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Abstract. Genetic algorithms (GAs) continue to receive increased at-
tention as general-purpose methods for search and optimization. GAs
are attractive for search in complex spaces where the functional re-
lationships between parameters and objective function values are of
unknown, arbitrary mathematical character. Despite their generally
robust character, typical GAs are known to fare poorly on functions
that vary with time, where the goal is to track nonstationary op-
tima. It has been theorized that in natural genetics, diploidy and
dominance increase the survivability of species in environments that
vary with time. This paper examines the effects of diploid representa-
tions and dominance operators in genetic algorithms applied to non-
stationary search problems. Experimental results indicate that these
additions greatly increase the efficacy of GAs in time-varying envi-
ronments. This increased performance is made possible by abeyant
recessive alleles. Analytical arguments show that these recessive alle-
les increase population diversity without the disruptive effects of high
mutation rates, thus allowing the GA to renew its search process as
the problem varies with time. Analysis also reveals that abeyant reces-
sives are sensitive to past environmental conditions, and can therefore
act as a form of distributed, probabilistic memory of environmental
conditions that occur periodically. Final sections discuss extensions
and implications of this work, including multi-locus dominance under
genic control, intrachromosomal dominance, and how diploidy may
affect the inherently noisy GA search process, if this noise is viewed
as a nonstationary aspect of the objective function.

*Electronic mail address: @ualix.ua.edu:robQgalab2.mh.ua.edu
Electronic mail address: goldberg@vmd.cso.uiuc.edu



252 Robert E. Smith and David E. Goldberg

1. Introduction

Genetic algorithms (GAs) are robust—broad and efficacious—search proce-
dures that have been employed in a wide variety of optimization and machine-
learning applications. GAs are based on an analogy to natural genetics, where
a population samples a complex search domain, and selection and recombi-
nation are used to construct new populations. Because GAs are based on
the idea of biasing samples, they avoid the various mathematical assump-
tions (e.g., of continuity, “smoothness,” modality, etc.) that are inherently
involved in most search procedures. This explains the GA’s broad applica-
bility. However, despite their robustness, typical GAs are known to perform
poorly on nonstationary search problems, where the goal is to track time-
varying optima [19]. This is disconcerting, since one of the original motiva-
tions for GAs was their use in problems that remain “perpetually novel” [15].
However, research has shown that adding diploid representations and dom-
wnance relationships improves a GA’s performance on nonstationary search
problems. This paper summarizes the authors’ previous research on diploid
GAs applied to nonstationary search problems. It also presents more de-
tailed analyses and experimental results that were previously unavailable in
the open literature. The paper concludes with a discussion of the implications
of this work for search in stationary search problems, where inherent noise
in the genetic search process may manifest itself as a recurring misfortune.

To motivate the use of diploid GAs in nonstationary search problems, it is
first necessary to motivate GAs themselves, a task taken up in the following
section.

2. An introduction to GAs

To motivate the use of a genetic metaphor for a computerized search pro-
cedure, consider the following search problem. You are given the task of
finding improved designs for solutions to a given problem. Each design can
be specified by a list of features. To provide feedback for the search process,
you have a “black box” that, given a set of features that fully specifies a
design, returns a measure of positive utility called fitness. The space of pos-
sible designs is far too large to enumerate, and you have no knowledge about
the mathematical relationship between features and fitness values. You can
proceed only by taking sample designs, feeding them to the black box, and
using the resulting fitness values to bias subsequent samples.

Clearly, these are very limiting assumptions. In most search problems,
more information will be available than is assumed here; however, this worst-
case search scenario is useful for motivating a robust search procedure.

An intuitive strategy for this search problem is to feed a sample of de-
signs to the black box, observe apparent correlations between fitness values
and features, and bias samples on the basis of these observations. Such cor-
relations are implied by similarities between various designs. For instance,
consider designs whose features are encoded as binary strings of length £.
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Note that such a space contains 2¢ possible designs. If, after feeding a sam-
ple of designs to the black box, you observe that all strings that have bits
four and seven both set to one have above-average fitness, it would be logi-
cal to conclude that setting these bits to one should be tried in subsequent
samples. Thus, a similarity in highly fit sample designs implies a correlation
between the similarity and high fitness.

For designs represented by binary encodings of length ¢, the number of
such similarities can be quantified by schemata (schema singular) that may
be represented by strings of length ¢ taken from the alphabet {1, 0, *}.
For instance, the schema

* k k1 % % 1 % %

represents that set of all binary strings of length nine that have bits four
and seven similarly set to one. For a space with 2¢ possible designs, there
are 3% possible similarities. Clearly, if one is unable to enumerate all possible
designs, one is even less able to examine all possible similarities. However,
given the previous assumptions, it seems that examining similarities is one of
the few logical ways to proceed. Therefore, one must determine a search pro-
cedure that examines some similarities and exploits the information obtained
in a logical fashion. This is the motivation for GAs.
In its simplest form, a GA proceeds as follows:

Evaluation Fitness values for the members of the current population (sam-
ple) are determined.

Selection Individuals/(designs) are assigned a number of copies in a mating
pool that is used to construct the new population. The more fit an
individual is, the more copies it receives. A common method is to
assign copies by repeated random selection without replacement from
the probability distribution

i = fi
1 ijy

where f; is the fitness of individual ¢, the sum is taken over all popu-
lation members, and p; is the probability of individual ¢ receiving an
additional copy. Typically, the selection process is continued until the
size of the mating pool equals the size of the population. Note that
selection is the emphasis phase of the GA.

Recombination Individuals from the mating pool are recombined to form
new individuals. A common recombination method is single-point
crossover, where the encodings of two randomly selected individuals
from the mating pool are split at a randomly selected crossover point,
and halves are swapped to form two new individuals (children). As an
illustration, consider the following two parents:

1101011
011j0101
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where a crossover point at position three is marked. Swapping halves
on either side of the crossover point yields the following two children:

0111011
1100101

Crossover occurs with probability p., which is typically near one. Note
that crossover is the ezploration phase of the GA.

Mutation Mutation is applied to the individuals that result from selection
and recombination. Typically, each bit of an individual can be flipped
with some small probability p,,. Note that mutation is a mechanism
for maintaining diversity in the GA population.

The individuals that result from these steps form a new population, and the
process is iterated.

One may ask what relationship exists between the simple GA procedure
outlined above and the examination of similarities. To answer this question,
consider the expected number of individuals containing similarity H in a
population at time ¢ + 1 (denoted by m(H,t + 1)), given m(H,t). Two
properties of schemata are useful in deriving this expected value.

Schema order, o(H), which is defined as the number of non-* bits in
schema H.

Schema defining length, §(H), which is defined as the maximum num-
ber of cross points between non-* bits of H.

Given these quantities, one can derive the fundamental theorem of genetic
algorithms [14],
m(H,t+1)> m(H,t)i(fi) 1 —pcﬁ —pm-o(H)|,

where f is the average fitness of the population are time ¢, and f(H) is the
average fitness of individuals that share the similarity dictated by schema H.

The fundamental theorem indicates that short, low-order schemata that
demonstrate above-average fitness will receive exponentially increasing num-
bers of copies. These schemata are called building blocks, and they em-
body the central assumption in GAs, the so-called building-block hypoth-
ests. Simply stated, the hypothesis says that combining short, low-order
building blocks should yield higher-order schemata that also demonstrate
above-average fitness. This, in essence, is the GA’s strategy for examining
similarities as a basis for search.

Clearly, the fundamental theorem and the building-block hypothesis are
limited in two ways:

e Except in very simple problems, not all building blocks will conform
to the building-block hypothesis. In other words, some short, low-
order schemata that demonstrate above-average fitness will recombine
to yield longer, higher-order, below-average schemata.
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e The average fitness f(H) obtained from a given population is only
a noisy estimate of f(H) over all possible individuals that share the
similarity H.

Two other fundamental theoretical developments address these limitations:

Implicit parallelism The number of building blocks processed by a GA
with population size n has been estimated to be O(n3) [7, 14]. In
processing this large number of schemata implicitly and in parallel,
the GA often finds sufficient schemata that recombine according to the
building-block hypothesis and lead to highly fit individuals.

The k-armed bandit argument It can be shown that in a probabilistic
decision problem that involves refining estimates through exploration
while improving performance through exploitation, a near-optimal
strategy is to allocate exponential trials to the observed best. This
justifies the GA approach to estimating schema fitness values while
allocating an exponentially increasing number of copies [11, 14, 20].

The efficacy of the strategy embodied in these theoretical developments is
borne out in numerous GA applications in a wide range of disciplines [7].

3. GAs and nonstationary search

Clearly, the O(n®) estimate is based on a diverse population, where many
schemata are represented. However, as exponential allocation of observed-
best schemata accrues, one can expect that the number of building blocks
processed will decrease. This is an inevitable consequence of convergence in
the GA outlined above. After convergence, the GA population will be com-
posed primarily of copies of one individual. The only diversity maintained
in the population after convergence is a result of mutation. Note that mu-
tation is a completely random operator that is unguided by the algorithm’s
observations of fitness values over time.

In traditional optimization applications, convergence of the GA is desir-
able. However, the lack of population diversity after convergence causes the
typical GA described above to fare poorly on problems where the goal of the
search is to track a time-varying function. If the character of the objective
function changes after the GA population converges, the population does not
possess sufficient diversity to allow the search to begin anew.

One solution to this dilemma would simply be to increase the mutation
rate such that diversity is maintained. However, this has the effect of dis-
rupting the genetic search process and preventing convergence. Moreover,
the mutation provides no mechanism for the GA to “learn” any temporal
regularities that exist in the function’s variations. Specifically, if the average
fitness values of certain building blocks vary with time while the average fit-
ness values of other building blocks remain relatively constant, it would be
desirable for the GA to maintain diversity in the former while converging in
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the later. This would constitute a form of temporal memory of fitness varia-
tion. Mutation provides no mechanism for this behavior since it is insensitive
to fitness.

Biological theory suggests that diploid chromosomes and dominance
mechanisms may improve the survivability of species in time-varying en-
vironments [1]. Therefore, as was first realized by Holland [14], it seems
logical to examine analogous representations in GAs. The following section
introduces diploidy and dominance in GAs.

4. Diploid GAs

The GA described in section 2 assumed a haploid representation of potential
problem solutions. That is, each population member was a bit string that
contained sufficient information to specify a complete solution design. The
analogous haploid chromosomes in natural genetics are found primarily in
very simple organisms. More complex organisms often have diploid chro-
mosomes, which contain twice the information necessary for specifying the
organism’s structure. Conflicts that occur between the two halves of a diploid
chromosome are resolved by a dominance relationship, which (in its simplest
form) decides on one of the conflicting genes that is eventually expressed in
the organism itself. In a GA, a diploid individual has two bit strings, each
of which is sufficient to specify a complete solution design. A dominance re-
lationship specifies how these two strings are decoded into a single ezpressed
string whose fitness is evaluated. For instance, if we consider a dominance
relationship where 1 always dominates 0 (1 is called the dominant allele and
0 is called the recessive allele), the following diploid individual,

101101011
001010110

decodes to the following expressed string:
101111111

How do dominance and diploidy improve GA performance on nonstation-
ary search problems? The simplest explanation is that recessive alleles in a
diploid GA preserve population diversity after convergence. When recessive
alleles are paired with dominant alleles, they are held in abeyance and are
effectively shielded from adverse selective pressure. Thus, after convergence,
some diversity is retained in the form of abeyant recessives. Holland [14] sug-
gested the value of diploidy as a diversity-preserving mechanism by showing
that less mutation is needed to maintain a given level of diversity in a diploid
GA than a haploid GA. Consider the expected population proportion of a
given allele (1 or 0) at a given bit position at time ¢, which will be denoted
by Pt

P = (1 — €) Pt + p,,(1 — P*) — p,, P,
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where € > 0 is the expected change in this proportion due to fitness-propor-
tionate selection for this allele. Note that for a given fitness function, € is a
function of allele proportions only. Solving for a steady state (P! = Pt =
P,,) and rearranging yields

ESSPSS
- 1-2P,
If one assumes steady-state proportions, €** can be assumed to be constant.
If P,, is a small, desired steady-state proportion of the allele that is less
favored by selection (% < 1), this equation indicates that the p,, necessary
to maintain P, after convergence is proportional to Pi,.

Consider a similar formulation for a diploid GA, where P? is the propor-
tion of the recessive allele at time ¢. In this situation,

P = (1 — 2¢PY)P" + 2p,(1 — 2PY).

Pm

Solving for a steady state and rearranging as before gives

€58 pi

- 1-2P,
If P, is a small, desired steady-state proportion of the allele that is less
favored by selection, this equation indicates that the p,, necessary to maintain
P,, after convergence is proportional to P, a much lower value than in the
haploid GA.

These steady-state arguments show how diploidy requires a lower level
of mutation to obtain a desired level of steady-state diversity. However,
examination of the transient behavior reveals more about the utility of diploid
GAs in nonstationary problems [13].

Consider a problem in which a given allele at a given position is advan-
tageous for some period of time. After this period, the allele is no longer
advantageous; rather, its compliment is favored by selection. In a nonsta-
tionary problem, it may be desirable to preserve the originally advantageous
allele for some period of time since the conditions under which it was favored
may return.

One can examine proportion equations to show how haploid and diploid
GAs preserve such an allele. Assume that the originally advantageous allele is
recessive in a diploid GA. Recall that this allele appears in both expressed and
unexpressed form, depending on whether it is paired with another recessive
allele or a dominant allele, respectively. The average fitness of a recessive
allele "(which will be called f, ), regardless of whether it is paired with a
dominant or a recessive allele, is given by

f‘l‘e = fT(Prt) + fd(l - Prt)v

where f, is the fitness of the recessive allele in its expressed form, f; is the
fitness when the dominant allele is expressed, and P’ is the proportion of
recessive alleles at time ¢. The average fitness of the population is given by

f=£(P) + fa(l = (PY)?).

Pm
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Figure 1: Expected ratio of the proportion of recessive alleles,
P11/ Pt versus P! for haploid (¢ = 2) and diploid (¢ = 2 and ¢ = o)
cases [13].

This gives the expected change in the proportion of the recessive allele as

P! +c¢(1- P
Pt+1 — PtK T P
' B e[l (PR

where ¢ = f,/f, and K is a constant that expresses the loss due to mutation.
A similar expression can be derived for the haploid GA:

N
T T Pt+c(1-PYy

Given these equations, one can use the relative rate of change of P,,
namely P! /P! as a measure of how slowly recessive alleles are deleted by
selection. Figure 1 shows plots of this quantity versus P, for haploid and
diploid GAs with ¢ = 2 (where the dominant is twice as advantageous as
the recessive), and for the diploid GA with ¢ = co (where the dominant is
infinitely better then the recessive). The plots show that the rate of change
of the proportion of recessives is much slower for the diploid GA than for
the haploid GA when ¢ = 2. Even for ¢ = oo, the proportion of recessive
alleles changes more slowly in the diploid GA than in the haploid GA with
¢ =2 for P. > .5. These results indicate that recessive alleles that have been
emphasized during one period of the function’s evolution will be retained at
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Figure 2: Proportion of recessive alleles P! versus generation number
for haploid (¢ = 2) and diploid (¢ = 2 and ¢ = co) cases [13].

proportions higher than steady state for an extended period of time. Figure 2
illustrates this point by iterating the proportion equations used above.

These results show that diploidy does more than simply maintain diversity
after convergence. It allows the GA to maintain extra diversity at positions
that have had alternative alleles emphasized in the function’s recent past.
Unlike mutation, this is a maintenance of diversity that is sensitive to the
system’s fitness history. In effect, the recessive alleles are a form of memory
of past function conditions. These analytical observations are illustrated in
experiments in the following section.

5. Fixed dominance and time-varying functions

As a simple example, consider the 0-1 knapsack problem [23]. Knapsack
problems are a class of common but difficult (NP-complete) problems in
operations research. A variety of industrial problems can be reduced to
knapsack problems, including cargo loading, stock cutting, project selection,
and budget control. Knapsack problems also arise in the consideration of a
variety of linear programming problems.

The 0-1 knapsack problem can be defined in terms of the following simple
analogy. Consider a scavenger with a bag that holds a maximum weight W.
The scavenger has available n objects, each with weight w; and value v;. The
scavenger’s objective is to maximize the value that can be carried in the bag.
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W =60 W =104
Number | Value | Weight Optimal Optimal
7 (A W; ZT; xT;
1 2 12 0 0
2 3 5 1 1
3 9 20 0 |
4 2 1 1 1
5 4 5 1 1
6 4 3 1 1
7 2 10 0 0
8 7 6 1 1
9 8 8 1 1
10 10 7 1 1
11 3 4 1 1
12 6 12 1 1
13 5 3 1 1
14 5 3 1 1
15 7 20 0 1
16 8 1 1 1
17 6 2 1 1
Total: 91 122 13 15
1wy = T1 17z = 87
L zaw; = 60 | Y1, x;w; = 100

Table 1: The 17-object, 0-1 knapsack problem parameters used here
with optimal solutions.

Mathematically, the problem is to find

max Z V;X;
i=1
subject to the weight constraint

> wizs < W,

i=1
where the z;’s are variables that can be set to either 0 or 1; W, the v;’s,
and the w;’s are given problem parameters; and n is the problem size. A 17-
object, 0-1 knapsack problem is the basis for the test problems used here [6].
Object weights and values for this problem are shown in table 1. Although
this problem has a moderately large search space (217 possible solutions), pre-
vious experience [12] indicates that a haploid GA with a moderate population
size (150) converges to the problem’s optimal solution in approximately 15
generations. This relatively short convergence time made the problem con-
venient for adaptation to the time-varying optimization experiments.
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In the experiments examined in this section, the knapsack problem is
made nonstationary through variation of the constraint W. Specifically, the
weight constraint is switched every 15 generations between 104 and 60. The
optimal solutions associated with these constraint values were determined
using standard methods [23]. They are Y17, z;u; = 87 for the case where
W = 104, and Y17, z;u; = 71 for the case where W = 60. These optimal
knapsacks are indicated in table 1. Note that they differ by two bits.

A version of the haploid GA (described in section 2) is applied to this
problem, with the following parameters:

e crossover probability p. = 0.750,
e mutation probability p,, = 0.001, and
e population size = 150.

Solutions are coded as strings of length 17, where the ¢th position represents
the x; variable for the ¢th object in table 1. The weight constraint is enforced
by a penalty function on fitness. Specifically, if the solution dictated by a
population member is overweight by AW, then its fitness is the solution’s
value minus C(AW)?, where the penalty coefficient C is 20. Negative fitness
values are set to zero. Linear fitness scaling 7] and stochastic remainder
selection [2] are used in all experiments. The initial population is generated
at random.

Figures 3 and 4 show typical best-of-generation and generation-average
results, respectively, from the haploid GA. The GA converges to the optimum
in one of the two switching conditions, and fails to have sufficient population
diversity to continue searching when the weight constraint changes. After the
change, all the solutions suggested by the population are severely overweight
and have zero fitness.

Now consider the application of a diploid GA with the fixed 1-dominates-
0 dominance map discussed previously. The parameters and operation are
identical to those of the haploid GA in the previous experiment, with the
exception of alterations in the crossover procedure to account for diploidy.
In the diploid GA, crossover first occurs between the strings of a haploid
individual, and then these halves are swapped between parents. This is a
simulation of gametogenesis, and yields the same recombination effects as
crossover in the haploid GA.

Figures 5 and 6 show typical best-of-generation and generation-average
results (respectively) for the nonstationary knapsack problem with the fixed-
map diploid GA. In this case, search continues as the function varies with
time. Note that the lower optimum is consistently rediscovered when the
function switches. This rediscovery takes place without renewed search. This
illustrates that the diploid GA is doing more than simply maintaining diver-
sity across all bit positions (as would a high mutation rate); diploidy is pre-
serving the specific alternative alleles necessary to reconstruct this optimal
solution immediately when the function switches.
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Although these results are interesting, the dominance mechanism em-
ployed is clearly flawed. Although the higher optimum is rediscovered in
some cycles, it is only after renewed search, which often fails to find the true
optimum. This is because the higher function value requires more 1-valued
alleles in the string, and these alleles cannot be “memorized” as recessives
since they are always dominant. To deal with arbitrary nonstationary func-
tions, the diploid GA requires a dominance map that can evolve to have
either 0-valued or 1-valued alleles dominate at any position. The following
section introduces a scheme suggested by Hollstien [17] and Holland [14] that
allows for an adaptive dominance map.

6. The triallelic adaptive dominance scheme

Realizing the need for an adaptive dominance map, Hollstien [17] and later
Holland [14] suggested a scheme with three possible alleles at each position,
{0,1,10}. Under this scheme, both 1 and 1, are expressed as 1, but 1 domi-
nates 0 and 0 dominates 1g. Thus, a 1-valued allele can act either dominant
or recessive.

Operation of the diploid GA under this scheme is identical to that of the
fixed-map scheme, except for a slight alteration in the mutation operator. In
this case, mutation converts each allele type to one of the other two types
with equal probability. Thus, mutation accounts for changes in value (i.e.,
from a 1-valued allele to a 0) and changes in dominance (i.e., from a dominant
1 to a recessive 1p). In the following experiments, the population is randomly
initialized so that the number of 1-valued and 0-valued alleles is expected to
be equal.

Figures 7 and 8 show best-of-generation and generation average results
obtained on the nonstationary knapsack problem with a diploid GA and the
triallelic dominance scheme. The results indicate that the triallelic GA is
superior to both the haploid GA and the fixed-map diploid GA in its ability
to track the nonstationary problem. The triallelic GA is frequently able
to recall each optimum quickly. More detailed observations reveal how the
triallelic GA stores and retrieves alternate information from abeyance.

At generation 135 the population has completely converged to the higher-
valued solution, and the weight constraint switching to 60 causes a “crash”
in population fitness. In the next generation the alleles necessary to recon-
struct the lower-valued optimal solution are brought out of abeyance, and
the algorithm recovers the optimal solution for the W = 60 case.

Another illustration of the triallelic GA’s ability to recall abeyant in-
formation is near the end of the run. In the third from last cycle of the
run, the algorithm has converged completely to the lower-valued optimum.
The higher-valued optimum is not discovered at all for one full cycle, and
in the following cycle it is only found in the last generation before the
weight constraint switches. After the higher-valued optimum is rediscov-
ered in generation 375, it is quickly recalled from abeyance in the following
cycle.
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This experiment illustrates that diploidy and adaptive dominance greatly
improve the GA’s ability to track a nonstationary function. However, the
exact dynamics of a diploid GA with the triallelic dominance scheme are not
entirely apparent. The following section presents some additional analysis of
the triallelic scheme.

7. Further analysis of the triallelic dominance scheme

Proportion equations like those used in section 4 are useful in clarifying the
behavior of the triallelic dominance scheme. To derive these equations, one
must first derive the average fitness values of the three alleles taken over all
possible allele combinations in which they appear. These values are given by

_ fiPE+ foPiPo+ f1Py, P

f(1o.) P, = fi+ F(fo— f1),
2

£(0.) = foF -l-flP(}]);l + foPo P, — fot Pi(fi = fo),

f(le) = fl)

where f; is the fitness of any combination of alleles that is expressed as a
1, fo is the fitness of any combination that is expressed as a 0, and B, P,
and Py, are the proportions of 0, 1, and 1, alleles, respectively. The average
fitness of a triallelic population is given by

f=f({-2RP, - P)+ fo (2PPy, + P§) .

For notational convenience, each allele is assigned a reproductive proportion
(R) based on its expected average fitness:

Ry, = %PIO r+ By(1—0)],
Ry = %P0[1+P1(C—1)];
1

R1 = ?—PIC,

where ¢ = f1/ fo.

Before proceeding to draw the proportion equations, it is useful to split
the mutation operator into two separate operators: a mutation of value op-
erator and a dominance shift operator. The associated rates of application
of these operators will be p,, and p;, respectively. In the following analysis,
dominance shift is defined as a change in the dominance associated with a
1 or a 1; allele, and mutation is defined as a change in the value associated
with an allele, with dominance determined randomly when the mutation is
from a O-valued allele to a 1-valued allele. These operator definitions are
shown in table 2. To avoid the effects of both operators, it is assumed that
either mutation or dominance shift occurs, but never both. In simulations,
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Operator Allele
1 0 1o
Dominance Shift | changed to 1, not affected changed to 1
Mutation changed to 0 changed to 1 or 1, changed to 0
(with equal probability)

Table 2: The effects of separate dominance shift and mutation oper-
ators in the triallelic GA.

the operator that is given the possibility to act is selected by the flip of a fair
coin. Note that the common factor of 0.5 introduced into the mutation and
dominance shift rates by this procedure is not shown, but is assumed in the
following analysis.

With definitions of separate dominance shift and mutation, the proportion
equations for the three possible alleles can be stated as:

Plt;H > Rio(l — Pm _ps)7

Bt > Ry(1-pm),

'PIH-1 Ri(l — Pm — ps)'
The addition of mutation and dominance shift source terms in a manner
similar to Bridges and Goldberg [3] completes the equations:

Plt(;H = [Rtlo(l — Pm —ps) + Rtlps + %Rf) m]v

Pé+1 = [RB(I — Pm) +pm(Rtl + Rio)]’

Pi*! = [Ri(1 — pm — ) + Bi,ps + 1 Rpnil.

(A\VARAYS

These equations constitute a complete description of the expected propor-
tions of 1s, Os, and 1ps for a single locus in the triallelic GA with mutation,
dominance shift, and fitness-proportionate selection operators.

As in the analysis of fixed-map diploid schemes, it is useful to examine
the steady-state proportion of recessive alleles. Unfortunately, deriving an
expression for the steady-state proportions is difficult. Nevertheless, steady
states can be found numerically.! Although this numerical-solution tech-
nique does not insure that other steady states do not exist, or that a single
trajectory is followed as p,, and p, are changed, one can make interesting
qualitative observations from the results. These qualitative results are con-
firmed through further experimentation presented later in this paper and
elsewhere [21].

Figures 9, 10, and 11 show the spline curves through numerically-deter-
mined steady-state values for various settings of p,, and r versus p,.2 In these
graphs, a 0 is considered recessive if ¢ > 1, and 1 is considered recessive
if ¢ < 1. As one might expect, these graphs indicate that the steady-state

1The Eureka package from Borland was employed to determine numerical steady states.
2Note that the results for ¢ < 1 were obtained using a version of the proportion equa-
tions with fo/f1 as a parameter, rather than fy/ fo.
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Figure 9: Numerically determined steady-state proportions of reces-
sive alleles versus ps (log scale) for p,, = 0.01. Spline curves through
discrete data.
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Figure 10: Numerically determined steady-state proportions of reces-
sive alleles versus p; (log scale) for p,,, = 0.001. Spline curves through
discrete data.
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Figure 11: Numerically determined steady-state proportions of reces-
sive alleles versus ps (log scale) for p,,, = 0.0001. Spline curves through
discrete data.

proportion of recessive alleles falls as p; is increased. Note that for high ps the
proportion of recessives is on the order of p,,,. This is reasonable since for high
ps recessives are expressed often, and are therefore driven out of abeyance in
the long run. For low p,, the steady-state proportion of recessives is on the
order of p%5, as predicted by the analysis presented previously by Holland
[14]. In this case the alternative alleles are seldom expressed (on the order
of P2), and are therefore held in abeyance in greater proportion.

These graphs indicate another feature of the triallelic dominance scheme.
For fi < fo (¢ < 1), there is a relatively smooth growth of P, as p; is
lowered. However, for f; > fo (¢ > 1), there is a steep jump in the P, versus
ps curve. The jump occurs around ps = p,, in all three graphs. Figure 12
explains this phenomenon. This figure shows that for ¢ > 1 and p; < pp,
the steady-state condition has a proportion of 1s much greater than the
proportion of 1gs. For ps > p,,, the system tends toward a steady state in
which the proportion of 1-valued alleles is equally distributed between 1s and
1ps. The latter case allows for much greater expression of 0 alleles; therefore
the -steady-state proportion of recessive Os is dramatically lowered as p; is
raised above p,,. A similar effect does not exist for recessive 1s. For some
parameter settings, this difference also has the effect of making Py, for 0-
valued recessive alleles much lower than that for 1-valued recessive alleles,
thus creating a preference for 1 as a recessive allele in the triallelic system.
These problems indicate an asymmetry in the triallelic representation caused
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Figure 12: Ratio of numerically determined steady-state proportions
of alleles 1 and 1¢ versus ps (log scale) for p,, = .01. Spline curves
through discrete data.

by the presence of two 1-valued alleles and only one 0-valued allele. Although
it is negligible in many cases, this asymmetry will be evident in other analyses
and in experimentation.

As in the analysis in section 4, examination of the transient behavior of
the triallelic GA is also revealing. In this case the proportions are solved
iteratively (starting from equal expressed proportions of 1s and 0s), and the
transient times are estimated as the number of generations clocked until the
proportion of recessives changes less than 0.01%. Once again, these results
are qualitative, in that there is no proof that steady states and trajectories
other than those shown do not exist. However, the qualitative results are
confirmed in later experimentation.

Graphs of the time to the steady state versus ¢ and 1/c are presented
in figures 13 and 14. Note that both ¢ and 1/c are plotted on log scales.
The plots are spline-interpolated lines through discrete data. Plots of the
proportions in the haploid GA and the fixed-map (1-dominates-0) diploid
GA proportions are also included.

Figure 13 shows that the haploid and the fixed-map diploid schemes retain
alternate alleles at higher-than-steady-state levels for essentially the same
short period of time. This result is expected since the 1-dominates-0 scheme
cannot hold 1s in abeyance. The haploid and fixed-map diploid schemes
quickly discard the 1 allele. By contrast, the triallelic scheme retains the 1
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allele as an alternate at higher-than-steady-state levels for approximately 65
generations for p, = .1, and approximately 125 generations for p, = .01. The
amount of time the triallelic system holds the alternative allele in memory
increases rapidly as r approaches 1. Similar results are seen in figure 14 for
¢ > 1. However, note that in this case the fixed-map scheme is able to main-
tain the proportion of recessives at a higher-than-steady-state level for more
than 95 generations. This demonstrates how the diploid GA with no shift
is able to maintain alternatives as a form of memory for extended numbers
of generations. Also note that for large ¢ the triallelic system maintains the
0-valued allele at above-steady-state proportions for a shorter period of time
than a 1-valued allele under similar conditions (small ¢). The differences
become less significant in the right-most portions of the graphs, where ¢ is
nearer to one. This difference between the two graphs is another indication
of the triallelic representation’s asymmetry. The 1-valued alternative alleles
are held in the diploid GA’s population noticeably longer than the 0-valued
alternative allele in situations that should be similar.

8. Disruptiveness of maintaining diversity

As noted in previous sections, one of the roles that diploidy plays in improv-
ing GA performance on nonstationary problems is to increas the diversity in
the population. Whether this diversity is randomly inserted (as in mutation)
or is sensitive to the function’s history (as in probabilistic memory through
diploidy), the diversity introduced moderates selective pressures toward cur-
rently observed-best alleles. Therefore, this diversity, albeit necessary in
nonstationary problems, is somewhat disruptive to the genetic search pro-
cess. This section analytically examines the disruptiveness of mutation and
dominance shift.

Consider applying only mutation operators (i.e., mutation and dominance
shift) to a single-locus population. This locus can be any in a multi-locus
population after reproduction and crossover have been applied. If the muta-
tion operators were not applied, one could expect that a certain proportion of
each allele value would be expressed. After mutation operators are applied,
these expected proportions of expressed alleles are changed. A measure of
the degree of population alteration associated with a mutation operator can
be defined as the expected proportion of a single-locus population whose
expected, expressed values are changed by the application of that operator.
This measure will be called the operator’s disruptiveness.

Consider the disruptiveness of mutation in a haploid GA. Before the ap-
plication of mutation, the expected proportion of expressed 0-valued alleles is
called P¢. After the mutation operator is applied, the new proportion (which
is called P¢™) is given by

PH™ = Pt — Pipy, + Plpm.

The disruptiveness of this operator is given by the absolute value of the
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Figure 15: Disruptiveness of mutation versus proportion of recessive
alleles for a haploid GA and a diploid GA with a fixed dominance

map (pm = 0.1).

difference between these proportions:
Am =By = ™| = |pn(Fs — P)| = pml2F5 — 1.

Similar measures can be developed for the dominance shift and mutation
operators in the triallelic GA, but it is of some interest to first examine the
disruptiveness of mutation in a diploid GA where the dominance map is fixed
or has converged.

In a fixed-map diploid GA the expected proportion of the population
having the recessive allele value expressed is P2. Therefore, the disruptiveness
of mutation is given by

A =|(P)?* = (P™)?| = p|2[P} — 2(P7)’] + pu[1 + 4P (P} = 1)]I.

Figure 15 shows the disruptiveness of mutation versus the proportion of
recessives for both the haploid and diploid GAs. Mutation’s disruptiveness
on the haploid GA rises to its maximum value of p,, as the population con-
verges to either allele. In the diploid GA, mutation’s disruptiveness is at its
maximum value of twice the mutation rate when the population converges
to the recessive allele. However, if the dominance map has evolved correctly
(fr. > f») the population converges to mostly dominant alleles. In this case,
mutation’s disruptiveness falls to p? . This indicates that mutation should
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lower population average fitness less in a converged diploid GA than in a
converged haploid GA.

The disruptiveness of mutation in the triallelic GA can be found by noting
that the expected proportion of expressed 0-valued alleles is given by

P = (Py)*+2PP;,.
Therefore,

B = |(PY)? + 2PLPY, — (P2 — 2pgempigm
= pul[Po(2(P — P1,) — Fs) + P, (P + F4,)]
+an[Plt(Plt - Pé) + Plto(Pg - Plto)]l

When the triallelic population has converged completely to the 0-valued
allele, the disruptiveness of mutation is p,,. However, when the population
converges to P; = 1, the disruptiveness in the triallelic GA is only p2,. This
difference is another indication of the asymmetry in the triallelic dominance
scheme. As indicated previously, it is also possible for the triallelic GA to
converge to the following steady-state proportions:

P1%P10z0.5,
Py, = 0.

In this case the disruptiveness of the mutation operator is approximately p,,.
The disruptiveness of the dominance shift operator is given by

As =P5P3|P1t _Pltol'

This value tends toward zero as the algorithm converges to any of the three
steady-state conditions.

Figures 16 through 19 show plots for the iterative solution of the triallelic
proportion equations and the accompanying measures of disruptiveness. For
these figures ¢ = 2 and ¢ = 0.5 (respectively), and p; = p,, = .01 for both
graphs. These graphs show that as the triallelic GA converges, dominance
shift becomes less disruptive than mutation. This indicates that dominance
shift should lower population average fitness less than mutation in a con-
verged triallelic GA. One can also conclude from these graphs that mutation
and dominance shift should both tend to lower population average fitness less
in the triallelic GA than mutation in the haploid GA. One could also con-
clude that the diploid GA could sustain much higher dominance shift rates
than mutation rates for an acceptable limit on disruptiveness. The following
section presents experiments that illustrate these observations.

9. Additional experiments with the triallelic GA

To illustrate the qualitative and analytical observations of the previous sec-
tion, consider another version of the nonstationary knapsack problem used
in previous experiments. In this problem, the weight constraint remains con-
stant while the interpretation of certain bits is varied. In particular, the



Diploidy and Dominance in Artificial Genetic Search

Disruptiveness

Proportion of Population

275

0.9 +

0.8

Generation Number
— expressed 1s e expressed Os

== § e i s 1o

Figure 16: Proportions of alleles versus generation number for single-
locus triallelic population with ¢ = 2 (p,, = ps = 0.01).
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locus triallelic population with ¢ = 0.5 (p, = ps = 0.01).
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Figure 20: Results from the triallelic GA applied to a nonstationary
knapsack problem with p; = 0.1 and p,, = 0.001.

interpretation of the ith bit can be varied from meaning z; to meaning x;’s
complement. This form of the nonstationary knapsack problem is desirable
since the relative selection pressure for each alternative bit remains constant,
and the problem’s variations are symmetrical. In the problem used here, the
interpretation of bits 3 and 10 are switched every 15 cycles. Experiments
were performed for various settings of p,, and p,.

Figure 20 shows the results of an experiment with p, = 0.1 and p,,
0.001. Of those examined, these parameter settings gave the triallelic GA the
greatest ability to track the nonstationary test problem. The high dominance
shift rate allows the algorithm to recall the alternate alleles necessary to
maintain an optimal solution in almost every generation of the run. The
population average fitness also indicates a high degree of convergence in each
cycle of the test problem. These results are consistent with the previous
section’s conclusion that dominance shift is less disruptive than mutation in
the triallelic GA. Note that the peak of the average-fitness curve is slightly
lower in one of the two function conditions. This is the condition where the
nonstationary bits should be set to 1 in the optimal string, and it indicates
the asymmetry of the triallelic representation discussed in previous sections.
This confirms the results illustrated in figure 10.

It is also interesting to examine changes in the diversity of the popula-
tion at bits that have stationary and nonstationary interpretations in this
experiment. Figure 21 shows the comparative convergence of the expressed
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Figure 21: Expressed allele convergence at loci 3 and 12 from the
experiment presented in Figure 20.

allele values versus generation number for loci 3 and 12 in this experiment.
The plot shows the proportion of the most-expressed allele versus generation
number. The population quickly converges with regard to locus 12, which
has the same optimal allele value for both coding maps. The population
oscillates with regard to the expressed value at locus 3, indicating the algo-
rithm’s response to this locus being nonstationary. Figure 22 shows a graph
of the actual (rather than expressed) convergence at loci 3 and 12. The value
plotted against the vertical axis is the highest of the proportions of the three
alternative alleles. Note that locus 12 has converged to approximately equal
proportions of 1s and 1ps. Taken together, the previous three graphs show
how the diploid GA maintains diversity at bits that have nonstationary val-
ues, which allows for tracking of the problem’s variations while maintaining
a high population average fitness.

For higher values of mutation and lower values of dominance shift, dif-
ferent behavior is observed. Figure 23 shows results from an experiment
with a moderate dominance shift rate (ps = 0.001) and a high mutation rate
(pm = 0.01). Although mutation promotes sufficient population diversity for
the algorithm to maintain the optimal solution throughout the majority of
the run, the random effects of mutation result in substantially less conver-
gence of the algorithm due to lower population average fitness. This result
is in agreement with the previous section’s conclusion that mutation is more
disruptive than dominance shift in the triallelic GA. Additional experiments



Diploidy and Dominance in Artificial Genetic Search

Fitness

Percent Converged

279

90
80
70
i
1l
60 i a )
i
i : MR
“ 14 o [ (.
bodl nt oo " N R ! 1
TN IREE I (VAT T R R T AL e TS I BT
M, ) WO Y I A % &y plale N Y sl i 7
50 s T TR SRR it S TR R SRR
o 1
ahw
R
KW
ALy
i o
40 - Jf
no
ki
30 T T T T T T
0 100 200 300 400
Generation Number
Locus 3 (Nonstationary)
———————— Locus 12 (Stationary)
Figure 22: Actual allele convergence at loci 3 and 12 from the exper-
iment presented in figure 20.
90
85 1 f
80 il b
™ e H ;
o i | ) N
75 - S N O S
T T O S O S T B
| I iy . i i K
| AL A RO ST A
70 - U Hf: S ey LN H 11‘,’/ iy ‘\4 ' Wy o N ]
T O AT A I [ I P o W g
" WAt ol i I 1, TR P i i i T "
;“11;‘ ooy d ! V { " P Wl U
65 fol oy ¥ b
o
.
W
1
60 — i
Ao
M
W
55 ;1
i
1
50
45 T 1 T T

T
200
Generation Number

T
100

—— Population Best

T
300

Population Average

Figure 23: Results from the triallelic GA applied to a nonstationary
knapsack problem with p; = 0.001 and p,, = 0.01.

400



280 Robert E. Smith and David E. Goldberg

90

Fitness

45 T T T

T T
0 100 200 300 400

Generation Number
—— Population Best ---- Population Average

Figure 24: Results from the triallelic GA applied to a nonstationary
knapsack problem that requires the recall of recessive building blocks.

are not included for the sake of brevity, but other combinations of p, and
Pm have shown that high dominance shift rates coupled with low mutation
rates yield the most reliable tracking of nonstationary functions with various
oscillation frequencies and high population average fitness (see Smith [21] for
an account of additional experiments).

10. Extensions

Previous experiments indicate that recessive alleles induce non-disruptive
population diversity that is sensitive to past environmental conditions. These
recessive alleles can be recovered quickly through dominance shift. However,
in some time-varying problems it may be necessary to simultaneously re-
veal two or more recessive alleles within the same population member. This
condition will occur if two or more alleles that are affected by the prob-
lem environment’s time variation have a bitwise-nonlinear (or deceptive [7])
effect. Figure 24 shows the results of the triallelic scheme applied to a non-
stationary knapsack problem that incorporates a bitwise nonlinearity.> The
GA is unsuccessful in tracking the problem’s variations because the proba-
bility of the two necessary recessive alleles being simultaneously revealed and

3This problem is similar to that used in previous experiments, but in this case the
interpretation of bits 7 and 8 are switched every 15 cycles. Due to a slight recoding, these
bits represent objects 1 and 7 in table 1 [21].
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evaluated is relatively low (on the order of p?). An extension that may over-
come this limitation is the addition of a dominance shift operator that acts
with high probability on multiple, tightly linked recessive alleles (recessive
building blocks).

One way to induce multi-locus dominance shift would be to insert extra
bits in the problem encoding that directly control dominance at other loci.
Note that the triallelic scheme incorporates genic control of dominance at
a single loci to some extent, in that the subscript of the 1-valued alleles is
a type of gene that controls dominance at these alleles. However, in this
case the dominance-controlling gene effects only a single locus, to which it is
permanently linked. A more general form of genic dominance control could
allow for direct recombination of dominance relationships. Since selection
and recombination are the primary elements of the traditional GA search
process, this modification could significantly affect the diploid GA’s perfor-
mance. Multi-locus dominance under genic control could also allow for the
abeyance and simultaneous revelation of recessive building blocks.

Genic control of dominance is similar to the idea of intrachromosomal
dominance in haploid encodings. In an intrachromosomal dominance scheme,
genes along a haploid chromosome can activate and deactivate the effects of
other genes. One example of intrachromosomal dominance is in messy GAs
(mGAs) [5, 10, 8, 9], where variable-length chromosomes are used separately
to evaluate building blocks and overcome deception. In mGAs, chromosomes
can become overspecified, such that alternate alleles for the same gene are in
conflict. In such cases, left-most genes dominate. This positional dominance
may have effects that are similar to those of diploid GAs with dominance.
The analysis presented in this paper may also have analogues in intrachro-
mosomal dominance schemes. Investigation of these issues is an important
extension of this work.

In a study that eludes to extensions of dominance in GAs, Dasgupta and
McGregor [4] suggested a GA technique that incorporates genic control of
gene expression in overspecified, haploid GA encodings. Experiments demon-
strate that this scheme is effective in tracking a nonstationary knapsack prob-
lem. However, because of restrictions on genetic operators, the experiments
avoid the need to consider intrachromosomal dominance effects necessary for
overspecified encodings. These restrictions also avoid the potential for un-
derspecification that exists in this scheme. If-overspecification is considered,
this type of GA will require an intrachromosomal dominance scheme, per-
haps similar to that used in the mGA. Examination of such schemes is an
important area for further investigation.

Another important extension to this paper is the re-examination of diploid
GAs applied to stationary search problems, where the inherent noise of the
genetic search process is considered nonstationary. Recall that a GA searches
by implicitly selecting building blocks on the basis of population average fit-
ness values, and recombining. This process is clearly noisy since schema
average fitness values vary from sample to sample, and thus from population
to population. Goldberg and Rudnick [11] use the term collateral noise to
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refer to this variance in schema average fitness values. How collateral noise
can be viewed as nonstationary can be illustrated by example. Consider the
competing schemata * * 1 and * * 0 in a population of three-bit individu-
als, or as three bits of a larger problem. Imagine that at some point in the
GA search process, a population is dominated by individuals with schemata
0 1 *x and 1 0 *, with few or no individuals with schemata 0 0 * and 1
1 *. Further imagine that, based on this population, schemata average fit-
ness values indicate that selection should strongly favor * * 0 over * * 1,
while there is fitness difference between 0 1 * and 0 1 *. After a number of
generations, selection causes the population to be dominated by individuals
with schema * * 0, while recombination re-biases the population toward a
more equal representation of 0 0 *, 0 1 * 1 0 *, and 1 1 *. Based on
this re-biased population, one can imagine that variance in the fitness values
could dictate selection strongly favoring * * 1 over * * 0. If the optimal
solution is 1 1 1, the GA may have difficulty since early selective pressure
eliminated 1-valued alleles in the third position. It is easy to imagine more
complex situations in which the variance values of a number of schemata af-
fect the search process in a similar way. Mutation could be used to maintain
diversity such that a sufficient number of schemata with high variance are
maintained despite early selective pressure. However, previous arguments
have indicated that mutation is disruptive to the genetic search process (in
fact, mutation can be seen as an additional source of noise). Clearly, the
non-disruptive diversity introduced by diploidy and dominance may be use-
ful in these situations. One can also envision situations in which schema
variances and repeated biases in the population could yield an advantage for
the probabilistic memory introduced by diploidy and dominance.

Inherent temporal variation in the genetic search process may also play
a significant role in genetics-based learning systems like the learning clas-
sifier system [16] or certain genetically-structured neural networks [18]. In
these systems, each population member’s fitness can depend on the entire
composition of the population, as in a natural ecology [22]. In such prob-
lems, changes in the population composition imply a nonstationary character.
Thus, diploidy and dominance could prove useful.

11. Conclusions

Several conclusions can be drawn directly from the information presented
in this paper. As suggested by Holland [14], diploidy allows for a higher
level of steady-state diversity in a converged GA population for a given level
of mutation. However, analytical and experimental evidence shows that a
diploid GA maintains extra diversity at loci where alternative alleles were
emphasized in the recent past. In effect, diploidy embodies a form of tempo-
ral memory that is distributed across the population. This added diversity
is more effective than that induced by increased mutation because of its sen-
sitivity to function history. Also, added diversity (whether due to abeyant
recessives or added mutation) is less disruptive to the genetic search process
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in a diploid GA than in a haploid GA. Therefore, a diploid GA not only
requires a lower mutation rate for a diverse population, but can also sustain
a higher rate of mutation without disrupting the search process.

Experiments show that an adaptive dominance map is necessary to ef-
fectively exploit the advantages of diploidy. Analysis of and experiments
with the triallelic adaptive dominance scheme have shown the importance
of a dominance shift operator in such schemes. The dominance shift rate
is a control on probabilistic memory in a diploid GA, with recessive alleles
retained longer and recalled less quickly for lower dominance shift rates. Ex-
periments also show that the diploid GA can sustain rates of dominance shift
that are much higher than those typically used for mutation.

The results presented in this paper have clear-cut implications for nonsta-
tionary versions of the ill-conditioned search problems for which haploid GAs
would typically be employed. As previously noted, diploidy and dominance
could also aid in stationary search problems that include noisy evaluations
of schemata average fitness values, and in genetics-based learning systems
that have an ecological character. In such problems, internal aspects of the
genetic search process induce virtual nonstationarities that may be addressed
effectively through diploidy and dominance. Thus, diploidy and dominance
are a naturally inspired addition that may improve the performance of GAs
in a broad class of search, optimization, and learning tasks.
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