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Abstract10
11

A previously developed on-line visible and near infrared (vis-NIR) spectroscopy-based soil12

measurement system was implemented for the measurement of soil organic carbon (OC),13

total nitrogen (TN) and moisture content (MC) in three fields at three European farms. The14

on-line sensor platform was coupled with a mobile, fibre type, vis-NIR spectrophotometer15

(AgroSpec from tec5 Technology for Spectroscopy, Germany), with a measurement range16

of 305 - 2200 nm, to acquire soil spectra in diffuse reflectance mode. A general calibration17

set of 425 soil samples, spiked with different number of spectra from the three validation18

fields were used to establish calibration models for the studied soil properties using partial19

least squares (PLS) regression analysis. Different spiking strategies and spiking ratios were20

investigated and results revealed that the best prediction accuracy was obtained after 20%21

spiking ratio with samples whose spectra were measured in the laboratory. Evaluated by the22

values of residual prediction deviation (RPD), which is the ratio of standard deviation to23

root mean square error of prediction (RMSEP), the accuracy of the on-line measurement24
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was classified as excellent for MC (RPD = 2.76 - 3.96), good to very good for OC (RPD =25

1.88 - 2.38) and good to excellent for TN (RPD = 1.96 - 2.52). Reducing the number of26

samples used for spiking resulted in deteriorating the prediction accuracy, although 1-227

samples per ha were found to provide good predictions. There was a distinguishable spatial28

similarity between the on-line and laboratory measured maps for all studied properties,29

although the full-data point maps provided more detailed information about the spatial30

variation. This confirms that the on-line vis-NIR soil sensor provides correct and detailed31

information about soil OC, TN and MC at high sampling resolutions.32

33

Keywords: on-line measurement, soil properties, spiking, European farms, accuracy.34

35

1. Introduction36
37

One of the strategies used in precision agriculture (PA) is to minimize the production costs38

through enhanced efficiency, which can increase profits and conserve the environment. It is39

proved that PA is an environmental friendly strategy, in which farmers can vary the use of40

inputs to respond to variable soil and crop conditions within a field (Srinivasan, 2006).41

Conventional determination of soil spatial variability usually involves manual soil42

sampling, sample pre-treatment, laboratory reference analyses and mapping. This procedure43

is very expensive, time consuming and provides scattered measurement points. Therefore,44

the development of a fast, robust, cost effective and environmental friendly detecting45

method of the soil spatial variability is a preliminary task for the implementation of PA.46
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Visible and near infrared (vis-NIR) spectroscopy became recently a proven technique for47

fast, cost effective and high resolution data collection on soil properties (Viscarra Rossel &48

McBratney, 1998; Shepherd & Walsh, 2002; Mouazen et al, 2010; Stenberg et al., 2010;).49

In comparison to non-mobile analysis, there is considerably less literature available about50

on-line vis-NIR spectroscopy analysis of soil properties. Generally, both the laboratory and51

in situ non-mobile vis-NIR methods provide better accuracy than the on-line method52

(Kuang et al., 2012). This might be attributed to other factors influencing the latter method53

only, such as noise associated with tractor vibration, sensor-to-soil distance variation54

(Mouazen et al., 2009), stones and plant debris and difficulties of matching the position of55

soil samples collected for validation with corresponding spectra collected from the same56

position (Mouazen et al., 2007). A review on the current status of on-line vis-NIR57

measurement systems confirms that only three systems are available today (Shibusawa et58

al., 2001; Mouazen et al., 2005; Christy et al., 2008). The beginning of these systems dates59

back to 1991, when Shonk et al., (1991) developed a system to measure soil organic matter60

(SOM) and moisture content (MC), which utilised a single wavelength (660 nm) of light,61

reporting a determination coefficient (R2) of 0.83 for SOM. Shibusawa et al., (2001)62

developed an on-line vis-NIR (400 – 1700 nm) sensor to predict organic carbon (OC), MC,63

pH and NO3-N. Although this system is highly technically instrumented, it is rather64

expensive. Christy et al., (2008) developed a prototype soil reflectance mapping unit65

equipped with a vis-NIR spectrophotometer, which is commercially available in the market66

today. The sapphire glass of the optical probe makes direct contact with soil and stones.67

They have reported that OC can be successfully measured with a RMSEP of 3.0 gkg-1 in a68

high OC variability area (standard deviation = 5.1 gkg-1 and range = 3.0-26.3 gkg-1). A69
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simpler design to the one of Shibusawa et al., (2001) without sapphire window optical70

configuration was developed by Mouazen (2006). So far, the system provided variable71

degrees of success for the measurement of MC, total nitrogen (TN), total carbon (TC), pH72

and available P in different soils in Belgium and northern France (Mouazen et al., 2005;73

Mouazen et al., 2007; Mouazen et al., 2009). More recently, employing the on-line system74

developed by Christy et al. (2008), Bricklemyer et al. (2010) reported on the on-line75

measurement for soil OC and clay content. Although authors did not report quantitative76

estimation of accuracy for OC, they calculated a standard error of prediction (SEP) of 3.477

gkg-1 and a RPD value of 1.4 for clay content. Using the same system, coupled with78

topography and aerial photograph data, Munoz & Kravchenko (2011) reported low to79

moderate accuracy of soil OC measurement with R2 and RMSEP ranged from 0.44 to 0.6680

and from 1.41 to 1.51 gkg-1, respectively. Applying this vis-NIR system in combination81

with electrical conductivity (EC) and temperature sensors in a Danish field, Knadel et al.82

(2011) obtained moderate prediction accuracy (RMSEP = 59.4 gkg-1 and RPD = 2.3) for83

soil OC. However, the vis-NIR sensor alone only achieved a relatively low accuracy84

(RMSEP = 59.8 gkg-1, RPD = 1.9). This brief review reveals that the existing on-line85

sensors do not provide sufficiently accuracy and stability to recommend them for site86

specific application of different inputs. The variable degrees of performance of these on-87

line sensors might be attributed to the fluctuation in model performance, with the majority88

of them established for field-scale analysis (e.g. Shibusawa et al., 2001; Mouazen et al.,89

2005; Christy et al., 2008; Munoz & Kravchenko, 2011), or for regional- and country-scale90

analysis (e.g. Mouazen et al., 2007; Mouazen et al., 2009). Some studies suggested spiking91

local samples into the general calibration models can improve prediction accuracy under92
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laboratory or in situ measurement conditions (Shepherd & Walsh, 2002; Janik et al., 2007;93

Waiser et al. 2007; Sankey et al. 2008; Viscarra Rossel et al. 2008; Minasny et al. 2009;94

Wetterlind and Stenberg, 2010; Guerrero et al. 2010). As yet, no general calibration95

procedure that included spiking strategy have been reported for establishing calibration96

models of on-line sensors, which has led to stable performance of on-line sensors, at the97

lowest model production cost.98

This paper aims at reporting on a methodology for the calibration of a vis-NIR on-line99

measurement system (Mouazen, 2006), including spiking concept for automatic data100

collection of OC, TN and MC at farm scale in three European farms.101

102

2. Material and methods103

104

2.1 Soil samples and laboratory analyses105
106

A total of 425 soil samples were used as a general dataset to be used to establish calibration107

models for the measurement of OC, TN and MC in European soils (Table 1). They were108

collected from four different farms in Europe, namely Mespol Medlov, A.S. (Czech109

Republic, http://farmsubsidy.org/CZ), Wimex (Germany, http://www.wimex-online.de),110

Bramstrup Estate (Denmark, http://www.bramstrup.dk) and Silsoe Farm (The UK). Bulked111

samples from 16 cores were collected from the upper soil layer (0-30 cm) in the spring of112

2008 (Czech Republic and Germany), spring of 2009 (Denmark) and summer of 2009 (UK)113

and covered diverse soil conditions (Kuang and Mouazen, 2011). A total of 128, 97 and 48114
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soil samples were, respectively, collected from seven fields in Mespol Medlov, A.S. farm,115

six fields in Bramstrup Estate farm and two fields in Silsoe farm. Further 152 soil samples116

were collected from four sub-areas belong to Wimex farm, with four samples from two117

fields at Reppichau, 50 samples from nine fields at RAG, 20 samples from ten fields at118

Aken and 54 samples from fifteen fields at the Wulfen farm.119

Apart from these soil samples, another 113 soil samples were collected from three selected120

fields, where on-line measurement was carried out, namely, in Mespol Medlov,121

Bramstrump Estate and Silsoe farms (Table 2). These were considered as validation fields.122

They were collected during the on-line measurement from the bottom of trenches at a depth123

of 15 cm. The validation field in Silsoe farm is 500 m away from the nearest fields, where124

samples used for general data set were collected, whereas the validation fields in Mespol125

Medlov and Bramstrump Estate farms are 2.5 km 3 km far from the nearest fields,126

respectively. A principal component analysis (PCA), performed on 425 samples of general127

calibration dataset and 113 validation data set shows clear separation between validation128

samples of each individual farm from the general dataset samples (Fig. 1).129

Around 200 g of soil from each sample was kept deep frozen (-18 °C) until analysis. After130

careful mixing, half of each sample from Czech Republic, Germany and Denmark was sent131

to Leibniz Centre for Agricultural Landscape Research (ZALF) in Germany for soil132

chemical analyses for TN and OC and the second half was sent to Cranfield University for133

optical measurement and data analysis. Samples collected from the UK and 113 soil134

samples collected during the on-line measurement in 2010, were subjected to both optical135

and chemical measurement at Cranfield University. Sample statistics of laboratory136
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reference measurements is summarised in Table 3 for the calibration and validation137

datasets.138

139

2.2 On-line measurement140

141

The on-line measurement system designed and developed by Mouazen (2006) was used142

(Fig. 2) to measure three fields in the three European farms. It consists of a subsoiler, which143

penetrates the soil to the required depth, making a trench, whose bottom is smoothened by144

the downwards forces acting on the subsoiler. The optical probe is housed in a steel lens145

holder. This is attached to the backside of the subsoiler chisel in order to acquire soil146

spectral reflectance data from the smooth bottom of the trench. The subsoiler was147

retrofitted with the optical unit and attached to a frame. This was mounted onto the three148

point linkage of the tractor (Mouazen et al., 2005a). An AgroSpec mobile, fibre type, vis-149

NIR spectrophotometer (Tec5 Technology for Spectroscopy, Germany) with a150

measurement range of 305-2200 nm was used to measure soil spectra in diffuse reflectance151

mode. The spectrometer was an IP 66 model, protected for harsh working environments. A152

deferential global positioning system (DGPS) (EZ-Guide 250, Trimble, USA) was used to153

record the position of on-line measured spectra with sub-meter accuracy. A Panasonic154

semi-rugged laptop was used for data logging and communication. The spectrometer155

system, laptop and DGPS were powered by the tractor battery.156

Three fields were measured in summer 2010, namely, in Mespol Medlov, A.S. farm in157

Czech Republic, Bramstrup Estate farm in Denmark and Silsoe farm in the UK. In each158
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field, blocks of 150 m by 150 m, covering about 2 ha of land were measured. Each159

measured line was 150 m long with 10 m intervals between adjacent transects (Fig. 3). The160

travel speed of the tractor was around 2 km/h and the measurement depth was set at 15 cm.161

During the measurement at each line, 2 or 3 soil samples were collected from the bottom of162

the trench and the sampling positions were carefully recorded with a DGPS. Each of those163

samples was equally divided into two parts. One half used to carry out the laboratory164

reference measurements of soil OC, TN and MC and the other half used for optical165

scanning.166

167

2.3 Laboratory reference analyses168

169

Soil OC and TN were measured by a TrusSpecCNS spectrometer (LECO Corporation, St.170

Joseph, MI, USA), using the Dumas combustion method. Soil MC was determined by oven171

drying of the soil samples at 105 ºC for 24 h. The results of the textural analysis of the three172

on-line measured fields were based on a mixed sample from each field. Each sample was173

subjected to wet sieving and a hydrometer test in order to determine the particle size174

distribution. Texture classes were determined according to the United State Department of175

Agriculture (USDA) classification system (Table 2).176

177

2.4 Optical measurement178

179
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Each soil sample was put into a glass container and mixed well. Big stones and plant180

residue were removed (Mouazen et al., 2007). Soil from each sample was placed into three181

Petri dishes, which were 2 cm deep and 2 cm in diameter. The soil in the Petri dish was182

shaken and pressed gently before levelling with a spatula. A smooth soil surface ensures183

maximum light reflection and a high signal to noise ratio (Mouazen et al., 2007). The soil184

samples were scanned by the same AgroSpec portable spectrophotometer (Tec5185

Technology for Spectroscopy, Germany), used during the on-line measurement. A 100 %186

white reference was used before scanning. A total of 10 scans were collected from each cup187

and these were averaged in one spectrum.188

189

2.5 Sample pre-treatment and development of calibration models190

191

2.5.1 Pre-treatment of spectra192

193

The spectral range of the soil spectra was first reduced to 371 - 2150 nm to eliminate the194

noise at both edges of each spectrum. The number of wavelengths was then reduced by195

averaging three successive wavelengths in the visible range, and 15 points in the NIR196

range. The Savitzky-Golay smoothing, maximum normalisation and first derivation197

(Martens & Naes, 1989) were successively implemented using Unscrambler 7.8 software198

(Camo Inc.; Oslo, Norway). The pre-treated spectra and the laboratory chemical199

measurement values were used to develop the calibration models.200

201
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2.5.2 Spiking202

203

The purpose of spiking is to introduce variability of a new set of data into a general204

calibration dataset. Three different spiking strategies of soil samples collected from the205

target validation fields were selected. These included - no spiking of soil samples, - spiking206

with laboratory non-mobile scanned spectra and - spiking with on-line (mobile) spectra207

recorded during the on-line measurement. When spiking was considered with the latter 2208

cases, 20% of a randomly selected set of samples (21 samples from the three fields) from209

the total 113 soil samples collected during the on-line measurement were spiked into the210

general data set of 425 samples, collected from the 4 European farms (see also 2.1).211

Furthermore, smaller ratios of spiking samples of 5% (8 samples) and 10% (12 samples)212

were randomly selected from the laboratory measured spectra only, and were used as213

spiking sets to envisage the influence of different spiking ratios (sample numbers) on the214

on-line prediction accuracy. By adopting these spiking strategies and ratios we obtained215

five calibration sets (Tables 4), namely, without spiking, 5%, 10% and 20% spiking ratios216

of laboratory measured spectra and 20% spiking ratio of on-line measured spectra.217

218

2.5.3 Development of calibration models219

220

The five calibration sets were subjected to a partial least squares (PLS) regression analysis221

with the leave-one-out cross validation using an Unscrambler 7.8 software (Camo Inc.;222

Oslo, Norway), which resulted in five groups of PLS models for each soil property (Table223

4). For all five spiking strategies and ratios the same on-line data set of 80 %, was used as224



11

the validation set for the three soil properties in each field. This resulted in three validation225

sets of 39, 30 and 23 samples in Czech Republic, Denmark and UK validation fields,226

respectively (Table 5). These three data sets were used to validate the on-line measurement227

and to develop maps comparing the laboratory reference with the corresponding on-line228

measured values.229

The number of latent variables for a model was determined by examining a plot of the230

leave-one-out cross-validation residual variance against the number of latent variables231

obtained from the PLS. The latent variable of the first minimum value of residual variance232

was selected. Outliers were detected using the residual sample variance plot after PLS.233

Samples located far from the zero line of residual variance were considered outliers and234

excluded from the cross-validation sample set.235

The prediction performance of the PLS models was evaluated by means of root mean236

square error of prediction (RMSEP) and the rresidual prediction deviation (RPD), which is237

the ratio of standard deviation (SD) of the measured values to RMSEP. Viscarra Rossel et238

al. (2006) classified RPD values as follows: RPD<1.0 indicates very poor239

model/predictions and their use is not recommended; RPD between 1.0 and 1.4 indicates240

poor model/predictions where only high and low values are distinguishable; RPD between241

1.4 and 1.8 indicates fair model/predictions which may be used for assessment and242

correlation; RPD values between 1.8 and 2.0 indicates good model/predictions where243

quantitative predictions are possible; RPD between 2.0 and 2.5 indicates very good,244

quantitative model/predictions, and RPD>2.5 indicates excellent model/predictions. This245

classification system was adopted in this study.246

247



12

2.6 Development of soil maps248

249

Two types of maps were developed, namely, comparison and full-data points maps. The250

comparison maps were developed to compare on-line predicted with laboratory reference251

measurement of a soil property based on randomly selected points in the field. This252

comparison also included maps of predicted values based on laboratory scanned spectra of253

the same randomly selected samples. The full-point maps were developed using all on-line254

predicted data points (~1500 - 2000 point per ha). ArcGis 10 (ESRI, USA) software was255

used to generate the comparison maps, using the inverse distance weighing (IDW)256

interpolation methods. To produce the latter maps, Vesper 1.6 software, developed by257

Australian Centre for Precision Agriculture, was used to develop semivariogram models for258

OC, TN and MC using the entire field on-line data. Based on semivariogram parameters259

and kriging interpolation method, ArcGis 10 (ESRI, USA) was used to produce the full-260

data point maps.261

A flow diagram illustrating the different steps taken into account in this study, from the262

collection of soil sample to the development of different maps is shown in Fig. (4). This263

Figure illustrates clearly that the vis–NIR calibration models were developed using soil264

spectra scanned under non-mobile laboratory environment, except for spiking with 20% on-265

line measured spectra.266

267

3. Results and discussion268

269

3.1 Accuracy of calibration models in cross-validation270
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271

Based on spiking strategies and ratio of samples spiked in the general calibration set, the272

accuracy of calibration models achieved based on cross-validation proves promising results273

(Table 4). Examining RPD values reveals that the models with 20 % spiking ratio of274

laboratory-scanned spectra were the most accurate with RPD values of 2.82, 2.61 and 4.28275

for OC, TN and MC, respectively. Similar results were reported by Kuang & Mouazen276

(2011) but for a larger range (350-2500 nm) vis-NIR spectrophotometer. Furthermore, RPD277

values of all models were equal or larger than 2.5. According to Viscarra Rossel et al.278

(2006), an RPD values above 2.5 indicates excellent prediction results. Results also show279

that models without spiking provide smaller accuracy (larger RMSEP and smaller RPD280

values) than models with spiking for all spiking strategies and ratios (Table 4), except for281

models with 20% spiking ratio of on-line samples for OC and TN.282

283

3.2 Validation of on-line measurement284

285

The same spectra pre-treatment was used for the on-line collected spectra as that used for286

the development of calibration models. The on-line collected spectra after spectra pre-287

treatment were used to predict MC, TN and OC using calibration models developed in288

advance, as explained above. The laboratory reference measurement values were compared289

with the on-line predicted concentration values at the same positions. Table 5 summarises290

the accuracy of the on-line measurement for studied soil properties based on different291

spiking strategies (no spiking, spiking with laboratory or on-line collected spectra) and292

spiking ratios. Table 5 reveals that RPD values were above 2 for all soil properties in all293



14

fields, except for 3 cases. Out of these cases, RPD in one case was 1.98 for OC in the field294

in Denmark. The other two cases (OC and TN in the Danish and the UK fields,295

respectively) are for models developed based on 20% spiking ratio with on-line collected296

spectra. Adopting Viscarra Rossel et al. (2006) classification system for the prediction297

accuracy reveals that the on-line prediction of OC is good/very good and good/excellent for298

TN and is excellent for MC, for all modelling strategies without and with spiking (Table 5).299

As SOM or OC are essential for soil management and carbon sequestration, they were the300

main properties considered for on-line vis-NIR measurement (Shonk et al., 1991; Hummel301

et al., 2001; Shibusawa et al., 2001; Mouazen et al., 2007; Christy et al., 2008; Bricklemyer302

et al., 2010). Although there are some significant absorbance peaks associated with C=O,303

C–H + C–H and C–H + C–C overtones and combinations in the NIR spectral ranges, only304

few moderate successful cases for on-line measurement have been reported so far (Hummel305

et al., 2001; Christy et al., 2008). This might be attributed to the several affecting factors306

during on-line measurement (Mouazen et al., 2007; Mouazen et al., 2009; Stenberg et al.,307

2010). Compared to the on-line sensing of OC, there are even fewer studies on TN can be308

found in the literature (Christy et al., 2008; Mouazen et al., 2007). Only Christy et al.,309

(2008) archived high accuracy for TN (R2 = 0.86) for a field scale calibration. This was not310

confirmed stable for different fields, as reported in the current study where on-line311

validation is classified as good to excellent in the three measured fields (Table 5). Actually,312

there is high correlation between OC and TN, because the N content in soil is almost313

entirely dependent on SOM content, and the overall TN:OC ratio is 1:10 (Martin et al.,314

2002). This high correlation explains the successful measurement of TN, although no direct315

spectral response exists for TN.316
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Soil MC is the most successfully on-line measured soil property and higher accuracies as317

compared to OC and TN were reported in the literature (Hummel et al., 2001; Mouazen et318

al., 2005; Christy et al., 2008). This is due to significant O-H absorbance peaks at 950,319

1450 and 1950 nm overtones. Although the range of MC was relative narrow in the current320

study (SD = 12.8 - 23.4 gkg-1) (Table 5), the RMSEP for on-line prediction after 20%321

spiking with laboratory scanned spectra is very small (3.23 gkg-1 - 7.40 gkg-1), proving the322

excellent performance of the sensor for on-line sensing of MC.323

324

3.3 Soil maps325

326

3.3.1 Comparison maps327

328

Figure 5 compares maps of on-line spectra-based predicted values (e.g. models of 20%329

spiking ratio with laboratory scanned samples), laboratory spectra-based predicted values330

and laboratory reference measured values for OC (5a), TN (5b) and MC (5c) in the field of331

Bramstrup Estate farm in Denmark, shown as an example. In order to allow for meaningful332

comparisons between reference and on-line measured maps, the same number of classes (7333

classes) was considered for all maps with each class has identical range in the three maps334

(Mouazen et al., 2007). A comparison between maps of measured and predicted soil335

properties investigated shows large spatial similarity, with high and low zones match336

almost perfectly. No spatial differences can be observed between validation maps337

developed with on-line measured spectra and the corresponding maps developed with338
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laboratory (non-mobile) measured soil spectra. This proves the high quality of on-line339

measured spectra, which reflects the sensor stability and robustness during on-line340

measurement. Figure 6 shows the error maps between laboratory reference measurement341

and on-line prediction values of OC, TN and MC in the Denmark field. It can be observed342

that the largest error in the three maps occur at the boarder of each field, which might be343

attributed to errors associated with placing or removing the optical probe in the soil,344

respectively, at the start or end of some measured lines. Another reason might be the345

irregularity of the soil surface at the field circumference.346

347

3.3.2 Full-data point maps348

349

The semivarigram parameters of the three properties in the Denmark field are summarised350

in Table 6. Maps show high spatial variability of the three soil properties, although the field351

area is remarkably small of 2 ha (Fig. 7). This high variability encourages the need for on-352

line soil sensor for the characterisation of within field spatial variability of soil properties,353

as zones with different levels of concentration should be managed differently in PA,354

particularly for site specific fertilisation. In particular, high similarity between OC and TN355

maps can be observed, which can be attributed to the high correlation exist between OC and356

TN in the soil. Comparing between laboratory reference analyses maps produced based on357

few measurement points (Figure 5) with corresponding full-data point maps based all on358

on-line measurement points (Figure 7), more detailed characterisation of within field359
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variation of the three soil properties can be observed in the latter maps. This detailed360

variation is essential for precise management of input applied to the soil-crop system.361

362

3.4 Effect of spiking strategy and spiked sample number363

364

Comparing the effect of different spiking strategies and ratios, revealed that the best365

accuracy of on-line prediction of the three soil properties is achieved with models366

developed after 20% spiking ratio with laboratory scanned spectra. However, it can be367

clearly seen that even the smallest 5% spiking ratio with laboratory scanned spectra can368

improve the on-line prediction for all properties in all fields, comparing to on-line369

prediction using models without spiking. Furthermore, the prediction accuracy decreases as370

the number of spiked samples decreases and vice versa. However, for spiking with on-line371

measured spectra (e.g. 20% spiking ratio), the prediction accuracies are smaller than the372

corresponding accuracies obtained from models without spiking. This may suggest that373

spiking with on-line collected spectra is not the best strategy to follow. This might be374

attributed to difficulties associated with precision of matching sampling position of on-line375

collected spectra with corresponding soil sample used for laboratory reference analysis,376

which is an issue highlighted by Mouazen et al. (2007).377

In order to investigate the effect of sample number per hectare spiked into the general378

calibration set on prediction accuracy, variations in RPD values obtained from model379

validation of on-line set versus sample number spiked in the general data set (425 samples)380



18

is shown in Fig. (8). Clear increases in RPD values with spiked sample number per ha can381

be observed. However, the degree of increase differs according to soil property considered,382

with larger increases is observed for OC and TN, and smaller increases for MC. This is also383

affected by the field measured. On the basis of average values of the RPD of the three384

fields, an increase in spiked sample number from 1/1.5 to 3.5/4.5 per ha, leads to an385

average increase in % RPD of 9.1% and 11.1% for OC and TN, respectively, whereas an386

increase of 10.4% is observed for MC. This quantitative evaluation of % difference of RPD387

values may suggest that spiking of laboratory scanned spectra with a sampling rate of 1 to 2388

samples per ha is sufficient to obtain accurate on-line prediction of soil properties. Figure389

(8) proves that spiking with 1-2 sample per ha results in a very good model performance for390

OC (RPD = 2.13-2.32) and TN (RPD = 2.15-2.27) and excellent model performance for391

MC (RPD = 2.91-3.62). However, this number of samples is only valid for the degree of392

spatial variation similar to those encountered in the three validation fields of this study.393

This number might increase or decrease for other study cases, if the spatial variation is394

larger or smaller, respectively, as compared to those of the fields of the current study. This395

sampling rate is almost identical to the sampling rate considered for conventional analysis396

of soil properties, adopted today by laboratories to provide fertilisation recommendations397

(Mouazen et al., 2007 & 2009). This reveals that with only slight decrease in accuracy, the398

consumable cost of on-line measurement of OC, TN and MC would be approximately399

identical to that of laboratory conventional methods, after excluding the costs of on-line400

sensor and general dataset. However, traditional laboratories provide fertilisation401

recommendations based on 1 sample per ha, where the spatial variation in soil properties is402

ignored. Furthermore, the on-line measurement system enables the collection of high403
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number of data points (around 1500 - 2000 readings per ha), with an average of 2 points per404

meter travel distance. Assuming that laboratory methods of soil analysis do not prone to405

measurement error, which is not the case in practice, the detailed information about the406

spatial variation in soil properties obtained with the on-line sensor, even with a smaller407

accuracy than that of the laboratory methods can be considered a pronounced advancement408

in the field of proximal soil sensing. In addition to the high accuracy achieved for the409

measurement of the three properties, the performance illustrates stability (Table 5) among410

the three fields, which is the ultimate objective of the vis-NIR calibration of soil properties,411

prone to fluctuation in performance among different sites.412

Considering the wide geographical and texture variation of the three measured fields (Table413

2), the concept of general data set spiked with a small number of samples (1-2 samples per414

ha) from each new measured field seems to be a successfully calibration procedure for on-415

line vis-NIR measurement of soil OC, TN and MC. Generally, the general model concept416

proposed by Mouazen et al (2007) is based on a sufficient number of soil samples to417

account for the soil spatial variability in a new target site, where the prediction will be418

carried out (Viscarra Rossel et al., 2008; Guerrero et al., 2010). Spiking local (target site)419

soil samples into global or continental models for non-mobile calibrations proved to be an420

efficient way to improve the prediction accuracy of target field for some soil constituents421

(Shepherd & Walsh, 2002; Janik et al., 2007; Waiser et al. 2007; Guerrero et al., 2010;422

Minasny et al. 2009; Viscarra Rossel et al. 2009; Wetterlind and Stenberg, 2010). The423

successful implementation of spiking general calibration models with field specific samples424

confirms the sample spiking technique is successfully applied for on-line vis-NIR425
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spectroscopy sensing, similar to that of laboratory and in situ non-mobile vis-NIR426

spectroscopy.427

428

4. Conclusions429

430

This paper reports on the performance of vis-NIR spectroscopy-based calibration models431

spiked with different sampling strategies and ratios for the on-line prediction of soil TN,432

OC and MC. The results reported allow the following conclusions to be drawn:433

1- The on-line measurement system is robust that enables the collection of data on434

several soil properties, simultaneously.435

2- This system enables the collection of large data points per field (around 1500-2000436

readings per ha). The large number of points will open new possibilities for the437

management of soil-water-plant system, which was not achievable so far.438

3- The accuracy of on-line prediction of OC, TN and MC was classified as good to439

excellent prediction performance with RPD values range between 1.88 and 3.96.440

4- The concept of general calibration models, spiked with 1-2 samples per ha from441

new measured fields is a successful procedure for the calibration of the on-line vis-442

NIR sensor. However, a smaller or larger number of spiking samples might be443

required for fields with a smaller or larger spatial variability, respectively.444

Further work is being undertaken to improve the prediction accuracy of the system by445

accounting for the effect of MC and texture on the result obtained. The concept of spiking446
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of general calibration models needs to be tested for other soil properties than those reported447

in this study.448
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