460, as well as CanEx 331. Note that this cannot be due to phase off-
sets alone (such as those arising from the phase referencing) as these
cancel when the phase triplets are formed. Thirdly, there are fields for
which the linear model for ϕ applies reasonably well, but for which
the |Ξ| (which indicate deviations from linearity) are not clearly depen-
dent on max |Δmv|, e.g. CanEx 136 (see Fig. 7) or Agrisar 140.
model of the AGRISAR campaign, cf. Fig. 8 for a description.



Fig. 12. The soil moisture coefficients of theΞ quantile regression model of the CanEx campaign, cf. Fig. 8 for a description.
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De Zan et al. (2014) compared the phase triplets with the predic-
tions of the volume-only first-order scattering model for field 222 in
the Agrisar data set, for which they found a clear correspondence. The
model-independent results of Fig. 11 do not confirm a dependence on
soil moisture, but neither do they rule out different functional forms of
dependence, i.e. the assumed dependence of Eq. (5) might be incapable
of capturing the soil moisture effects (see Section 5.3). This suggests the
need for more detailed assessments of such physical models.
7.2. Assessment of explanations

The previous analyses of the observed relation between the DInSAR
observables and soil moisture permit certain inferences about the plau-
sibility of the four proposed hypotheses of Section 3.
7.2.1. Null hypothesis
The null hypothesis – there is no impact on any observable – cannot

explain the significant and non-zero dependences observed for ϕ and
|γ|. These inferred connections can, of course, be spurious, e.g. due to
omitted variables or only partially considered phenomena that influ-
ence the observables. These include the phase influences due toDEMer-
rors and orbit inaccuracies. However, these are not expected to be
correlated with soil moisture changes, and estimated to be smaller
than the inferred soil moisture contributions on the phase. Another
prominent example of such a phenomenon is vegetation, which exerts
a considerable influence in the Agrisar campaign. In the CanEx data
set, however, the limited vegetation cover and growth, along with the
short repeat periods, provide more support for the actual presence of
soil moisture effects. Secondly, the soil temperature Ts has been repeat-
edly shown to impact the soil dielectric constant (Mironov et al., 2013);
however, Ts only varies by about 4 K for the different acquisitions in the
CanEx campaign, which translates to changes in permittivity that are
much smaller than the ones due to soil moisture (in the model by
Mironov et al. (2013), it is equivalent toΔmv≈ 0.001 m3 m−3). The re-
sults of Figs. 8 and 10 thus provide evidence for the presence of soil
moisture effects.
7.2.2. Deformation
The deformation hypothesis (soil swelling) predicts a different sign

of βΔmv
for ϕ than the one observed in both data sets. It can thus be

ruled out as the sole origin of anmv influence of the phase. The opposite
deformation behaviour (swelling upon drying) would be consistent
with the sign of βΔmv

; we have, however, found no reference to such a
soil in the literature, except for rain compaction (Moore & Singer,
1990). The latter is, however, too small a deformation to explain the
measured ϕ: it can reach almost π (no apparent wrapping has been
observed): this corresponds to a deformation of λ
4, i.e. 0.05 m, and this

appears to be a peculiarly large displacement (Hensley et al., 2011).

7.2.3. Penetration depth
Thepenetration depthmechanismalso predicts the opposite sign for

the phase dependence than the one present in the data. In conjunction
with the inherent inadequacies of this hypothesis (in particular the in-
ability to explain |γ|), these empirical results contradict the penetration
depth explanation.

7.2.4. Dielectric mechanism
The dielectric volume explanation can account for the observed de-

pendencies of both ϕ and |γ| (bearing in mind the difficulties with the
latter identified in Section 7.1.2). The magnitudes of the phase effects
are furthermore inconsistentwith a pure surface dielectric effect as pre-
dicted by the surface scattering models considered in Table 2. The
volume-only model of De Zan et al. (2014) predicts not only the sign
but also the right order of magnitude forβΔmv

of ϕ. This model also pre-
dicts non-zero phase triplets Ξ. Their dependence on soil moisture as
expressed by Eq. (5) is found insignificant for the majority of the fields,
but the functional relation predicted by the model by De Zan et al.
(2014) is different as well as more complex than the one assumed in
the regression. The absence of significance found in this study thus
does not imply the absence of soil moisture effects in the phase triplets.

A change of the structure function, i.e. the variation of the scatterers
with depth, in the volume model could render the model more flexible
with regards to the soil moisture sensitivities to account for their ob-
served variability. It would e.g. enable the prediction of larger sensitivi-
ties: these are consistent with a large concentration of inhomogeneities
deeper in the soil and less scattering from the upper parts, cf. the buried
target of Morrison et al. (2013). The depth of the buried target governs
the sensitivity of ϕ with respect to mv. In natural soils, a layered soil
could have a similar impact on the interferometric observables (Rabus
et al., 2010). Also the variation of soil moisture with depth and the
choice of dielectric mixing model are expected to impact the interfero-
metric signals (De Zan et al., 2014; Rabus et al., 2010). Amodel combin-
ing surface dielectric effects and volume scattering could similarly
account for some of the variability of the soil moisture effects across dif-
ferent fields.

7.3. Differences between polarizations

Even though the soil moisture impact is similar for HH, HV and VV,
the differences between the polarizations can potentially provide fur-
ther insight into the scattering physics that give rise to themv and veg-
etation effects. In particular the sizeable impact of Δmv on the HV phase
might seem surprising given that the soil contribution at this channel is
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expected to be considerably smaller than at HH or VV. Such a depen-
dence has also been found by Barrett et al. (2013) in C and L-band, but
for the former with the opposite sign.

In the CanEx data set theβΔmv
for the phaseϕ at HH and VV are sim-

ilar: their differences do not show a consistent pattern regarding their
sign or size, and are significantly different from zero for only 14% of
the samples; see Table S4. In theAgrisar campaign the phase coefficients
tend to be larger for HH than for VV, but this difference is only signifi-
cant at α=0.05 in 25% of the samples, cf. Fig. 8 and Table S3. These dis-
crepancies appear to be related to the crop: the difference in both fit and
magnitude is particularly pronounced for wheat (230, 250), the differ-
ence in location for barley (440) and partially also for rape (101,140).
FormaizeHH and VV behave similarly, but there aremarked differences
between the subROIs. The linear model for ϕ is not accurate for sugar
beet (102, 460) in any polarization. Note that all crops except the latter
consist of dominantly vertically oriented scatterers, for which the inter-
actionwith electromagnetic waves is expected to be significantly stron-
ger in the vertical than the horizontal polarization, as the horizontal
extent of the scatterers is small compared to the wavelength except
for mature maize. The increased interaction of the waves with vegeta-
tion in VV is consistent with smaller (i.e. larger magnitude) βΔmv

for
the phase ϕ as well as the larger scatter observed in VV.

The reputed change in the effective propagation due to forward scat-
tering in the vegetation affects the optical path (cf. Section 7.1.1), and
this polarization dependence is evident in the slope term of ϕ with
respect to Δb in Table S3. Its magnitude is expected to be larger for
VV than HH for vertically oriented crops: empirically, this difference is
significant at α = 0.05 for 230 and 250 (both wheat) as well as 440
(barley) and for two samples in 101 (rape).

The coefficients for |γ| barely depend on the choice of polarization in
the two campaigns; note, however, that the decorrelation appears not
to be dominated by soil moisture effects in the Agrisar campaign, cf.
Section 7.1.2. The vegetation-related decorrelation is, however, not
strongly polarization-dependent (Table S3) either.

7.4. Robustness to implementation

The assumptions pointed out in Section 5 – the choice of reference
phase, the parameterization of the vegetation, the estimation of the au-
tocorrelation and the normality of the error term – are shown in
Section 6.4 to have only minor impacts on the overall patterns found
using regression analysis. Noticeable changes do occur for particular
fields, e.g. due to representing the vegetation by its height rather than
its biomass or by using a different reference phase. These are, however,
limited in both number and extent. The lack of sensitivity with respect
to the error model in the ϕ regressions (for example with respect to
the consideration of the autocorrelation) tallies with the rationale of
referencing the phase with scatterers in close proximity, thus limiting
the influence of unmodelled phase patterns. The conclusions drawn
from the statistical analyses thus appear to be reasonably robust to
these assumptions.

7.5. Relevance of the soil moisture effects

As radar interferometry is commonly applied to estimate displace-
ments and elevations, a question regarding the impact of soil moisture
changes arises: how do they affect the estimation of displacements
and elevations? The two data sets exhibit phase excursions of up to π

2,
e.g. in Fig. 7, and we attributed these to soil moisture effects due to
their conspicuous dependence on Δmv. Phases of this magnitude
were associated with coherencemagnitudes of 0.5–0.8, which are com-
monly considered adequate for differential interferometry (Crosetto,
Monserrat, Cuevas, & Crippa, 2011; Ketelaar & Hanssen, 2003).

Such a value of ϕ ¼ π
2 corresponds to a displacement of 2–3 cm at L-

band. This spuriously inferred movement is of similar or larger
magnitude thanmost geophysical deformationmechanisms commonly
studied using DInSAR. Furthermore, it can occur on comparatively rapid
time scales of minutes to days. Also the spatial scales at which these
changes occur can in certain cases be comparable to those of the defor-
mation processes. These soil moisture effects can thus potentially ren-
der such deformation analyses unreliable. However, many common
processing systems avoid such areas by deriving the phase information
from stable point-like scatterers, but there have been numerous ap-
proaches (e.g. (Berardino, Fornaro, Lanari, & Sansosti, 2002; Ferretti
et al., 2011)) to include areas such as soil, that do not act as point-like
targets. These algorithms commonly map the phase information of as
many interferograms as possible to one time series with a fixed master
scene. This mapping could only reduce the soil moisture signal signifi-
cantly if the non-linear terms of the soilmoisture dependence ofϕ dom-
inated. Otherwise, if the linear components dominated as inmany of the
fields observed in this study, the soil moisture variations will be pre-
served in the phase time series, from which the displacements are in-
ferred. These estimated deformations are commonly assumed to
exhibit a particular temporal behaviour, such as a movement with a
constant velocity (Berardino et al., 2002). Under such an assumption,
the deformation estimate would only be impacted if the soil moisture
variations corresponded to that particular temporal model.

In the estimation of elevations using repeat-pass interferometry, the
impact of a soil moisture phase term of π

2 (assumed independent of the
baseline) on the inferred height will depend on the baseline. More spe-
cifically, it will scale with the height of ambiguity ha ¼ 2π

κzj j. This spurious

elevation can be compared to the one due to phase noise: apart from
areas where interferometry is hardly feasible due to decorrelation, the
number of looks is generally chosen so that this phase noise is much
smaller than π

2 (Bamler & Hartl, 1998). Thus the soil moisture effect
can dominate the noise; it will also generally exhibit spatial patterns
that can be related to the topography. Soil moisture variations can
thus induce errors in the estimated elevation models that are both sig-
nificant and relevant.
8. Conclusions

We conducted an empirical study of the soil moisture effects of
DInSAR observables at L-band in amodel-independentway. These anal-
yses reveal that there is a dependence of the phase ϕ on changes in soil
moisture Δmv in both data sets examined. The decorrelation is also re-
lated to such changes; this relation is more pronounced in the CanEx
data set, where the time difference between the acquisitions is smaller.
The sign of the phase dependence and also its magnitude point towards
volume scattering within the soil. This mechanism can also explain
moisture-related decorrelation, and existing models could be adapted
to capture the observed variabilities of the sensitivities with respect to
soil moisture. The observed ϕ dependence on mv is inconsistent with
both the swelling soil and the penetration depth explanation.

These inferences only relate to the two L-band data sets analysed:
their generality can only be established with additional studies. Future
research might elucidate the impact of the soil characteristics (e.g.
roughness or swelling behaviour), the properties of the vegetation
cover, as well as the radar frequency. The wavelength governs the sen-
sitivity to movements and roughness, as well as the penetration depth,
which suggests a possible impact on the soil moisture effects. At higher
frequencies such as X and Ku-band, temporal decorrelation is expected
to be more pronounced. Frequent acquisitions, which can for example
be made using ground-based radars, will thus be instrumental in pro-
viding the data that is necessary to improve the understanding and
modelling of these effects.

Owing to the size of the observed phase values of up to ϕ = 0.5π,
corresponding to a displacement of 2–3 cm at L-band, these soil mois-
ture effects deserve to be considered in repeat-pass InSAR studies.
They have the potential to induce errors in the estimated deformations
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in a wide range of temporal and spatial scales, thus indicating the im-
portance of the study of these effects. Advances in the processing
schemes and the physical modelling of these influences might lead to
improvements in the estimates of the deformations and their uncer-
tainties, thus contributing to the study of geophysical phenomena as di-
verse as tectonics, mass-movements and permafrost degradation.
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