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Abstract

This paper investigates the musical affordances of Con-
tinuous Time Recurrent Neural Networks (CTRNNs)
as an evolvable low-level algorithm for the exploration
of sound. Our research will be divided into two parts.
Firstly, we will conduct various studies that provide in-
sight into CTRNN behaviours, identifying aspects that
could prove creatively valuable to musicians. We expect
to find that this system will exhibit musical behaviours
reminiscent of conventional audio processing methods
such as amplitude modulation and additive synthesis,
as well as producing interesting temporal structures. In
the second part of this paper, we will discuss how these
interesting behaviours can be harnessed by musicians.
Specifically we investigate how evolutionary search can
be used to exploit the compact low-level structure of
CTRNNSs and explore their potential for audio diversity
beyond the capabilities of more traditional methods of
audio exploration.

Introduction

Evolutionary Algorithms (EAs) have been widely explored
as tools for musical composition, demonstrated in the sur-
vey by Husbands et al. (2007). EAs are highly abstract bio-
logical models and provide an effective search heuristic for
solving complex problems. Of particular interest to the au-
thors are EAs used as creative tools for the exploration of au-
dio synthesis algorithms such as described in (Yee-King and
Roth 2008; Dahlstedt 2007). Despite the success of these
systems, the question of what audio representations max-
imise both exploitability and variety is still a debated issue.
For example, McCormack (2008) emphasises the potential
for creativity afforded by searching low-level structures for
creative artefacts, such as manipulating pixels of an image in
search of interesting artworks. However, McCormack also
identifies the futility of searching these low-level represen-
tations, as although they may be capable of extensive diver-
sity, artefacts of any interest will take an impractical amount
of time to find. This example refers to brute force random
search, but the same notion is true when evolving low-level
audio representations, such as manipulating individual sam-
ples of an audio waveform to synthesise interesting sounds.
We could evolve almost any audio possibility, but if the ge-
netic representation is too broad, the vastness of the system’s
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search space would render many of these creative prospects
unreachable.

In pursuit of more explorable audio representations, many
authors of EAs embed higher-level software structures
within their creations that they think will yield interesting
results (McCormack 2008), constraining the system’s cre-
ative search space within manageable limits. For example,
when evolving the parameters of a commercial synthesiser,
a high-level of abstraction or a meta relationship exists be-
tween the parameters that are being manipulated by the EA
(genotype) and the resulting audio produced by the structure
of the device (phenotype). As a result, the system’s output
is constrained by the capabilities of its components as indi-
viduals produced by the system will exhibit strong traits of
the underlying formalised structures that created them. This
means that the outputs of the system will be of a specific
‘class’, defined by the audio representation or parameterisa-
tions selected by the system’s creator (McCormack 2008).
This reduction of the audio search space means that the sys-
tem is more manageable to explore and thus creatively use-
ful, a solution that may prove sufficient if a user just wants
to explore permutations of an existing system, but what if
a user seeks audio with greater spectral complexity or vari-
ety beyond the capabilities of the plethora of music-making
devices at their disposal?

Within this paper, we propose evolving Continuous Time
Recurrent Neural Networks (CTRNNs) as an alternative,
providing a low-level audio representation with a compact
explorable genotype structure, capable of exhibiting com-
plex dynamics that could afford interesting sonic possibili-
ties that are otherwise hard to achieve using more conven-
tional synthesis approaches. However, discovery of these
complex dynamics can be problematic, as although there is
much research on CTRNNs covering a range of domains,
little is know about their behaviours when used as audio
synthesis mechanisms, raising questions such as: how do
CTRNN parameter changes translate to the audio domain?;
do CTRNNSs behave similarly to more conventional audio
synthesis mechanisms?; and how can users effectively dis-
cover their scope of audio possibilities?

We aim to address these questions through two empiri-
cal investigations. In the first part of this paper, we will
conduct various CTRNN studies in an attempt to discover
and understand behaviours that may prove creatively valu-
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able to a musician. We have identified four interesting
dynamics: the introduction of temporal and pitch struc-
tures; a strong relationship between CTRNN inputs and
outputs; amplitude modulation characteristics; and addi-
tive synthesis capabilities. An online interactive appendix
of selected figures from these studies can be found at
www.plecto.io/ICCC2016appendix. In the second part
of this paper, we discuss how evolution can be used to dis-
cover and shape CTRNN behaviours, allowing musicians to
harness their idiosyncratic dynamics. Specifically, we ask
questions about what types of EA structures will afford ef-
fective creative search of their parametric space and pro-
pose future research directions for implementing CTRNNs
as evolvable structures for audio exploration.

Background
Related Work

Artificial Neutral Networks (ANNs) have been used for
many different functions in music, from beat tracking algo-
rithms (Lambert, Weyde, and Armstrong 2015) to artificial
composers that can extract stylistic regularities from exist-
ing pieces and produce novel musical compositions based
on these learnt musical structures (Mozer 1994). Bown and
Lexer (2006) offer another application, proposing the use
of CTRNN:S to create autonomous software agents that ex-
hibit musicality. Bown and Lexer also outline the possibility
of using CTRNNS as audio synthesis algorithms, a prospect
which inspired this research.

A notable example of similar work is discussed by Ohya
(1995), who describes a system that trains a Recurrent Neu-
ral Network to match an existing piece of audio. The net-
work structure can then be manipulated to synthesise vari-
ants of the original sound. FEldridge (2005) provides an-
other example, exploring the use of Continuous Time Neural
Models for audio synthesis. In previous work (lanigro and
Bown 2016), we propose a system that allows users to inter-
actively evolve CTRNNSs to produce aesthetically desirable
outputs for use in their artistic practices. In this paper we
build on our system, Plecto, and further investigate the be-
haviour of CTRNNSs within the audio signal domain.

CTRNNs

CTRNNSs are nonlinear continuous dynamical systems that
can exhibit complex temporal behaviours (Beer 1995). They
are well suited to produce audio output as various configura-
tions result in smooth oscillations that resemble audio wave-
forms. They are an interconnected network of computer-
modelled neurons, typically of a type called the leaky inte-
grator. The internal state of each neuron is determined by
the differential equation (1),

7i(dy; /dt) = —y; + Z Wijo(gi(y; — b))+ 1L (1)

where 7; is the time constant, g; is the gain and b; is the
bias for neuron . I; is any external input for neuron ¢ and
W;; is the weight of the connection between neuron 7 and
neuron j. o is a tanh non-linear transfer function (Bown
and Lexer 2006).

The behaviour of a neuron is defined by three parameters
- gain, bias and time constant - and each neuron input has a
weight parameter that governs its strength over the neuron’s
other inputs (Bown and Lexer 2006). CTRNNSs are continu-
ous, recurrent, and due to their complex dynamics, they are
often trained using an EA. For this research, we adopt a fully
connected CTRNN, meaning that the neurons in the hidden
layer are all connected and the input layer has a full set of
connections to the hidden layer. Each hidden neuron also
has a self connection, enhancing its behavioural complexity.
The output or activation of each neuron is calculated using a
tanh transfer function, providing outputs between -1 and 1
for use as samples in an audio wavetable (the CTRNN out-
put is the activation of a selected hidden neuron).

Evolutionary Search

Many EAs are based on Darwinian theory, with evolution-
ary change a result of the fittest of each generation surviv-
ing and passing on the traits that made them fit (Husbands
et al. 2007). These algorithms provide a powerful method
for searching a problem space, optimising candidates until
the best solution is found. There are two main type of EAs:
target based EAs which evaluate individuals according to a
criterion that is encoded into the system, and interactive EAs
that incorporate human evaluation as their selective pressure.
The latter is often used for creative applications, with the
user assuming the role of a ‘pigeon breeder’, acting as a se-
lective pressure in an artificial environment (Bown 2009).
This is an appealing prospect as it is difficult to define ex-
plicit fitness functions for audio phenotypes that can identify
subjective creatively desirable traits (Tokui and Iba 2000).
There are also many other types of EAs for creative explo-
ration, such as the ecosystem model described in (McCor-
mack 2001) and the use of artificial immune systems such
as discussed in (Abreu, Caetano, and Penha 2016).

Evolution of Neural Networks

The growing area of neuroevolution refers to the optimi-
sation of neural networks using EAs (Stanley and Miikku-
lainen 2002). This is an effective approach when train-
ing CTRNNSs; unlike methods such as back-propagation in
which network weights are adjusted to minimise the network
error, multiple features of the network can be evolved at one
time. The definition of an EA’s performance criterion is also
more flexible than the definition of an energy or error func-
tion (Floreano, Diirr, and Mattiussi 2008). There is a va-
riety of work in this area, such as (Jénsson, Hoover, and
Risi 2015; Hoover and Stanley 2007), describing systems
that evolve neural networks in pursuit of creative artefacts.
In this paper, we adopt a similar method of network optimi-
sation, using an EA to manipulate gain, bias, time constant
and weight parameters of the CTRNN that provide a com-
pact genotype capable of producing extensive diversity. We
will use an Artificial Immune System (AIS), a type of evo-
lutionary optimisation algorithm called opt-aiNet (Timmis
and Edmonds 2004) to achieve this.
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Musical Behaviours of CTRNNs

In this section, we will conduct CTRNN studies by ran-
domly generating network configurations, feeding various
types of audio inputs into these networks and observing the
results through audio analysis. This process will provide an
insight into behaviours that are common within the search
spaces of CTRNNSs, such as if CTRNNs have dynamics sim-
ilar to more conventional audio generation algorithms and
how consistent these behaviours are, informing our expecta-
tions of the evolvability of audio CTRNNS.

Generation of Temporal and Pitch Structures

A contributing factor to the complexity that CTRNNs are
able to produce is the presence of neuron self connections
(Beer 1995). A strong self connection can dominate the
neuron input, saturating the neuron by locking it in a cer-
tain state (emitting a constant output). This behaviour is
analogous to an internal switch that can influence the be-
haviour of the rest of the network, creating interesting tem-
poral dynamics that afford many creative possibilities such
as described in (Bown and Lexer 2006). To investigate the
audio synthesis implications of this behaviour, we adjusted
the hidden neuron self connection weight of a CTRNN with
one input neuron and one hidden neuron whilst feeding in
the audio sample notated in Figure 1. This experiment pro-
duced some interesting results, as once the hidden neuron
weight passed a certain threshold, the CTRNN alternated be-
tween states of saturation (outputs a constant value of -1 or
1) and oscillation. This is evident in Figure 2, showing the
original unprocessed audio which was used as the input for
the CTRNN (top) and the processed CTRNN output (bot-
tom). In the case of this exploration, the CTRNN primarily
responded to the amplitude fluctuations caused by the kick
drum. However, as its hidden neuron self connection is ad-
justed, the degree of saturation changes, exhibiting graceful
degradation of the behaviour, almost like tuning the sensi-
tivity of a conventional signal gate used in audio production.
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Figure 1: Notated version of the CTRNN input used to pro-
duce Figures 2, 3 and 4. The Drum Kit consists of a bass
drum (open note head) and a hi-hat (cross note head). The
synthesiser has a timbre very similar to a sine wave.
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Figure 2: Comparison of unprocessed input notated in Fig.
1 (top) to its processed counterpart (bottom), showing how
certain input values saturate the CTRNN’s hidden neuron
and others do not.

We further tested the consistency of this behaviour by
adopting another input for the CTRNN that exhibits a more
sporadic melody absent of any percussion. We were able
achieve a similar result by tweaking the CTRNN’s hidden
neuron self connection weight parameter until we observed
similar saturation fluctuations. Furthermore, we found that
if sinusoid inputs are adopted instead of more complex au-
dio samples, the results are less interesting as the neuron
saturates and remains so, emphasising that the continuous
flipping of neurons is caused by amplitude fluctuations in
the neuron input. But what are the musical implications of
this behaviour in larger CTRNN structures?

In Figure 3, we can see the output of a larger CTRNN
configuration (one input neuron and three hidden neurons)
with an input of a small audio sample consisting of a two
note melody and rhythmic accompaniment (notated in Fig.
1). The CTRNN’s original input melody is evident in part
one (each bar consisting of notes D and G), however, in
part two we can see the introduction of new melodic and
rhythmic content (notes D, C, A, G and F). The timbre of
the CTRNN’s input also varies and the synthesiser’s per-
cussive accompaniment is removed. Through further ran-
domisation of the CTRNN’s parameters, we found another
CTRNN configuration that produces similar behaviour (out-
put notated in Fig. 4), identifying that this introduction of
temporal and pitch structures is not a one off occurrence but
can occur in various forms within the CTRNN search space.
These larger CTRNN outputs have similarities to the neu-
ron saturation behaviour described earlier. For example, if
we compare both Figures 3 and 4 to their original input ma-
terial (Fig. 1), we can see that these introduced temporal
and pitch structures coincide with the rhythmic events in the
CTRNN’s input material, such as when the hi-hat symbol
is struck. Therefore, it appears that CTRNN input ampli-
tude fluctuations are flipping neuron states within the net-
work, shifting the musical structure of the CTRNN’s output.
This is a more complex manifestation of the behaviour seen
in Figure 2 and has many creative implications, affording a
means to generate temporal and pitch structures. Further-
more, the complex neuron interactions within CTRNNs can
produce unexpected outputs, exhibiting agency or Musical
Metacreativity (Eigenfeldt et al. 2013) during the composi-
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tional process.
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Figure 3: Simplified notation of CTRNN’s output (input no-
tated in Fig. 1). We transposed the melody up one octave for
legibility and the frequencies produced by the CTRNN are
converted to their closest equal tempered note values.
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Figure 4: Simplified notation of CTRNN’s output (input no-
tated in Fig. 1). We transposed the melody up one octave for
legibility and the frequencies produced by the CTRNN are
converted to their closest equal tempered note values.

Strong Input/Output Relationship

The strong relationship we have observed between CTRNN
inputs and outputs highlight that CTRNN behaviour can be
similar to that of a modular synthesiser or digital signal pro-
cessing (DSP) effects module, altering their input structure
towards creatively exciting directions. Further evidence of
this dynamic can be seen in the pitch structure of both Fig-
ures 3 and 4, with the additional note values exhibiting simi-
lar pitch structures to sections of a harmonic series based the
CTRNN’s input melody. For example, in Figure 3, when the
note D of the input melody is playing, we also hear a counter
melody consisting of A, C and D, which are the 6th, 7rd and
8th overtones of a harmonic series with a fundamental of
D. This DSP effect-like dynamic could afford some interest-
ing possibilities for the use of CTRNNS as building blocks
within a larger, modular system, a possibility we will further
discuss in the final section of this paper.

Amplitude Modulation

Through further analysis of the CTRNN configurations that
produced Figures 3 and 4, we noticed some CTRNN be-
haviour similar to that produced by an amplitude modulation
synthesis algorithm. This form of audio modulation follows
a general rule that if two signals are multiplied, two partials
result (called sidebands), one at the sum of the two frequen-
cies and one at the difference (Puckette 2007). We can see
evidence of this behaviour in both Figures 5 and 6, display-
ing spectrogram outputs of the same CTRNNS that produced
Figures 3 and 4, except a sinusoid waveform oscillating at
523Hz was used as their inputs instead of the more com-
plex input notated in Figure 1. Sideband structures are ev-
ident around the CTRNN input frequencies in both figures

at ratios typical of amplitude modulation. This behaviour
is interesting as we can see CTRNNs are not only an evolv-
able structure capable of generating interesting rhythmic and
pitch structures, but afford possibilities for timbral variation.
Puckette (2007) also identifies that amplitude modulation
can be used as an octave divider, offering a possible explana-
tion for the overtone structures that appear below their fun-
damental frequencies in Figures 3 and 4.
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Figure 5: Sidebands that correspond to the multiplication of
the sinusoid CTRNN input oscillating at 523Hz and a fre-
quency of 349Hz. Frequency values are approximate (+-
3Hz).
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Figure 6: Sidebands that correspond to the multiplication of
the sinusoid CTRNN input oscillating at 523Hz and a fre-
quency of 419Hz as well as multiplication with a frequency
of 209Hz. Frequency values are approximate (+-3Hz).

Additive Synthesis

Neurons within CTRNNS can also oscillate at fixed frequen-
cies independent of their input. In larger CTRNNS, a dy-
namic analogous to additive synthesis (Puckette 2007) can
result in which neuron oscillations are summed with either
other neuron or CTRNN input oscillations to produce a more
complex audio waveform. Figure 7 shows this relationship,
exhibiting the CTRNN’s sinusoid input oscillating at 523Hz
(top) which appears to be summed with a lower frequency
(caused by neuron oscillations at 86Hz (+-3Hz) within the
CTRNN), producing a multi-phonic CTRNN output (bot-
tom). These summed frequencies in the CTRNN’s output
can also change independently of each other, evident in Fig-
ure 8. At the top, we can see a spectrogram produced by the
same CTRNN that produced Figure 7 when fed a sinusoid
input oscillating at 523Hz. The bottom also shows a spec-
trogram produced by this CTRNN except we used a sinusoid
oscillating at 1000Hz as its input. We can see the presence
of the same neuron oscillations at about 86Hz in both spec-
trograms, however the other dominant oscillations present
in the CTRNN outputs vary in regard to the CTRNN’s input
frequency. It is worth noting that if the CTRNN’s sinusoid
input oscillates at a rate below about 375Hz, we lose this
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additive synthesis behaviour, demonstrating the non-linear
dynamics of CTRNNS.
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Figure 7: Comparison of a sinusoid oscillating at 523Hz

(top) to the CTRNN’s output it produced (bottom), demon-
strating CTRNN additive synthesis capabilities.
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Figure 8: Comparison of spectrograms produced by a
CTRNN with different sinusoid inputs (top: 523Hz, bot-
tom: 1000Hz) showing the independent relationship be-
tween the CTRNN neuron oscillations (at about 86Hz) and
the CTRNN’s input.

Through these studies, we have found the occurrence of
multiple musically interesting audio synthesis characteris-
tics of CTRNNs. The variety of behaviours we have ob-
served also hint at the generality or scope for audio vari-
ety that CTRNNSs are capable of producing. However, their
complex dynamics raise many questions about how to dis-
cover and utilise these creative possibilities within the work-
flows of musicians. In the next section, we will discuss a
means to explore the creative possibilities of CTRNNs us-
ing an EA.

Evolution of CTRNNs

Many different EA designs exist that have been used for cre-
ative search. Within this section, we adopt a model based on
the opt-aiNet algorithm conceived by de Castro and Timmis
(de Castro and Timmis 2002), a multimodal optimisation al-
gorithm inspired by some of the evolutionary properties of
the human immune system (de Franca, Von Zuben, and de
Castro 2005). This is an appealing model for our purpose
as it can maintain many candidate solutions to a problem,
providing not only the global optimum but also many of
the local optima in a search space (Timmis and Edmonds
2004). This method has also shown promise for use as a

sound matching utility (Abreu, Caetano, and Penha 2016), a
use case we adopt within this section.

In order to both measure how effective the opt-aiNet
EA is for searching the creative possibilities of CTRNNS,
as well as further understanding the creative capabilities
of CTRNNs, we conduct a sound matching experiment in
which CTRNNs (with one input neuron, ten hidden neurons
and a constant input value of 0) are evolved towards five dif-
ferent drone-like audio targets. These selected audio sample
targets cover a range of timbral profiles, which if success-
fully matched, will identify that the low-level functionality
of CTRNNSs affords a varied creative search space of au-
dio possibilities that is explorable by an EA. Additionally,
we will discuss another use for the opt-aiNet EA structure
as a Novelty Search (NS) algorithm which rewards candi-
dates that are unique in some way compared to existing in-
dividuals (Lehman and Stanley 2008). This is an interesting
prospect for exploring the sound possibilities of CTRNNs
without needing a predefined target.

opt-aiNet EA Design

The opt-aiNet algorithm follows a general structure outlined
below. Differing from more conventional EA structures, this
model incorporates sub-populations, each locally optimised
with the fittest individual of each sub-population added to
the main population for global evaluation during each al-
gorithm iteration. These sub-populations are generated by
cloning and mutating each member of the global population,
with mutation rates inversely proportionate to the parent in-
dividual’s fitness. This EA model also discourages conver-
gence on a specific area of the search space using a popula-
tion suppression mechanism. Once the population stagnates
(the difference between average fitness errors over time is
below a predefined threshold), individuals of the global pop-
ulation are compared using a distance metric and individuals
with a close similarity are removed (higher fitness individu-
als are maintained). A number of randomly generated indi-
viduals are then introduced into the population (its size can
vary dynamically) to facilitate thorough exploration of the
EA’s search space (Timmis and Edmonds 2004).

1. Randomly initialise the population.

2. While the stopping criterion is not met, continue, else save the
global population to a database.

I Calculate the fitness of each individual in the global popula-
tion.

IT Generate a number of clones for each individual, creating sub
populations.

III Mutate each clone inversely proportionate to its parent’s fit-
ness (fitter individuals are mutated less).

IV Determine the fitness of individuals within each sub popu-
lation including the parent individual and remove all but the
fittest, which replaces the parent cell in the global population.

V Calculate the average distance from the algorithm target and
if the population stagnates, continue to steps 3 else go back
to step 2.

3. Re-calculate the fitness of each individual in the global popu-
lation after the fittest individuals of the sub-populations replace
their parents.

4. Determine the highest affinity individuals (similar phenotype)
and perform population suppression to avoid redundancy whilst
maintaining the fittest individuals.
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5. Introduce a number of randomly generated individuals and go
back to step 2.

The global population is initiated with 10 individuals and
10 clones are produced for each individual. The threshold
dictating the chance of mutation for each parameter is cal-
culated according to (2)

a = (1/8) exp(—f+) @

where [ is a parameter that controls the decay of the in-
verse exponential function and f is the fitness of the parent
individual normalised within the interval of [0..1]. The mu-
tated parameter value is calculated according to (3)

C'=c+aN(0,1) 3)

where ¢ is a parameter value of a parent cell, C’ is the
mutated parameter value, a is calculated according to (2)
and N (0, 1) is a Gaussian random variable with a mean of 0
and standard deviation of 1.

Fitness Function

Within this experiment, we use a multi-objective fitness
function to compare CTRNN audio outputs with the EA’s
target audio sample. Much work exists on reducing tim-
bral profiles to comparable dimensions for the measure-
ment of timbral similarity such as (Carpentier et al. 2010;
Abreu, Caetano, and Penha 2016), with spectral features
like Spectral Centroid and Spectral Spread being com-
monly used metrics. Another method for measuring timbre
similarly is by comparing Mel-Frequency Cepstral Coeffi-
cients (MFCCs) of two audio samples, such as discussed in
(Yee-King 2011; Aucouturier and Pachet 2004). Extract-
ing MFCCs is a single, tested descriptor for musical timbre,
therefore we have adopted this measure as one of the objec-
tives in the EA’s fitness function. MFCCs are pitch indepen-
dent therefore we also use the dominant frequency present
in the audio spectrum as the other fitness objective. These
measures are calculated from a frequency domain descrip-
tion of the audio being analysed, produced by applying a
Fast Fourier Transform (FFT) to small windows of the audio
(4096 frames with an overlap of 2048 samples) after a Ham-
ming windowing function is applied. As we are dealing with
drone-like audio samples that do not change much over time,
the amplitudes of the frequency bins produced are averaged
to reduce noise in the spectrum, providing a spectral descrip-
tion of the most consistent frequencies in the analysed audio.
The dominant frequency of the audio is calculated by identi-
fying the frequency bin with the highest magnitude and the
MFCC:s are calculated as described in (Yee-King 2011): the
FFT magnitudes are passed through a 42 component Mel fil-
ter bank spaced in the range of 20 to 22,050Hz, the 42 out-
puts of which are then transformed using a Discrete Cosine
Transform and all 42 coefficients are kept. The similarity
error between dominant frequencies is the absolute value of
their difference. The similarity error between MFCCs is cal-
culated using a Dynamic Time Warping (DTW) Algorithm
(Muda, Begam, and Elamvazuthi 2010) with a Euclidean
distance metric. Individuals are ranked according to each

fitness objective and these individual ranks are summed to
measure the overall fitness of the individual.

Results

For each of the five different EA targets, we ran the algo-
rithm for 100 iterations and as seen in Figure 9, the pop-
ulation commonly converges before 95 iterations. The six
fittest individuals within the EA’s population are then saved
to a database once the algorithm stopping criterion is met.
The best of these candidate CTRNNSs can be heard and com-
pared with their targets in the online appendix for this paper
at www.plecto.i0/ICCC2016appendix.
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Figure 9: Graph of averaged MFCC and dominant frequency
similarity errors (normalised within the interval of [0..1]) for
each of the five algorithm runs. The best ranked individual
of each algorithm iteration is displayed.
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Figure 10: Pareto front of EA (bottom left hand corner)
when evolving CTRNNS towards the ‘Glass’ audio sample.
The colour of each individual communicates the EA’s iter-
ation in which the individual was produced (darkest are the
final iterations).

Among these saved individuals are Pareto optimal candi-
dates, meaning the performance of one of the individual’s
objectives cannot be improved without adversely affect-
ing another objective (Van Veldhuizen and Lamont 1998).
For example, Figure 10 depicts a zoomed in view of the
EA’s population phenotype space produced when evolving
CTRNNSs towards the ‘Glass’ audio sample. In the bottom
left hand corner, we can see four Pareto optimal individuals
which could all be considered to have an optimal similar-
ity error, forming the EA’s Pareto front. There are however
often only between one and three individuals from each al-
gorithm run that can be considered Pareto optimal, as there
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is often a high correlation between the MFCC and the dom-
inant frequency similarity errors when comparing CTRNN
outputs with the EA’s target audio.

After previewing the EA’s outputs, we found that the in-
dividuals that sounded most similar to their targets were
Pareto optimal solutions with the smallest similarity error
between MFCCs. Furthermore, when listening and com-
paring the various candidate CTRNN outputs to their tar-
gets, it is evident that this EA structure is effective when
evolving CTRNNs to match simple audio samples but has
difficulty replicating more complex sounds, such as multi-
phonic spectral profiles. For example, when simple audio
targets are used such as the ‘Glass’ or ‘Clarinet’ audio sam-
ples, the resulting CTRNN outputs exhibit strong aural sim-
ilarities to their target. This contrasts to the CTRNN outputs
produced when using more spectrally complex EA targets
such as denser, multi-phonic timbres. The attempt to match
the ‘Cello’ audio sample is an example, as spectral aspects
of the original recording were lost in the CTRNN outputs
even though some of the pitch and general timbral charac-
teristics were present. Matching the ‘Complex Synth’ audio
sample resulted in similar behaviour, with the CTRNN out-
puts exhibiting only certain aspects of the original audio’s
spectral structure.

These results highlight that this EA still needs further
work. For instance, it may be interesting to adopt a NEAT
(NeuroEvolution of Augmented Topologies) method (Stan-
ley and Miikkulainen 2002), meaning that the topology or
structure of the CTRNN is manipulated by the EA as well
as its parameters as opposed to just the gain, bias, time con-
stant and weight parameters which formulate the genotype
for the EA used in this experiment. This approach could
provide a means to dynamically increase the complexity
of the CTRNN’s output by growing the network, remov-
ing CTRNN structural limitations when matching complex
sounds. Furthermore, additional fitness objectives could be
added to the EA’s multi-objective fitness function to capture
a greater variety of audio characteristics such as informa-
tion about the change of audio over time, allowing the EA
to match more dynamically varied targets such as percussive
sounds. Additionally, when dealing with more complex tar-
gets, the EA’s similarity errors seldom align with aural com-
parisons of candidate CTRNN outputs and their targets. This
suggests that the extraction of MFCCs as a timbral measure
either needs to be further refined or supported by other tim-
bral comparison metrics. Nevertheless, these experiments
have shown that a simple CTRNN structure can produce a
range of timbres and although we have not been able to fully
replicate complex sounds, we feel the EA is a good starting
point in constructing an effective algorithm for the discovery
of CTRNN behaviours.

Future Directions

From our observations within this paper, we believe that
CTRNNSs could prove valuable as a compositional aid for the
discovery of interesting sounds, with their low-level func-
tionality and compact genotype structure affording an ex-
plorable algorithm capable of extensive audio diversity. One
goal of this research is to achieve a system that enables rapid

user exploration of CTRNN audio possibilities. However,
although evolving CTRNNs using the opt-aiNet algorithm
showed promise, the process is time-consuming and will not
be feasible in the creation of an engaging system that allows
rapid user exploration of audio CTRNNS.

As discussed earlier, another interesting use case for the
opt-aiNet algorithm could be for NS as we now have tested
metrics for audio comparison which can be used to differ-
entiate potential novel CTRNN candidates from existing in-
dividuals. This approach removes the need to define an ex-
plicit objective for the algorithm, simply rewarding novel
finds. Therefore, an interesting design possibility could be
to create a large population of small unique CTRNN mod-
ules using this method, which can be rapidly assembled by
users to build more complex audio structures. This pro-
cess will take advantage of the DSP effect-like dynamic that
CTRNNS possess, with each CTRNN module imparting its
various characteristics at each stage of a larger modular sys-
tem’s audio chain.

Additionally, in (Ianigro and Bown 2016), a system is de-
scribed that evolves CTRNNSs using an interactive EA, al-
lowing users to select and evolve CTRNN configurations
they find interesting for use within their artistic practices.
The paper also identifies difficulties that arise when inter-
actively evolving CTRNN structures, with their vast search
spaces creating user fatigue and ineffective discovery of the
CTRNN search space. However, if this interactive evolu-
tionary approach is instead used to evolve combinations of
higher-level CTRNN modules, a more effective system for
the discovery of sound may be achieved. We aim to ex-
plore this possibility through the development of Plecto, a
distributed composition tool that allows users to explore the
creative potential of CTRNNs. The progress of this system
can monitored by visiting www.plecto.io.

Conclusion

Through this research, we conclude that CTRNNS are an ef-
fective evolvable synthesis mechanism, affording a compact
genotype structure which can be manipulated to achieve vast
audio diversity. We have conducted various CTRNN ex-
periments and identified four basic musical dynamics that
we believe could be conducive to interesting musical dis-
covery: the introduction of temporal and pitch structures;
a strong relationship between CTRNN inputs and outputs;
amplitude modulation characteristics; and additive synthe-
sis capabilities. We have also discussed how neuroevolu-
tion can be used to manipulate CTRNN s as a means to nav-
igate their creative search space. However, as our current
EA design can be slow when discovering ideal candidates
to a creative problem, we also discuss future system designs
that facilitate flexible, open ended discovery of CTRNN be-
haviours. Specifically, we discuss a hierarchical system,
which at its base level adopts a NS adaption of the opt-aiNet
EA to discover many small CTRNN modules, each exhibit-
ing unique behaviours that exist within the CTRNN creative
search space. At its top level, users can interactively evolve
combinations of these CTRNN modules to discover audio
complexity that is specific to their creative needs. In our
next phase of research, we will implement this system and
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conduct user studies to further investigate how the low-level
dynamics of CTRNNS can be utilised as an effective creative
tool that fits into the creative workflows of musicians.
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