
SRLabs Template v12

Corporate Design

2016

Mind the Gap –
Uncovering the Android patch gap through binary-only patch analysis

HITB conference, April 13, 2018

Jakob Lell <jakob@srlabs.de>
Karsten Nohl <nohl@srlabs.de>

Das Logo Horizontal

— Pos / Neg

3

Allow us to take you on two intertwined journeys

2

This talk in a nutshell

Research
journey

§ Wanted to understand how fully-maintained Android phones
can be exploited

§ Found surprisingly large patch gaps for many Android vendors

§ Also found Android exploitation to be unexpectedly difficult

Engineering
journey

§ Wanted to check thousands of firmwares for the presence of
hundreds of patches

§ Developed and scaled a rather unique analysis method

§ Created an app for your own analysis

Das Logo Horizontal

— Pos / Neg

3

Android patching is a known-hard problem

3

Patching is hard
to start with

§ Computer OS vendors regularly issue patches

§ Users “only” have to confirm the installation of

these patches

§ Still, enterprises consider regular patching

among the most effortful security tasks

Patch ecosystems

OS vendor
§ Microsoft

§ Apple

§ Linux distro

Endpoints & severs

The nature of
Android makes
patching so
much more
difficult

§ “The mobile ecosystem’s diversity […]

contributes to security update complexity and

inconsistency.” – FTC report, March 2018 [1]

§ Patches are handed down a long chain of

typically four parties before reaching the user

§ Only some devices get patched (2016: 17% [2]).

We focus our research on these “fully patched”

phones

Android
phones

Telco

Phone
vendor

Chipset
vendor

OS
vendor

Our research question – How many patching mistakes are made in this complex

Android ecosystem? That is: how many patches go missing?

OS patches

Patching challenges

Das Logo Horizontal

— Pos / Neg

3

Vendor patch claims can be unreliable; independent verification is needed

4

How do we determine whether an Android binary has a patch installed, without access to the
corresponding source code?

Try exploiting the
corresponding vulnerability?

Apply binary-only patch
heuristicsTrust vendor claims?

§ No exploits publicly
available for most Android
bugs

§ A missing patch also does
not automatically imply an
open vulnerability
(It’s complicated.
Let’s talk about it later)

§ Find evidence in the binary
itself on whether a patch is
installed

§ Scale to cover hundreds of
patches and thousands of
phones

§ The topic of this
presentation

Important distinction: A missing patch is not automatically an open security vulnerability.
We’ll discuss this a bit later.

Das Logo Horizontal

— Pos / Neg

3

Patching is necessary in the Android OS and the underlying Linux kernel

5

§ Android Open Source Project (AOSP) is maintained by
Google

§ In addition, chipset and phone vendors extend the OS
to their needs

§ Most exposed attack surface: The OS is the primary
layer of defense for remote exploitation

§ Monthly security bulletins published by Google

§ Clear versioning around Android, including a patch
level date, which Google certifies
for some phones

Android OS patching (“userland”)
§ Same kernel that is used for much of the Internet

§ Maintained by a large ecosystem
§ Chipset and phone vendors contribute hardware

drivers, which are sometimes kept closed-source

§ Attackable mostly from within device
§ Relevant primarily for privilege escalation (“rooting”)

§ Large number of vulnerability reports, only some of
which are relevant for Android

§ Tendency to use old kernels even with latest Android
version; e.g., Kernel 3.18 from 2014, end-of-life: 2017

Linux kernel patching

Responsibility

Security
relevance

Patch
situation

We focus our attention on userland patches

Das Logo Horizontal

— Pos / Neg

3

Agenda

6

§ Research motivation

§ Spot the Android patch gap

§ Try to exploit Android phones

Das Logo Horizontal

— Pos / Neg

3

We want to check hundreds of patches on thousands of Android devices

7

Android’s 2017
security
bulletins list

~280

bugs (~CVEs)
with Critical or
High severity

Android
userland
patch
analysis

Out-of-
scope
(for now)

Of these
userland bugs,

~180

originate from
C/C++ code
(plus a few Java)

Source code is
available for

~240

of these bugs

We do not yet
support most
Java patches

The remaining
bugs are in
closed-source
vendor-specific
components

~700 kernel and
medium/low
severity
userland
patches

The heuristics would
optimally work on
hundreds of thousands
of Android firmwares:
– 60,000 Android

variants [3]

– Regular updates for
many of these variants

So far, we
implemented
heuristics for

164

of the
corresponding
patches

Das Logo Horizontal

— Pos / Neg

3

11

The patch gap: Android patching completeness varies widely for different phones

8

Samsung J3 (2016)
Android version 5.1.1
Patch level: Jan 2018

Google Pixel 2
Android version 8.1
Patch level: Feb 2018

Samsung J5 (2016)
Android version 7.1.1
Patch level: Aug 2017

Wiko Freddy
Android version 6.0.1
Patch level: Sep 2017

9 10 12 1 2 3 4 5 6 7 8 9 10 11 12

2016 2017 Patches ”missing”
Critical High

0 0

0 0

2 10

18 62

Not affected
Patch found applied as claimed
Patched found above claimed level
Patch not found within claimed level
Patch not found outside claimed level Android version release date

Claimed patch level
Not tested

Das Logo Horizontal

— Pos / Neg

3

Binary-only analysis: Conceptually simple

9

Prepare patch test set

Vulnerable source code Patched source code

Compile with different compliers, compiler configurations,
CPU options

Mask volatile information (e.g. call destinations)

Collection of unpatched
binaries

Collection of patched
binaries

Apply
patch

Test for patch presence

Binary file

Compare to collections:
Find match with patched

or unpatched sample

Mask volatile
information

?

1 2

Das Logo Horizontal

— Pos / Neg

3

Compiler
contains placeholders that are filled
in during preprocessing

A bit more background: Android firmwares go from source code to binaries in two steps

10

#include <limits.h>
#include <string.h>
void foo(char* fn){
char buf[PATH_MAX];
strncpy(buf, fn, PATH_MAX);

}

stp x28, x27, [sp,#-32]!
[…]
orr w2, wzr, #0x1000
mov x1, x8
bl 0 <strncpy>
[…]
ret

stp x28, x27, [sp,#-32]!
[…]
orr w2, wzr, #0x1000
mov x1, x8
bl 11b3e8 <strncpy@plt>
[…]
ret

Compiler
preprocesses and compiles source
code into object files that are then
fed into the linker

Compiler Linker
combines the object files into an
executable firmware binary.

LinkerSource code

Das Logo Horizontal

— Pos / Neg

3

The basic idea: Signatures can be generated from reference source code

11

Disassembly of object file, after compiler but before linker
0000000000000000 <impeg2d_api_reset>:

0: a9bd7bfd stp x29, x30, [sp, #-48]!
4: 910003fd mov x29, sp

[…]
20: f9413e60 ldr x0, [x19, #632]
24: 52800042 mov w2, #0x2 // #2
28: b9402021 ldr w1, [x1, #32]
2c: 94000000 bl 0 <impeg2_buf_mgr_release> 2c: R_AARCH64_CALL26 impeg2_buf_mgr_release

[…]

Instruction format of the bl instruction
100x 01 ii iiii iiii iiii iiii iiii iiii

Compile reference source code (before and after patch)

Sanitize instructions
Toss out irrelevant destination
addresses of the instruction

Parse
disassembly
listing for
relocation
entries

Create hash of remaining binary code

Generate signature containing function length, position/type of relocation entries, and hash of the code

Prepare
patch
test set

1

Das Logo Horizontal

— Pos / Neg

3

At scale, three compounding challenges need to be solved

12

Too much source code
§ There is too much source code to collect
§ Once collected, there is too much source code to compile

Too many compilation possibilities
§ Hard to guess which compiler options to use
§ Need to compile same source many times

Hard to find code “needles” in binary “haystacks”
§ Without symbol table, whole binary needs to be scanned
§ Thousands of signatures of arbitrary length

Das Logo Horizontal

— Pos / Neg

3

Signature generation would require huge amounts of source code

13

Signature generation requires many source code trees

Source code trees are managed in a manifest, which lists git repositories with revision and path in a
source code tree

One Android source code tree is roughly 50 GiB in size

…
<project name="platform/external/zxing" revision="d2256df36df8778a3743e0a71eab0cc5106b98c9"/>
<project name="platform/frameworks/av" revision="330d132dfab2427e940cfaf2184a2e549579445d"/>
<project name="platform/frameworks/base" revision="85838feaea8c8c8d38c4262e74d911e59a275d02"/>
…
+~500 MORE REPOSITORIES

Currently ~1100 source code trees are used in total
(many more exist!)
1100 x 50 GiB = 55 TiB
Would require huge amount of storage, CPU time, and
network traffic to check out everything

Amount of source code

Compilation possibilities

Needles in haystacks

§ Hundreds of different Android revisions
(e.g. android-7.1.2_r33)

§ Device-specific source code trees
(From Qualcomm Codeaurora CAF)

Das Logo Horizontal

— Pos / Neg

3

We leverage a FUSE (filesystem in userspace) to retrieve files only on demand

14

platform/frameworks/av rev 330d132d
platform/frameworks/base rev 85838fea

Manifest 1

platform/frameworks/av rev d43a8fe2
platform/frameworks/base rev 18fac24b

Manifest 2

rev 330d132d
rev d43a8fe2
rev deadbeef

platform/frameworks/av

rev 85838fea
rev 18fac24b
rev cafebabe

platform/frameworks/base

platform/frameworks/av rev deadbeef
platform/frameworks/base rev cafebabe

Manifest 3

Reduces storage requirement by >99%:
55 TiB => 300 GiB
Saves network bandwidth and time required for
checkout
Prevents IP blocking by repository servers

Filesystem in userspace (FUSE)
§ Store each git repository only once

(with git clone --no-checkout)
§ Extract files from git repository on demand

when the file is read
§ Use database for caching directory contents

Insight: The same git repositories are used for many manifests.

How this can be leveraged

Amount of source code

Compilation possibilities

Needles in haystacks

Das Logo Horizontal

— Pos / Neg

3

Using our custom FUSE, we can finally generate a large collection of signatures

15

Amount of source code

Compilation possibilities

Needles in haystacks

§ Read manifest

§ Use FUSE filesystem to read

files on demand

Mount source code tree
§ Run build system in dry-run

mode, don’t compile

everything

§ Save log of all commands to

be executed

§ Various hacks/fixes to build

system required

Generate build log
§ Source-code patch analysis

is much easier than binary

analysis

§ Determines whether a

signature match means that

the patch is applied or not

Run source-code analysis

§ Use command line from

saved build log

§ Save preprocessor output

in database

Preprocess source files
§ >50 different compiler

binaries

§ All supported CPU types

§ Optimization levels

(e.g. -O2, -O3)

§ 3897 combinations in total,

74 in our current optimized

set

Recompile with variants
§ Evaluate relocation entries

and create signatures for
each compiler variant

Generate signatures

Prepare
patch
test set

Next

question:

How many
different
compiler
variants do
we need?

1

Das Logo Horizontal

— Pos / Neg

3

Brute-forcing 1000s of compiler variants finds 74 that produce valid signatures
for all firmwares tested to date

16

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70 80 90 100 110 120 130
compiler config variants = compilers x [compiler options]

Successful sub-tests

Just two variants account for 60% of successful sub-tests:
- gcc version 4.9.x-google 20140827 (prerelease)
- Android clang version 3.8.256229
Both were run with each git’s default configuration

Amount of source code

Compilation possibilities

Needles in haystacks

§ Our collection includes
3897 compiler
configuration variants,
only 74 of which are
required for firmwares
tested to date.

§ To ensure a high rate of
conclusive tests, test
results are regularly
checked for success.

§ The test suite is amended
with additional variants
from the collection as
needed.

§ The collection itself is
amended with additional
compiler configuration
variants as they become
relevant.

Tests are regularly optimized

§ For 224 tested 64-bit firmwares,
signatures from the first 74
compiler config variants provide
full test coverage

§ 74 variants à
6,944 signatures à 3MB

§ We tried 3,897 variants à
775,795 signatures à 34MB

Das Logo Horizontal

— Pos / Neg

3

Finding needles in a haystack: What do we do if there is no symbol table?

17

Amount of source code

Compilation possibilities

Needles in haystacks

Challenge

Checking signature at each position
is computationally expensive

Relocation entries are not known
while calculating checksum

32bit code uses Thumb encoding,
for which instruction start is not
always clear

Insight

Similar problem already
solved by rsync

Relocation entries are only
used for certain instructions

Same binary code is often
also available in 64bit version
based on same source code

Solution

Take advantage of rsync rolling
checksum algorithm

Guess potential relocation entries
based on instruction type and
sanitize args before checksumming

Only test 64bit code

Simply compare function with pre-computed samples

Test for
patch
presence

2
Function
found in
symbol
table

Function
not in
symbol
table

Das Logo Horizontal

— Pos / Neg

3

Using improved rolling signatures, we can efficiently search the binary ‘haystack’
for our code ‘needles’

18

...
97fee7a2 bl c7c40 <strnpy@plt>
94000000 bl 0
f10002ff cmp x23, #0x0
1a9f17e8 cset w8, eq
b40000b6 cbz x22, 10ddbc
3707fdc8 tbnz w8, #0, 10dd6
f10006d6 subs x22, x22, #0x1
54ffff42 b.cs 10dd9c
35fffd48 cbnz w8, 10dd64
36000255 tbz w21, #0, 10de08
394082e8 ldrb w8, [x23,#32]
35000208 cbnz w8, 10de08
52adad21 mov w1, #0x6d690000
320003e8 orr w8, wzr, #0x1
728daca1 movk w1, #0x6d65

Potential relocation entries are
detected based on instruction.

Size-8 window matches on
start of signature

Overlapping window matches
on end of signature

Zero-out volatile bits

Hex dump of instruction Assembly code / instructions

Sanitize arguments before
checksumming

Match signatures of
arbitrary lengths using
sliding windows
§ Two overlapping

sliding windows
§ Only needs powers of

2 as window sizes to
match arbitrary
function lengths

§ Allows efficient
scanning of a binary
for a large number of
signatures

Process step

Amount of source code

Compilation possibilities

Needles in haystacks

To avoid false positives (due to guessed relocation entries), signature is matched from the first window to the end of the overlapping window

Das Logo Horizontal

— Pos / Neg

3

Putting it all together: With all three scaling challenges overcome, we can start testing

19

§ Read manifest
§ Fuse filesystem to read files

on demand

Mount source code tree
§ Run build system in dry-run

mode, don’t compile
everything

§ Save log of all commands to
be executed

§ Various hacks/fixes to build
system required

Generate build log
§ Source-code patch analysis

is much easier than binary
analysis

§ Determines whether a
signature match means that
the patch is applied or not

Run source-code analysis

§ Use command line from
saved build log

§ Save preprocessor output
in database

Preprocess source files
§ >50 different compiler

binaries
§ All supported CPU types
§ Optimization levels

(e.g. -O2, -O3)
§ 3897 combinations in total,

74 in our current optimized
set

Recompile with variants
§ Evaluate relocation entries

and create signatures for
each compiler variant

Generate signatures

Prepare patch test set
1

Test for patch presence
2

§ Find and extract
function (using
symbol table or
rolling signature)

§ Mask relocation
entries from
signature

§ Calculate and
compare hash of
remaining code

Das Logo Horizontal

— Pos / Neg

3

Patch gap: Android vendors differ widely in their patch completeness

20

Notes
– The tables shows the average number of missing

Critical and High severity patches before the
claimed patch date

* Samples – Few: 5-9; Many: 10-49; Lots: 50+
– Some phones are included multiple times with

different firmwares releases
– Not all patch tests are always conclusive, so the

real number of missing patches could be higher
– Not all patches are included in our tests, so the

real number could be higher still
– Only phones are considered that were patched

October-2017 or later
– A missing patch does not automatically indicate

that a related vulnerability can be exploited

Notes
– Again, we show the average of missing High and

Critical patches for phones that use these
chipsets

– Samsung phones can run on a Samsung or
Qualcomm chipset

Vendors differ
in how many
patches are
missing from
their phones

Some of the
patch gap is
likely due to
chipset vendors
forgetting to
include them

Missed patches Chipset Samples*
< 0.5 Samsung Lots

1.1 Qualcomm Lots

1.9 HiSilicon Many

9.7 Mediatek Many

Missed patches Vendor Samples*

0 to 1

Google Lots
Sony Few
Samsung Lots
Wiko Few

1 to 3
Xiaomi Many
OnePlus Many
Nokia Few

3 to 4

HTC Few
Huawei Many
LG Many
Motorola Many

More than 4
TCL Many
ZTE Few

Das Logo Horizontal

— Pos / Neg

3

Agenda

21

§ Research motivation

§ Spot the Android patch gap

§ Try to exploit Android phones

Das Logo Horizontal

— Pos / Neg

3

Can we now hack Android phones due to missing patches?

22

§ We find that most phones miss patches
within their patch level

§ While the number of open CVEs can be
smaller than the number of missing patches,
we expect some vulnerabilities to be open

§ Many CVEs talk of “code execution”,
suggesting a hacking risk based on what we
experience on Windows computers

At first glance, Android phones look hackable

§ Modern exploit mitigation techniques
increase hacking effort

§ Mobile OSs explicitly distrust applications
through sandboxing, creating a second layer
of defense

§ Bug bounties and Pwn2Own offer relatively
high bounties for full Android exploitation

Mobile operating systems are inherently
difficult to exploitVS.

Das Logo Horizontal

— Pos / Neg

3

Do criminals hack Android? Very rarely.

23

Criminals generally use three different methods to compromise Android devices

Trick user into insecure actions:
§ Install malicious app
§ Then grant permissions
§ Possibly request ‘device administrator’

role to hinder uninstallation

§ Ransomware [File access permission]
§ 2FA hacks [SMS read]
§ Premium SMS fraud [SMS send]

Social engineering Local privilege escalation Remote compromise

Approach

§ Trick user into installing malicious app
§ Then exploit kernel-level vulnerability to

gain control over device, often using
standard “rooting” tools

§ Targeted device compromise, e.g.
FinFisher and Crysaor (Same company
as infamous Pegasus malware)

§ Advanced malware

§ Exploit vulnerability in an outside-
facing app (messenger, browser)

§ Then use local privilege escalation

§ (Google bug bounty, Pwn2Own)
Used for

Frequency in
criminal
activity

Made harder
through
patching û ü (userland or kernel) ü (userland and kernel)

§ Almost all Android “Infections” § Regular observed in advanced
malware and spying

§ Very few examples of recent
criminal use

Das Logo Horizontal

— Pos / Neg

3

An exploitable vulnerability implies a missing patch, but not the other way around

24

Missing patches in source code

Code parts that are ignored during compilation

Missed patches in binary

Vendor created alternative patch

Vulnerability requires a specific configuration

Bug is simply not exploitable

Errors in our heuristic (it happens!)

Open vulnerabilities

Missing patches
(source code analysis)

Missing patches
(binary analysis)

Open
vulnerabilities

=

=

Das Logo Horizontal

— Pos / Neg

3

A single Android bug is almost certainly not enough for exploitation

25

Android remote code execution is a multi-step process

Corrupt memory in an application. Examples:
- Malicious video file corrupts memory using

Stagefright bug
- Malicious web site leverages Webkit vulnerability

Information leakage is used to derive ASLR
memory offset (alternatively for 32-bit binaries,
this offset can possibly be brute-forces)

Ø This gives an attacker control of the application
including the apps access permission

Do the same again with two more bugs to gain
access to system context or kernel

Ø This gives an attacker all possible permissions
(system context), or full control over the device
(kernel)

Simplified exploit chain examples with 4 bugs

System context

Aside from exploiting MC and IL programming bugs, Android
has experienced logic bugs that can enable alternative, often
shorter, exploit chains

Application context

1 Info leakage (IL)

2 Memory
corruption (MC)

ASLR

ASLR

3a 4a

MCIL

4b

3b

MC

IL

KASLR

Kernel

2

1

43

Das Logo Horizontal

— Pos / Neg

3

Remotely hacking a modern Android device usually requires chains of bugs

26

High privileged domain
(e.g. system-server,
Bluetooth)

System context
protection mechanisms
(e.g. ASLR, sandbox)

DH

Remote
attacker

Famed
real-world
exploit
examples

DH Data handling errors (CWE-19)
e.g. buffer errors, input
validation mistakes

SF Security features gaps (CWE-254)
e.g. permission errors, privileges
mishandling, access control errors

TS Time and state errors (CWE-361)
e.g. race conditions, incorrect
type conversions or casting

Critical

High

Moderate

Weakness severities

Weakness classes

Step 2: Escalation of Privilege
At least one other weakness (or
the users themselves) helps the
attacker overcome protection
mechanisms and gain access to
higher privileges

Step 1: Remote Code Execution
and Information disclosure
In many cases, one critical or high-
severity weakness is exploited to
allow for Remote Code Execution
(RCE). (In the special case of
BlueBorne, no sandbox exists.)

Application context
protection mechanism
(e.g. ASLR, sandbox)

X

1 2 4

DHDH

Stagefright [2015]
Android < 5.1.1

BlueBorne [2017]
Android < 8.0

Pixel - Nexus 6P [2017]
Chrome Android prior
54.0.2840.90
Pixel [2018]
Chrome Android prior
61.0.3163.79

Return to libstagefright [2016]
Android < 7.0

X

DH

SF

3

Not needed: BNEP stack
is addressed directly

DH SF

DH

TS DH

DH

Das Logo Horizontal

— Pos / Neg

3

Exploit chain does not

include break-out of

untrusted app context

X

In case you want to dive deeper: More details on well-documented Android exploit chains

BlueBorne
2017

Pixel / Nexus 6P
2017

Pixel
2018

Famed
real-world
exploit
examples

Return to
libstagefright
2016

Attacker perform arbitrary

read/write operations

leading to code execution

based on incorrect

optimization assumption

in Chrome v8

Content view client in

Chrome allowed

arbitrary intent

scheme opening,

which allows escaping

the Chrome sandbox

Open intent

controlled URL

in Google Drive

to get shell in

untrusted app

context

Chrome V8 bug to get RCE

in sandbox using a OOB

bug in GetFirstArgument-

AsBytes function

Use map and unmap mismatch in libgralloc to escape Chrome sandbox and

inject arbitrary code into system-server domain by accessing a malicious URL

in Chrome

Call mprotect to get

RCE into privileged

system-server domain

ROP execution in

mediaserver process

Module pointer leak to

get address of executable

code

Heap pointer leak to

bypass ASLR protection

DH

Trigger memory

corruption in BNEP

service that enables an

attacker to execute

arbitrary code in the

high privileged

Bluetooth domain

Information leak

vulnerability leaks

arbitrary data from

the stack, which

allows an attacker to

derive ASLR base

address for a bypass

SF DH

DHDH SF

TS DH

1 2 43

27

BlueBorne is a vulnerability in the

Android Bluedroid/Fluorid userland stack,

which is already a high-privileged domain

Not
needed

Das Logo Horizontal

— Pos / Neg

3

SnoopSnitch version 2.0 introduces patch analysis for all Android users

28

Search: SnoopSnitch

Tool name

SnoopSnitch

Purpose

§ [new in 2.0] Detect potentially
missing Android security patches

§ Collect network traces on Android
phone and analyze for abuse

§ Optionally, upload network traces to
GSMmap for further analysis

Requirements

§ Android version 5.0

§ Patch level analysis:
All phones incl. non-rooted

§ Network attack monitoring:
Rooted Qualcomm-based phone

Source

Das Logo Horizontal

— Pos / Neg

3

Take aways

29

§ Android patching is more complicated and less reliable than a single patch
date may suggest

§ You can finally check your own patch level thanks to binary-only analysis,
and the app SnoopSnitch

§ Remote Android exploitation is also more much complicated than
commonly thought

Questions?
Jakob Lell <jakob@srlabs.de>
Karsten Nohl <nohl@srlabs.de>

Many thanks to Ben Schlabs, Stephan Zeisberg, Jonas Schmid, Mark Carney,
Luas Euler, and Patrick Lucey!

Das Logo Horizontal

— Pos / Neg

3

References

30

1. Federal Trade Commision, Mobile Security Updates: Understanding the Issues, February 2018
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-
issues/mobile_security_updates_understanding_the_issues_publication_final.pdf

2. Duo Labs Security Blog, 30% of Android Devices Susceptible to 24 Critical Vulnerabilities, June 2016
https://duo.com/decipher/thirty-percent-of-android-devices-susceptible-to-24-critical-vulnerabilities

3. Google, Android Security 2017 Year In Review, March 2018
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf

https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://duo.com/decipher/thirty-percent-of-android-devices-susceptible-to-24-critical-vulnerabilities
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf

