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Abstract. Genet ic algor ithms (GAs) continue to receive increased at­
tention as general-p ur pos e met hods for search and optimization . GAs
are attrac t ive for search in complex spaces where the fun ction al re­
lati onsh ips between paramet ers and ob jective function values are of
unknown , arb itrary mat hemati cal charac te r. Desp ite t heir generally
robust character, typical GAs are known to fare poorly on functions
that var y with time, where the goal is to track nonstation ary op­
t ima. It has been theor ized that in natural gene t ics , diploidy and
dominance increase the sur vivability of species in environments that
vary wit h time. T his paper examines the effects of diploid representa­
tions and dominan ce op erators in genetic algorithms applied to non­
stationary search problems. Ex pe rimental resu lt s indi ca te that t hese
ad dit ions greatly increase t he efficacy of GAs in t ime-varying env i­
ronments. T his increased performan ce is mad e possib le by abeyant
recessive alleles. Analytical arguments show that these recessive alle­
les increase popul a tion diversity wit hout t he disruptive effects of high
mu ta tion rates, t hus allowing t he GA to renew it s search process as
the problem varies with time. An alysis also reveals that abeyant reces­
sives are sens it ive to past env ironme nt al condit ions , and can therefore
act as a form of distributed, probabilist ic memory of env ironmental
cond itions t hat occur periodically. Final sections discuss exte nsions
and implications of this work, including mult i-locus do minance und er
genic cont rol, intrachromosom al dominance, and how diploidy may
affect the inherently noisy GA search process, if t his noise is viewed
as a nons tationary aspect of the objective fun ction .
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1. Introduct ion

Genetic algorithms (GAs) are robust-broad and efficacious-search pro ce­
dures that have been employed in a wide var iety of opt imization and machine­
learning applications. GAs are based on an analogy to natural genet ics, where
a population samples a complex search domain , and selectio n and recombi­
nation are used to construct new populations. Because GAs are based on
the idea of biasing samples, they avoid the various mathematical assump­
tions (e.g., of cont inuity, "smoothness," modality, etc.) that are inherent ly
involved in most search pro cedures. This explains the GA's broad applica­
bility. However , despite their rob ustness, typical GAs are known to perform
poorly on nonstationary search problems, where the goal is to track t ime­
varying opt ima [19]. This is disconcerting, since one of the origina l motiva­
tions for GAs was their use in pro blems t hat remain "perpetually novel" [15] .
However, research has shown that adding diploid representations and dom­
inance relat ionships improves a GA 's performance on nonst ationary search
problems. This pap er summari zes the aut hors ' previous research on diploid
GAs applied to nonstationary search problems. It also present s more de­
tailed analyses and exp eriment al results that were previously unavailab le in
the open literature. The paper concludes with a discuss ion of th e implications
of this work for search in st ationary search problems, where inherent noise
in the genet ic search pro cess may manifest it self as a recurring misfortune.

To motivate th e use of diploid GAs in nonst ationary search problems, it is
first necessary to motivate GAs themselves, a task taken up in the following
sect ion.

2. An introduction to GAs

To mot ivate the use of a genet ic metaphor for a computerized search pro­
cedure, consider the following search problem. You are given the tas k of
finding improved designs for solut ions to a given problem. Each design can
be specified by a list of features. To provide feedb ack for the search pro cess,
you have a "black box" that , given a set of features that fully specifies a
design , returns a measure of positi ve utility called fitn ess. The space of pos­
sible designs is far to o large to enumera te, and you have no know ledge about
the mathematical relationship between features and fitness values. You can
pro ceed only by taking sample designs, feeding t hem to the black box, and
using the resulting fitness values to bias subsequent samples.

Clearly, these are very limiting assumptions. In most sear ch problems,
more information will be availab le th an is assumed here; however , this worst ­
case search scenario is useful for motivating a rob ust search pro cedure.

An intuitive st rategy for this search problem is to feed a sample of de­
signs to the black box , observe apparent corre lat ions between fitness values
and features, and bias samples on the basis of these observations. Such cor­
relations are impli ed by similarit ies between various designs. For inst ance,
consider designs whose features are encoded as binary strings of length £.
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Note that such a space contains 2£ possible designs. If , after feeding a sam­
ple of designs to the black box, you observe tha t all strings that have bits
four and seven both set to one have above-average fitness, it would be logi­
cal to conclude that setting these bits to one should be t ried in subsequent
samples. Thus, a similarity in highly fit sample designs implies a corr elat ion
between the similarity and high fitness.

For designs repr esented by binary encodings of length f., the number of
such similarit ies can be quantified by schem ata (schema singular) that may
be repr esented by strings of length f. taken from the alphabet {1, 0, *}.
For instan ce, the schema

* * * 1 * * 1 * *
repr esent s that set of all bin ary st rings of length nine that have bits four
and seven similarly set to one. For a spac e with 2£ possible designs, there
are 3£ possible similarities. Clearly, if one is un able to enumerate all poss ible
designs, one is even less able to exa mine all possible similarit ies. However,
given the previous assumptions, it seems that examining similarities is one of
the few logical ways to proceed. Therefore, one must determine a sea rch pro­
cedure that exa mines some similarit ies and exploits the information obt ained
in a logical fash ion. This is the motivation for GAs.

In its simplest form , a GA proceeds as follows:

E valuation Fit ness values for the memb ers of the curre nt population (sam­
ple) are det ermined .

Sele ction Individuals I(designs) are assigned a number of copies in a mating
pool tha t is used to construct the new population. The more fit an
individual is, the more copies it receives. A common method is to
assign copies by repeated random select ion without replacement from
the probab ility distribution

I.
Pi = 'L I/

where Ii is t he fitness of individu al i , the sum is taken over all popu­
lat ion members, and Pi is the probability of individual i receiving an
addit ional copy. Typically, the select ion process is cont inued until the
size of the mating poo l equa ls the size of the population. Not e that
select ion is the emphasis phase of the GA.

R ecombination Individu als from the mating poo l ar e recomb ined to form
new individuals. A common recomb ina tion method is single-point
crossover, where the encodings of two ran domly selected individuals
from the mating pool are split at a randomly selected crossover point,
and halves are swapped to form two new individuals (child ren) . As an
illust rat ion , consider the following two parent s:

11 0 11011

o 1 110 1 0 1
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where a crossover point at position three is marked. Swapping halves
on eit her side of the crossover point yields the following two children:

0 1 1 1 0 1 1

1 100 101

Crossover occurs with probability Pc, which is typically near one. Note
that crossover is the exploration ph ase of the GA.

Mutation Mutation is applied to the individuals that result from select ion
and recombination . Typ ically, each bit of an indi vidual can be flipped
with some small pr obabi lity Pm. Note that mutation is a mechani sm
for maintaini ng diversity in the GA population.

The indi viduals that result from these steps form a new populat ion , and the
pr ocess is iterated.

One may ask what relationship exists between the simple GA procedure
outlined above and the examinat ion of similarities. To answer this question ,
consider the expected number of individuals containing similar ity H in a
population at time t + 1 (denoted by m(H, t + 1)) , given m(H, t). Two
properties of schemata are useful in deriving this expected value.

Schema order, o(H ), which is defined as the number of non-» bits in
schema H .

Schem a defin ing len gt h , 8(H) , which is defined as the maximum num­
ber of cross po ints between non-« bits of H .

Given these quant it ies, one can derive the fun dam ental theorem of genetic
algorithms [14],

m(H,t+1)?- m(H,t/j) [1- Pc~~i - Pm ' O(H)] ,

where f is the average fitness of the populat ion are t ime t , and f (H ) is the
average fitness of individuals that share the similarity dictated by schema H.

T he fundam ental theorem indicates that short , low-order schemata that
demonstrat e above-average fitn ess will receive expo nent ially increasing num­
bers of copies. These schemata are called building blocks, and they em­
body the central ass umpt ion in GAs, the so-called building-block hypoth­
esis . Simply stated , the hyp othesis says that combining short , low-order
building blocks should yield higher-order schemata that also demonstrate
ab ove-average fitn ess. This, in essence, is the GA's st rategy for examining
simi lar iti es as a basis for search.

Clearly, the fund ament al theorem and the building-block hypothesis are
limi ted in two ways:

• Except in very simple problems, not all building blocks will conform
to the bui lding-b lock hyp othesis. In other words , some short , low­
order schemata that demonstrate above-average fitn ess will recombine
to yield longer , higher-order , below-average schemata.
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• T he average fit ness f (H) obt ained from a given population is only
a noisy est imate of f (H) over all possible individua ls that share the
similarity H.

Two other fundamental theoreti cal developments address these limitations:

Implicit parallelis m T he number of building blocks processed by a GA
with po pulati on size n has been est imated to be O(n3

) [7, 14]. In
pro cessing this large number of schemata implicitly and in parallel,
the GA oft en find s sufficient schemata that recombine accor ding to the
building-blo ck hyp othesis and lead to highly fit indi viduals.

The k-armed bandit argument It can be shown that in a prob abilisti c
decision problem that involves refining est ima tes through exp lorat ion
while improving performan ce through exploitation , a near -optimal
st rategy is to allocate expo nent ial trials to the observed best. This
justifies the GA approach to est imating schema fitn ess values while
allocat ing an expo nent ially increasing number of copies [11, 14, 20].

The efficacy of the strategy embodied in these theoreti cal development s is
borne out in numerous GA applicat ions in a wide range of disciplines [7].

3. G As a nd nonstationar y search

Clearly, the O(n 3
) est imate is based on a diverse population , where many

schema ta are represented . However , as exponential allocation of observed­
best schemata accrues , one can expec t that the nu mb er of building blocks
processed will decrease. T his is an inevit abl e consequence of convergence in
the GA outlined above. After convergence, the GA population will be com­
posed primaril y of copies of one individual. T he only diversity maintained
in the population afte r convergence is a result of mutat ion . Note that mu­
tation is a complete ly rand om operator that is unguided by the algorithm 's
observations of fitness values over time.

In traditional opt imization applications , convergence of t he GA is desir­
able. However , the lack of population diversity afte r convergence causes the
typical GA described above to fare poorly on problems where the goal of the
search is to track a time-var ying functi on . If t he character of the obj ecti ve
functi on changes after the GA population converges , the population does not
possess sufficient diversity to allow the search to begin anew .

One solutio n to this dilemma would simply be to increase the mutation
rat e such that diversit y is main tain ed. However , this has the effect of dis­
rupting the genet ic search pro cess and preventing convergence . Moreover ,
the mutation provides no mechani sm for the GA to "learn" any temporal
regularities that exist in the functio n 's variations. Specifically, if the average
fitn ess valu es of certain building blocks vary wit h t ime while the average fit­
ness values of other building blocks rem ain relatively constant, it would be
desirable for the GA to maintain diversity in the former while converging in
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t he la ter. T his would constit ute a form of temporal m emory of fitness varia­
ti on. Mut a t ion provides no m echanism for this behav ior since it is insen siti ve
to fit ness.

Bi ological t heory suggests t hat diploid chromosomes and dominance
mechanisms may improve the survivability of species in t im e-va rying en­
vironments [l J. T herefore, as was first realized by Holland [14], it seems
logical to exam ine analogous represent a t ion s in GAs. The following section
in t ro duces diploidy and dominance in GAs.

4. Diploid GAs

T he G A desc ribed in section 2 ass umed a haploid representation of pot en ti al
problem solutions. That is , each population member was a bit string t hat
containe d sufficient in form ati on to sp ecify a complete solution design. The
analogous hap loid chromosomes in na tural genetics are found primarily in
very simple organis ms . Mo re complex organisms oft en have di ploid chro­
mosomes , which contain twice the in format ion necessa ry for specifying the
organism's st ruc t ure. Con flict s tha t occur b etween t he two halves of a diploid
chro mosome are resolved by a dominan ce rela tionship, which (in it s simplest
form ) decides on one of t he conflicting genes t hat is event ua lly expressed in
t he organism itself. In a GA, a dip loid individual has two bit strings , each
of which is sufficient to specify a com plete solut ion design. A domin ance re­
la ti onship specifies how t hese two str ings are decoded int o a sing le expressed
string whose fitness is evaluated. For inst ance , if we conside r a domin ance
relation ship where 1 always dominat es 0 (1 is called the dominant allele and
o is ca lled the recessiue alle le) , t he following dip loid individual,

1 011 01 011

o 0 1 0 1 01 1 0

decodes to the following expressed string:

1 01 1 1 1 111

How do dominance and dip loidy improve GA performance on nonsta t ion­
ary search pro blems? T he simplest explana t ion is t hat recessive a lleles in a
dip loid GA preserve popula ti on di versity aft er convergence. When recessive
alleles are pa ired with dominant alleles, t hey are held in abeyan ce and are
effectively shielded from adverse select ive pressure. Thus, after convergence,
some diversity is retain ed in t he form of abeyant recessives . Holland [14] sug­
ges te d t he valu e of diploidy as a di versity-preserving mechanism by showing
t hat less mutation is need ed to m ai nt a in a give n level of d ivers ity in a diploid
GA t han a hapl oid G A. Co ns ider the expected population prop ort ion of a
given allele (lor 0) at a given bi t posit ion at ti me t , which will be den oted
by P' :

p HI = (1 - E) pt + Pm(1 - p t ) - Pmp t ,
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where E > 0 is the expec ted change in t his proport ion du e to fitn ess-prop or­
ti onate select ion for t his allele. Note t hat for a given fitn ess function , E is a
funct ion of allele pro po rtio ns only. Solving for a steady state (p t+l = P' =

Pss) an d rearranging yields

ESS p
Pm = 1 - 2~ .ss

If one assumes st eady-state proportions, E
SS can be assumed to be constant.

If Pss is a small, desired steady-state prop ortion of the allele that is less
favored by select ion (ESS < 1) , this equat ion indi cates that the Pm necessar y
to maintain Pss after convergence is proportional to Pss.

Consider a similar formulation for a dipl oid GA , where p t is the pr opor­
ti on of the recessive allele at time t . In thi s sit uat ion,

p t+ 1 = (1 - 2EPt)pt + 2pm(1 - 2p t).

Solving for a steady state and rearran ging as before gives

Ess p 2

Pm = 1 - 2~ss
If Pss is a small, desired steady-state pro port ion of the allele that is less
favored by select ion , this equat ion indicat es that the Pm necessary to maintain
Pss after convergence is prop orti onal to n,a much lower valu e than in the
haploid GA .

T hese steady-state arguments show how diploidy requires a lower level
of mutation to obtain a desired level of steady-state diversity. However ,
examination of the tran sient behavior reveals mor e about the utility of diploid
GAs in nonst ationar y problems [13].

Consider a problem in whi ch a given allele at a given position is advan­
t ageous for some period of t ime . After this pe riod , the allele is no longer
advantageous; rather , it s compliment is favored by select ion . In a nonst a­
ti onary problem , it may be desirabl e to preserve the originally advantageous
allele for some period of time since the condit ions under which it was favored
may return.

One can examine pro portion equat ions to show how haploid and diploid
GAs preserve such an allele. Assume that the originally advantageous allele is
recess ive in a dipl oid GA. Recall that this allele ap pears in both expressed and
unexpressed form, depending on whether it is paire d with anot her recessive
allele or a dominant allele, respectively. T he average fitn ess of a recessive
allele (which will be called ir.) , regardless of whether it is pair ed with a
dominan t or a recess ive allele, is given by

where [; is the fitn ess of the recessive allele in it s expresse d form , id is the
fitn ess when the dominant allele is expressed, and P; is the proporti on of
recessive alleles at time t. The average fitn ess of the population is given by
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Figur e 1: Expected ra tio of t he pr op or tion of recessive alleles ,
p;.+1 / p;. ,versus p;. for hap loid (c = 2) and diploid (c = 2 and c = (0)
cases [13].

T his gives the expected change in the proportion of the recessive allele as

where c = id/[; and K is a constant that expresses the loss due to mutation .
A similar expression can be derived for the haploid GA:

p H I = KP;
r p;. + c (1 - P;.)

Given these equat ions , one can use the relat ive rate of change of Pr ,

name ly p; +I / P; , as a measure of how slowly recessive alleles are deleted by
selection . Figure 1 shows plots of this quant ity versus P; for hap loid and
dip loid GAs with c = 2 (where the dominan t is twice as advantageous as
the recessive) , and for the diploid GA with c = 00 (where the dominant is
infinitely bet ter then the recessive). T he plots show that the rate of change
of the proportion of recessives is much slower for the diploid GA than for
the hapl oid GA when c = 2. Even for c = 00 , the proportion of recessive
alleles changes more slowly in the diploid GA than in the hap loid GA wit h
c = 2 for P; > .5. T hese results indicate that recessive alleles that have been
emphasized dur ing one period of the function 's evolution will be retained at



Diploidy and Dominance in Artificial Genetic Search 259

0.5000 -.---- - - --- - - --- - ---- - - -----,

0.4000

".~
0.3000

"o"e>::
c
0

t
0 0.2000
""2
c,

0. 1000

o 10 20 30 40 50

o Haploid, C = 2

Generation Number

+ Diploid, C = 2 o Diploid, C = 00

Figure 2: Prop ortion of recessive alleles P; versus generat ion number
for haploid (c = 2) and diploid (c = 2 and c = 00) cases [13].

proportions higher than steady state for an extended period of time. Figure 2
illustrates this point by iterating the pr oportion equations used above.

T hese result s show that diploidy does more than simply main tain diversity
afte r convergence. It allows the GA to maintain extra diversity at positions
that have had alternat ive alleles emphasized in the functi on 's recent past.
Unlike mutation , this is a maintenance of diversity that is sensitive to the
system's fitn ess history. In effect , t he recessive alleles are a form of m emory
of past fun ct ion conditi ons . These analyt ical observat ions are illust rated in
experiments in the following section.

5 . Fix ed dominance and time-varying functions

As a simple examp le, consider the 0-1 knapsack problem [23]. Knapsack
prob lems are a class of common bu t difficult (NP-comp let e) problems in
operat ions research. A var iety of indust rial problems can be redu ced to
kn aps ack problems, including cargo loading, st ock cutt ing, pr oject select ion ,
and budget cont ro l. Knap sack problems also arise in the consideration of a
var iety of linear pr ogramming problems.

T he 0-1 knapsack problem can be defined in terms of the following simple
analogy. Cons ider a scavenger with a bag that holds a maximum weight W .
The scavenger has available n objects, each wit h weight ui, and value Vi . The
scavenger 's objective is to maximize the value that can be carried in the bag.
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W=60 W= 104

Number Value Weight Op ti mal Optimal
i Vi W i Xi Xi

1 2 12 0 0
2 3 5 1 1
3 9 20 0 1
4 2 1 1 1
5 4 5 1 1
6 4 3 1 1
7 2 10 0 0
8 7 6 1 1
9 8 8 1 1
10 10 7 1 1
11 3 4 1 1
12 6 12 1 1
13 5 3 1 1
14 5 3 1 1
15 7 20 0 1
16 8 1 1 1
17 6 2 1 1

Tot al : 91 122 13 15

2:;:1 XiVi = 71 2:}:1 XiVi = 87

2:}:1 XiWi = 60 2:}:1 Xi W i = 100

Table 1: The I7-object , 0-1 knapsack problem parameters used here
with opt imal solutions.

Mathemati cally, the pr oblem is to find

n

max L Vi X i
i= l

subject to the weight constra int

n

L W i X i ::;W,
i = 1

where the x;'s are variabl es that can be set to either 0 or 1; W , the v;'s,
and the w;'s are given problem parameters; and n is the problem size. A 17­
object , 0-1 kn aps ack problem is the bas is for the test problems used here [6] .
Obj ect weights and values for this problem are shown in tabl e 1. Although
this problem has a moderately large search space (217 possible solutions), pr e­
vious experience [12] indicat es that a hap loid GA with a mod erate population
size (150) converges to the problem 's op timal solution in approximate ly 15
genera t ions . This relatively short convergence t ime made the problem con­
venient for adaptat ion to the time-varying opt imizat ion experiments.
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In the experiments examined in this sect ion , the knapsack problem is
made nonstationary through vari ation of the const raint W . Specifically, the
weight constraint is switched every 15 gene rations between 104 and 60. The
optimal solut ions associated with these constraint values were det ermined
using standard methods [23]. They are Lt~l X iVi = 87 for the case where
W = 104, and Lt~l X i Vi = 71 for the case where W = 60. T hese optimal
knapsacks are indicated in table 1. Not e that they differ by two bits.

A version of the haploid GA (described in sect ion 2) is applied to this
problem , with the following parameters:

• crossover probab ility Pc = 0.750,

• mutation probability Pm = 0.001, and

• population size = 150.

Solutions are coded as strings of lengt h 17, where the ith position represents
the Xi variable for the ith obj ect in tab le 1. The weight constraint is enforced
by a penalty function on fitn ess. Spe cifically, if the solut ion dictated by a
population memb er is overweight by b.W, then its fitness is the solution's
value minus C(b.W)2 , where the penalty coefficient C is 20. Negat ive fitn ess
values are set to zero. Linear fitn ess scaling [7] and stochastic remaind er
select ion [2] are used in all experiments. The initial population is generated
at random.

Figures 3 and 4 show typic al best-of-generation and generat ion-average
resu lts , respectively, from the haploid GA. The GA converges to the optimum
in one of the two switching conditions , and fails to have sufficient population
diversity to continue searching when the weight constraint changes. After the
change , all the solutions suggested by the population are severely overweight
and have zero fitn ess.

Now consider the application of a dip loid GA with the fixed 1-dominates­
o dominance map discussed pr eviously. The paramet ers and operat ion are
identi cal to those of the haploid GA in the previous experiment , with the
exception of alt erations in the crossove r pro cedure to account for diploidy.
In the dip loid GA, crossover first occurs between the strings of a haploid
ind ividual, and then these halves are swapped between parents. T his is a
simulation of gametogenesis, and yields the same recombination effects as
crossover in the haploid GA .

Figures 5 and 6 show typical best-of-generation and generation-average
results (resp ectively) for the nonstationary knapsack problem with the fixed­
map dip loid GA . In this case, search continues as the function var ies wit h
t ime. Not e that the lower optimum is consistent ly red iscovered when the
function switches. This red iscovery takes place without renewed search. This
illustrates that the diploid GA is doing mor e than simply maintaining diver­
sity across all bit positions (as would a high mutation rate) ; dip loidy is pre ­
serv ing the specific alternative alleles necessary to reconstruct this optimal
solut ion immediately when the funct ion switches.
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Although these results are int eresting, the dominance mechanism em­
ployed is clearl y flawed . Although the higher optimum is rediscovered in
some cycles, it is only afte r renewed sea rch , which often fails to find the true
optimum. This is becau se the higher fun ction value requires more Lvalued
alleles in the string, and these alleles cannot be "memorized" as recessives
since they are always dominant. To deal with arbit rary nonst ationary fun c­
tions, the diploid GA requires a dominan ce map that can evolve to have
eit her O-valued or l-valued alleles dominate at any position. The following
section introduces a scheme suggeste d by Hollstien [17] and Holland [14] that
allows for an ada pt ive dominan ce map .

6. The triallelic adaptive dominance scheme

Realizing the need for an adapt ive dominance map , Hollsti en [17] and later
Holland [14] suggeste d a scheme with three possible alleles at each position,
{O,1, Io}. Under this scheme , both 1 and 10 are expresse d as 1, bu t 1 domi­
nates 0 and 0 dominates 10 . Thus, a l-valu ed allele can act eit her dominant
or recessive.

Op eration of the diploid GA under this scheme is identical to that of the
fixed-map scheme, except for a slight alte ration in the mutation operato r. In
this case, mutation converts each allele typ e to one of the other two types
with equal probability. Thus, mutation accounts for changes in value (i.e.,
from a l-valu ed allele to a 0) and changes in dominance (i.e., from a dominant
1 to a recessive 10 ) , In the following experiments, the population is randomly
initialized so that the number of l -va lued and O-valued alleles is expected to
be equ al.

Figures 7 and 8 show be st- of-generation and generation average results
obtained on the nonst ationar y knapsack problem with a diploid GA and the
triallelic dominan ce scheme . The results indicate that the trialleli c GA is
supe rior to both the haploid GA and the fixed-map diploid GA in it s ability
to track the nonst ationary problem. The triallelic GA is frequ ently able
to recall each optimum quickly. Mor e detailed observat ions reveal how the
triallelic GA stores and retrieves alternate information from abeyance.

At gen eration 135 the population ha s completely converged to the higher­
valu ed solution, and the weight constraint switching to 60 causes a "crash"
in population fitness. In the next generat ion the alleles necessary to recon­
st ruct the lower-valued opt imal solut ion are br ought out of abeyance, and
the algorit hm recovers the opt imal solut ion for the W = 60 case.

Another illustration of the t riallelic GA's ability to recall ab eyant in­
form ation is near the end of the run. In the third from last cycle of the
run, the algorithm has converged complet ely to the lower-valued optimum.
The higher-valu ed opt imum is not discovered at all for one full cycle, and
in the following cycle it is only found in the last generation before the
weight constraint switches. Aft er the higher-valu ed opt imum is rediscov­
ered in genera t ion 375, it is qui ckly recalled from abeyance in the following
cycle.



Diploidy and Dominance in Artificial Genetic Search 265

90

88
• • ;wi

86 I84

82 G

80 ( r78
on 76on
o
E 74tI:

~ ~ \
72

r -- - i.-l -- - -- .J --I..
70

68

66

64

62

60
0 100 200 300 400

Generation Number

F igure 7: Diploid GA with evolving dominan ce map (t riallelic scheme)
best-of-generation results .

90

80

70

60

on 50
on
o
E
tI: 40

30

20

10

0
0 100 200 300 400

Generation Number

F igure 8: Dip loid GA wit h evolving dominan ce map (tria llelic scheme)
generation average result s.



266 Robert E. Smith and David E. Goldb erg

This expe riment illustrates that diploidy and adaptive dominance greatly
improve the GA 's ability to track a nonst ationary function . However, t he
exact dyn amics of a dipl oid GA wit h the t ria llelic dominan ce scheme are not
ent irely apparent. The followin g section presents some addit iona l analysis of
the trialleli c scheme.

7. Further analysis of the triallelic dominance scheme

Proportion equat ions like those used in section 4 are useful in clarifyin g the
behavior of the triallelic dominance scheme . To derive these equat ions, one
must first derive the average fitn ess values of the three alleles t aken over all
po ssibl e allele combinat ions in which they appear. These values are given by

f(l oJ = f 1Pto+ foP;Po+ f 1P10 P1 = f 1+ Po(Jo - f 1),
10

f(Oe) = foP;; + f1P~1 + fOPOP10 = fo + P1(J1 - fo) ,

f(1 e) = f 1,

where I, is the fitness of any combinatio n of alleles that is expresse d as a
1, fo is the fitness of any combinat ion that is expresse d as a 0, and Po, P1,
and go are the proportions of 0, 1, and 10 alleles, resp ectively. The average
fitness of a triallelic populatio n is given by

f = I, (1- 2POP1o - Pg) + f o (2POP10+ Pg) .

For notational convenience, each allele is assigned a reproductive proportion
(R) based on it s expected average fitness:

1
R10 = 7 P10 [r + Po(1 - c)] ,

1
Ro = 7 Po[I+P1(C-l) ],

1
R1 = 7 P1C,

where c = f d fo·
Before proceeding to dr aw the propor ti on equations, it is useful to split

the mutation operato r into two separate ope ra to rs: a mu t ation of valu e op­
erator and a dominance shift operator. The associated rates of application
of these ope rators will be Pm and p" resp ectively. In the following analysis,
dominan ce shift is defined as a change in the dominan ce associate d with a
1 or a Ie allele, and mutation is defined as a change in the value associa ted
with an allele, wit h dominan ce determined randomly when the mu tation is
from a O-valu ed allele to a l-valued allele. These operator definitions are
shown in table 2. To avoid the effects of bo th operators, it is assumed that
eit her mutation or dominance shift occurs, but never bo th. In simulat ions,
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Op erator Allele

1 0 10

Dominan ce Shift changed to 10 not affected changed to 1

Mut ation changed to 0 changed to 1 or 10 changed to 0
(with equal probability)

Table 2: T he effect s of separate dominance shift and mutation op er­
ators in t he t r iallelic GA.

the operator that is given the possibility to act is select ed by the flip of a fair
coin . Not e that the common facto r of 0.5 introduced into the mutat ion and
dominan ce shift rates by this procedure is not shown, but is assumed in the
following analysis.

Wi th definitions of separa te dominan ce shift and mutat ion, the proport ion
equations for the three possible alleles can be stated as:

p;: l 2: Rio(1 - Pm - Ps) ,

p~+l > R~ ( l - Pm),

p;+l > Ri (1- Pm - Ps)'

The addition of mu tation and dominan ce shift sourc e terms III a manner
similar to Br idges and Goldb erg [3] comp letes the equat ions:

p;: l = [Ri o(1- Pm - Ps) + RiPs + ~ R~Pm],

p~+l = [R~ (1- Pm) + Pm(Ri + Rio)],

p;+l = [Ri (1 - Pm - Ps) + Ri oPs + ~ R~Pm] '

These equat ions constitute a complete descrip ti on of the expec ted pro por­
tions of Is, Os, and l os for a single locus in the triallelic GA wit h mutation ,
dominan ce shift , and fitness-proportionate select ion operators.

As in the analysis of fixed-map diploid schemes, it is useful to examine
the st eady-state proportion of recessive alleles. Unfort unately, deriving an
expression for the st eady-state pro port ions is difficult . Nevertheless , steady
states can be found num erically.1 Although this num erical-solution tech­
nique does not insure that ot her steady states do not exist , or that a single
trajectory is followed as Pm and Ps are changed , one can make int erest ing
qualit ative observat ions from the results. These qualitative resul ts are con­
firm ed through further expe rimentation presented later in this pap er and
elsewhere [21].

F igur es 9, 10, and 11 show the spline curves through numerically-det er­
mined steady-state values for various settings of Pm and r versus Ps.2 In t hese
graphs , a 0 is considered recessive if c > 1, and 10 is considered recessive
if c < 1. As one might expec t, these graphs indi cate that the steady-state

IT he Eureka package from Borland was employed to determine numerical steady states.
2Note th at the results for c < 1 were obtained using a version of the proport ion equa­

t ions with fo l h as a par ameter , rat her than h i fo ·
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pro portion of recessive alleles falls as P» is increase d . Note that for high Ps the
proportion of recessives is on the order of Pm. This is reasonable since for high
Ps recessives are expressed often, and are therefore driven out of abeyance in
the long run . For low Ps> the st eady-st ate propor tion of recessives is on t he
order of p?;.5, as predicted by the analysis present ed previously by Holland
[14]. In this case the alternat ive alleles are seldom expressed (on the order
of Ps2.) , and are therefore held in abeyance in greater proport ion .

These graphs indi cate another feat ure of the t riallelic dominan ce scheme.
For f I < fa (c < 1), there is a relati vely smooth growth of Pss as ps is
lowered . However , for II > f a (c > 1), there is a st eep jump in the Pss versus
p, curve . The jump occurs aro und Ps = Pm in all thr ee graphs. Figur e 12
explains this phenomenon. This figur e shows that for c > 1 and Ps « p-«,
the steady-state conditio n has a proport ion of Is much greate r than the
proportion of l os. For p, » Pm, the system tends toward a steady state in
which the proport ion of I-valu ed alleles is equally distri bu ted between Is and
l os. The lat ter case allows for much greater expression of 0 alleles; therefore
t he ste ady-st ate proportion of recessive as is dr amatically lowered as p, is
raised above Pm. A similar effect does not exist for recessive Is. For some
parameter settings , this difference also has the effect of making Pss for 0­
valued recessive alleles much lower than that for l -valued recessive alleles,
t hus creating a preference for 1 as a recessive allele in the tri allelic system.
These problems indicate an asymmetry in the t riallelic representation caused
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by the presence of two l-valued alleles and only one O-valued allele. Although
it is negligible in many cases, this asymmetry will be evident in ot her ana lyses
and in exp erimentat ion.

As in the ana lysis in sect ion 4, examinat ion of the transient behav ior of
the triallelic GA is also revealing. In this case the proportions are solved
iteratively (starting from equa l expressed proportions of Is and Os), and the
transient times are est imated as the numb er of generat ions clocked unt il the
propor tion of recessives cha nges less than 0.01%. Once again, these result s
are qua lit ative, in that there is no proof that st eady st ates an d t rajectories
ot her than those shown do not exist. However , the qualit ative result s are
confirmed in later experimentat ion .

Graphs of the t ime to t he steady state versus e and l / e are presented
in figures 13 and 14. Note that both c and 1/ c are plot ted on log scales.
The plot s are spline-inte rp olated lines thro ugh discrete data. P lot s of the
prop ortions in the hapl oid GA and the fixed-map (l -dominat es-O) diploid
GA proportions are also included .

Figure 13 shows that the haploid and the fixed-map diploid schemes retain
alte rnate alleles at higher-than-stead y-state levels for essent ially the same
shor t period of t ime. T his result is expec ted since the l-dominates-Oscheme
canno t hold I s in abeyance . The hapl oid and fixed-map diploid schemes
quickly discard the 1 allele. By cont ras t, the t riallelic scheme retains the 1
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allele as an alternate at higher- than-st eady-st a te levels for approximately 65
generations for Ps = .1, and approximate ly 125 generat ions for Ps = .01. The
amo unt of t ime the t riallelic system holds t he alternative allele in memo ry
increases rapidly as r approaches 1. Similar result s are seen in figure 14 for
c> 1. However , note that in t his case the fixed-map scheme is able to main­
t ain the pr oportion of recessives at a higher-than-steady-st a te level for more
than 95 generations. T his demonst rates how t he diploid GA wit h no shift
is able to maintain alte rnat ives as a form of memo ry for extended numbers
of generations . Also no te that for lar ge c the triallelic system maintains t he
a-valued allele at above-steady-state propor tions for a shorter p eriod of t ime
than a I -valued allele under simila r condit ions (small c). The differences
become less significant in the right-most po rtion'S of the graphs, where c is
near er to one. This difference between t he two graphs is anot her indicat ion
of the triallelic representa t ion 's asy mmetry. The l -valued alternative alleles
are held in the diploid GA 's population noti ceably longer than the a-valued
alte rnative allele in sit uations that should be similar.

8 . D isruptiveness of m aint aining diversity

As noted in previous sections , one of the roles that dip loidy plays in improv­
ing GA performance on nonsta tionary problems is to increas the diversity in
the population. Whether this diversity is randomly inser ted (as in mutation)
or is sensitive to t he fun ction 's history (as in probabilisti c memory through
diploid y) , the diversity int ro duced moderates select ive pr essures toward cur­
rently observed-best alleles. Therefore, this diversity, albeit necessar y in
nonsta t ion ary problems, is somew hat disruptive to the genetic search pro­
cess . This section analytically examines the disruptiveness of mu t ation and
dominance shift .

Consider applying only mutation op erators (i.e., mu t ati on and dominance
shift) to a sing le-loc us population. T his locus can be any in a multi -locus
population afte r reproduction and crossover have been applied. If t he mu ta­
tion operators were not applied, one could expect that a cert ain prop ortion of
each allele value would be expresse d. Aft er mutation op erators are applied,
these exp ect ed proportions of expressed alleles ar e changed . A measur e of
the degree of population alte rat ion associa te d with a mu tation op erato r can
be defined as the expected propor ti on of a single-locus populat ion who se
expected, expressed values are change d by the application of that op erator.
This measure will be called t he ope rator's disruptiveness.

Consider the disruptiveness of mutation in a hap loid GA . Before the ap ­
plication of mutation , t he expecte d proportion of expressed a-valued alleles is
ca lled PJ. Aft er the mutation op erator is applied , t he new propor tion (which
is called pJ+m) is given by

T he disruptiveness of this operator IS given by the ab solute value of t he
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difference between these proportions:

Similar measures can be develop ed for the dominan ce shift and mutation
operators in the triallelic GA , but it is of some interest to first examine the
disruptiveness of mutation in a diploid GA where the dominanc e map is fixed
or has converged .

In a fixed-map diploid GA the expec ted proportion of the population
having the recessive allele value expressed is F'./. Therefore, the disruptiveness
of mutation is given by

Figur e 15 shows the disruptiveness of mutation versus the pro portion of
recessives for both the haploid and diploid GAs. Mutation 's disruptiveness
on the haploid GA rises to it s maximum value of Pm as the population con­
verges to either allele. In the diploid GA, mutation 's disruptiveness is at its
maximum valu e of twice the mutation rat e when the population converges
to the recessive allele. However, if the dominance map has evolved correctly
(fre > i r) the population converges to mostly dominant alleles. In this case ,
mutation's disruptiveness falls to p~. This indicates that mutation should
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lower population average fitn ess less in a converged dip loid GA than in a
converged hap loid GA .

The disruptiveness of mu tat ion in the t riallelic GA can be found by noting
that the expected proportion of expressed a-valu ed alleles is given by

p,t = (p.t )2+ 2P.t p t .
0. 0 0 10

Therefore,

6. = 1(P.t)2 + 2P.tp t _ (p.t+m)2 _ 2p.t+mpHm lmo o 10 0 0 10

= Pml [P~(2(Pi - Pio) - P~) + Pio(pi + pia)]

+ Pm[Pi(Pi - P~ ) + Pio (P~ - Pio)JI.

When the tri allelic pop ulation has converged complete ly to the a-valued
allele, the disruptiveness of mutation is Pm. However, when the population
converges to P, = 1, the disruptiveness in the tri allelic GA is only P;'" This
difference is another ind ication of the asymmet ry in the triallelic domin ance
scheme. As indicated previously, it is also possible for the tri allelic GA to
converge to the following steady-st at e proportions:

PI ~ P10 ~ 0.5,

Po ~ O.

In this case th e disruptiveness of the mu tation operator is approximate ly Pm .
The disruptiveness of the dominan ce shift operator is given by

6. s = PsP~ lPi - Piol·

This value tends toward zero as the algorit hm converges to any of the three
steady-state conditions.

Figures 16 through 19 show plots for the iterative solution of the triallelic
propor tion equa tions and the accompanying measures of disruptiveness. For
these figures c = 2 and c = 0.5 (respectively) , and Ps = Pm = .01 for both
graphs . These graphs show that as t he t riallelic GA converges , dominance
shift becomes less disruptive than mutation. This indi cates tha t domin an ce
shift should lower population average fitness less tha n mutation in a con­
verged triallelic GA . One can also conclude from these graphs th at mutation
and dominan ce shift should both tend to lower populat ion average fitness less
in the tri allelic GA t han muta tion in the hap loid GA . One could also con­
clude that t he diploid GA could sustain much higher dom inan ce shift rat es
than mutat ion rates for an acceptab le limit on disruptiveness. The following
section presents experiments that illust rate these observations.

9. Add itional experi ments wi t h t he t r ialle lic GA

To illust rate t he qualitative and ana lyt ical observat ions of the previous sec­
tion, consider another version of the nonst ationary knapsack problem used
in previous experiments. In this problem , the weight constraint remain s con­
stant while th e interpretation of certain bits is var ied . In par ti cular , the
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Figure 20: Result s from the triallelic GA applied to a nonstationary
knapsack problem with Ps = 0.1 and Pm = 0.001.

interp ret at ion of the i th bit can be varied from meaning X i to meaning x;'s
complement , This form of the nonst ati onar y kn ap sack problem is desirable
since the relative selectio n pressure for each alternative bit remain s cons tant ,
and the pr oblem 's varia t ions are symmetrical. In t he pr oblem used here, the
interpr et ation of bits 3 and 10 are switched every 15 cycles. Experiments
were performed for various set t ings of Pm and Ps.

Figur e 20 shows the results of an exp eriment with Ps = 0.1 and Pm =
0,001. Of those examined , these paramete r set t ings gave the t riallelic GA the
greatest ability to t rack the nonst ationar y tes t prob lem. The high dominan ce
shift rat e allows the algorit hm to recall the alternate alleles necessary to
maint ain an opt imal solution in almost every generation of the run , The
populati on average fitn ess also indi cates a high degree of convergence in each
cycle of the test problem . These resul ts are consist ent with the pr evious
section 's conclusion that dominan ce shift is less disru ptive than mutation in
the t riallelic GA. Note that the peak of the average-fitness cur ve is slight ly
lower in one of the two fun cti on condit ions. This is the condit ion where the
nonstat ionar y bits should be set to 1 in the optimal st ring, and it indi cat es
the asymmetry of the triallelic representati on discussed in previous sect ions.
This confirms the results illus trat ed in figure 10.

It is also int eresting to examine changes in the diversity of the popula­
ti on at bit s that have stationary and nonst ationar y int erpret ations in this
experiment. Fi gur e 21 shows the comparat ive convergence of the expressed
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allele values versus generation nu mb er for loci 3 and 12 in this experiment.
T he plot shows the pro portion of the most-expressed allele versus generat ion
number. The popul at ion quickly converges with regard to locus 12, which
has the same optimal allele valu e for both coding map s. The population
oscilla tes with regard to the expressed value at locus 3, indi cating the algo­
rit hm 's resp onse to this locus being nonstationar y. Figure 22 shows a graph
of the actual (rather than expressed) convergence at loci 3 and 12. The value
plotted against the vertical ax is is the highest of the prop ortions of the three
alternative alleles. Note that locus 12 has converged to approximate ly equal
pr oportions of Is and l os. Taken toget her , the pr evious three graphs show
how the diploid GA main tains diversity at bits that have nonstationary val­
ues, which allows for tracking of the problem 's var iat ions while main taining
a high populati on average fitness.

For higher values of mutation and lower values of dominan ce shift, dif­
ferent behavior is observed . Figur e 23 shows results from an experiment
with a moderate dominance shift rate (Ps = 0.001) and a high mutation rat e
(Pm = 0.01). Although mutation promotes sufficient population diversity for
the algorit hm to main tain the optimal solut ion throughout the majority of
the run, the random effect s of mutation result in substantially less conver­
gence of the algorithm due to lower population average fitness. This result
is in agreement wit h the pr evious sect ion 's conclusion that mut ati on is more
disruptive than dominance shift in the triallelic GA. Additi onal experiments
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Figure 24: Results from the triallelic GA applied to a nonstationary
knapsack problem that requires the recall of recessive building blocks.

are not included for the sake of brevity, but other combinations of Ps and
Pm have shown that high dominan ce shift rates coupled with low mutat ion
rates yield the most reliable trackin g of nonstationary fun ct ions with vari ous
oscillation frequ encies and high pop ula tion average fitness (see Smit h [21] for
an acco unt of addit ional expe riments) .

10. Extensions

Previous expe riments indicate that recessive alleles induce non-disru ptive
population diversity that is sensit ive to pas t environmental conditio ns . These
recessive alleles can be recovered qui ckly through dominan ce shift . However ,
in some t ime-varying pr oblems it may be necessar y to simultaneously re­
veal two or more recessive alleles within the same population member . This
condit ion will occur if two or more alleles that are affect ed by the pr ob­
lem environment's t ime var iation have a bitwise-no nlinear (or deceptive [7])
effect . F igure 24 shows t he result s of the triallelic scheme applied to a non­
stat ionary knapsack problem that incorporates a bitwise nonlinear ity.' The
GA is un su ccessful in tracking the problem 's vari at ions becau se the proba­
bili ty of the two necessary recessive alleles being simult aneously revealed and

3This problem is similar to that used in previous experiments, but in this case the
interpretation of bits 7 and 8 are switched every 15 cycles. Due to a slight recoding, these
bits represent objects 1 and 7 in table 1 [21J.
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evaluated is relat ively low (on the order of p; ). An extens ion that may over­
come this limitat ion is the add it ion of a dominan ce shift operator that acts
with high probab ility on multiple, t ight ly linked recessive alleles (recess ive
building blocks) .

One way to induce mult i-locus dominance shift would be to inser t extra
bits in the problem enco ding that directly cont rol dominan ce at other loci.
Note that the triallelic scheme incorporates geni c control of dominance at
a single loci to some extent , in that the subscript of the J-valued alleles is
a typ e of gene that cont rols dominanc e at these alleles. However , in this
case the dom inance-controlling gene effects only a single locus, to which it is
perman ently linked. A more genera l form of genic dominan ce control could
allow for direct recombin ation of dominanc e relationships. Since select ion
and recomb ination are the primary elements of the traditio nal GA search
proc ess, this modifi cation could significantly affect the diploid GA 's perfor­
mance. Mult i-locus dominance under genic control could also allow for the
abeyance and simultaneous revelation of recessive building blocks.

Genic cont rol of dominan ce is similar to the idea of intrachrom osom al
dom inan ce in hapl oid encod ings. In an int rachromosomal dom inan ce scheme,
genes along a hapl oid chromoso me can activate and deact ivate the effect s of
other genes. One example of intrachromosomal dominan ce is in messy GAs
(mGAs) [5, 10, 8, 9]' where variable-length chromosomes are used separate ly
to evaluate bui lding blocks and overcome deception. In mGAs, chromosomes
can become overspecified, such that alternate alleles for the same gene are in
conflict. In such cases , left- most genes dominate. This positional dominance
may have effects that are similar to those of diploid GAs with dominance.
The analysis pre sented in this paper may also have analogues in intrachro­
mosomal dominanc e schemes. Investigation of these issues is an important
extension of th is work.

In a study that eludes to extensions of dominan ce in GAs, Dasgupta and
McGregor [4] suggested a GA technique that incorporates genic cont rol of
gene express ion in overspecified, hap loid GA encodings . Exp eriments demon­
strate that this scheme is effective in tr acking a nonstat ionary knap sack prob ­
lem. However , because of restricti ons on genetic op erators, the experiments
avoid the need to consider intrachromosomal dominance effects necessary for
oversp ecified encodings. These restrictions also avoid the potential for un­
derspecificat ion that exists in this scheme . If overspecification is considered,
this type of GA will require an intrachromosom al dominance scheme, per­
haps similar to that used in the mGA. Examination of such schemes is an
importan t area for further investigation.

Another important extension to this paper is the re-exam inat ion of diploid
GAs applied to stationary search problems, where the inherent noise of the
genetic search pro cess is considered nonstationary. Recall that a GA searches
by implicitly select ing buildin g blocks on the bas is of population average fit­
ness values, and recombining. This process is clearly noisy since schema
average fitn ess values var y from sample to sample, and thus from population
to population. Goldb erg and Rudnick [11] use the term collateral noise to
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refer to this variance in schema average fitn ess values . How collateral noise
can be viewed as nonst ati onary can be illustrated by example. Consider the
compe ting schemata * * 1 and * * 0 in a population of three-bit individu­
als, or as three bits of a larger problem . Imagine that at some point in the
GA search pro cess, a population is dominated by individuals with schemata
o 1 * and 1 0 - . with few or no individuals wit h schemata 0 0 * and 1
1 *. Fur ther imagine that , based on this populat ion , schemata average fit­
ness values indi cate that select ion should st rongly favor * * 0 over * * 1,
while there is fitn ess difference between 0 1 * and 0 1 *. Aft er a number of
generations , select ion causes the population to be dominated by individuals
with schema * * 0, while recombinat ion re-biases the population toward a
mor e equal representation of 0 0 *, 0 1 *, 1 0 *, and 1 1 *. Based on
this re-biased population, one can imagine that var iance in the fitn ess values
could dictate select ion st rongly favoring * * 1 over * * o. If the optimal
solution is 1 1 1, the GA may have difficulty since early select ive pr essure
eliminat ed l-valu ed alleles in the third pos it ion . It is easy to imagine more
complex sit uations in which the variance values of a number of schemat a af­
fect the search process in a similar way. Mut ation could be used to maintain
diversity such that a sufficient nu mber of schemata with high var iance are
main tained despite early select ive pressure. However , pr evious argum ent s
have indicated that mu tation is disruptive to the genet ic search pro cess (in
fact , mutation can be seen as an addit ional source of noise). Clearly, the
non-di sruptive diversity introduced by diploidy and dominance may be use­
ful in these situat ions. One can also envision situat ions in which schema
vari an ces and repeated biases in the population could yield an advantage for
the probabilistic memo ry int roduced by diploidy and dominan ce.

Inherent temporal varia t ion in the genetic search process may also play
a significant role in genet ics-based learni ng systems like the learning clas­
sifier system [16J or certain genet ically-st ructured neural networks [18]. In
these systems, each population memb er 's fitness can dep end on the ent ire
composit ion of the population, as in a natural ecology [22J. In such prob­
lems, changes in the populat ion compos ition imply a nonst ationar y charac ter.
Thus, dip loidy and dominan ce could pr ove useful.

11. Conclusions

Several conclusions can be dr awn direct ly from the information pr esented
in this pap er. As suggested by Holland [14], diploidy allows for a higher
level of st eady-state diversity in a converged GA po pulat ion for a given level
of mutat ion. However , analyt ical and experiment al evidence shows that a
diploid GA maintains extra diversity at loci where alte rnative alleles were
emphasized in the recent past . In effect, diploidy embodies a form of tempo­
ral memory that is dist ributed across the populat ion. T his add ed divers ity
is more effect ive than that induced by increased mutation because of it s sen­
sitivity to funct ion history. Also, added diversity (whether due to abeyant
recessives or ad ded mu tation) is less disruptive to the genetic sear ch pro cess
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in a diploid GA than in a hap loid GA. Therefore, a diploid GA not only
requires a lower mu t ation rate for a diverse population , but can also sustain
a higher rate of mutation without disrupting the search process.

Exp eriments show that an adap t ive dominance map is necessary to ef­
fect ively exploit the advantages of diploidy. An alysis of and experiments
wit h the t riallelic ada ptive dominan ce scheme have shown the importan ce
of a dominan ce shift operator in such schemes. T he dominance shift rate
is a cont rol on pr obabilistic memory in a diploid GA , wit h recessive alleles
retained longer and recalled less qui ckly for lower dominance shift rates. Ex­
perim ents also show that the diploid GA can sustain rates of dominan ce shift
that are mu ch higher than those typically used for mutation .

The results presented in this pap er have clear-cut implicat ions for nonsta­
t ionar y versions of the ill-conditioned sea rch problems for which haploid GAs
would typi cally be employed . As pr eviously noted , dip loidy and dominan ce
could also aid in station ary sea rch pr oblems that includ e noisy evalua t ions
of schemata average fitness values, and in genet ics-b ased learning systems
that have an ecological character. In such problems, internal aspect s of the
genetic search pr ocess induce virtual nonstat ion arities that may be addresse d
effect ively through diploidy and dominance. T hus, diploidy and dominan ce
are a naturally inspired addit ion that may improve the performance of GA s
in a br oad class of search, opt imiza tion , and learning tasks .
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