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Abstract

Monitoring the water quality of lakes is a challenging
task that can provide significant benefits and insights to en-
vironmental conservationists, policy-makers and educators
alike. While current methods utilize in-situ measurements to
project water quality parameters, such methods are expen-
sive and time consuming. This project proposes a Convo-
lutional Neural Network regressor to predict various water
quality metrics from multi-spectral images. Testing results
show that this method far outperforms conventional meth-
ods of remotely estimating these metrics. In addition, the
project provides a new dataset of Minnesota lakes used to
train, test, and evaluate this network.

1. Introduction

Water is one of the most important natural resources that
life on Earth needs to survive. Due to changing land us-
age, urbanization, pollution, a growing population, and cli-
mate change, the access to and the availability of clean wa-
ter has become a critical issue [24]. According to the WHO
and UNICEF, approximately 2.2 billion people around the
world do not have access to clean drinking water [28].
Therefore, while monitoring water quality in various re-
gions emerges as an important task, it is difficult to reg-
ularly measure water quality for several reasons. Most im-
portantly, it requires experts to take in-situ (on-site and real-
time) measurements, and many organizations and govern-
ments do not have the capacity to monitor water quality
at such large scales. Therefore, developing a regional and
global capacity to practically and sufficiently measure water
quality will help inform policy makers, activists, and water
resource managers about anomalies in water quality so they
are able to take action to mitigate the threats associated with
low-quality water.

In recent decades, researchers have examined the ap-
plications of remote sensing data from satellites to esti-
mate water quality. Models based on satellite image data,
when evaluated and calibrated on in-situ measurements,
provide a way to monitor key water quality metrics on a
large scale that can be used to detect quality anomalies
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Figure 1: Sample images of lakes from our synthesized
dataset. Note that for visualization, of the 8 channels avail-
able for each image, we only use the RGB bands.

in water bodies [24]. Water absorbs radiation in the red
and near-infrared regions of the electromagnetic spectrum,
and optically active water quality variables can therefore
be measured from satellite images [18]. Models developed
from Landsat, MODIS, and MERIS satellite data have been
shown to somewhat accurately estimate various metrics of
water quality in specific geographic regions that are opti-
cally active [24]. Generally, there are two approaches to
water quality metric estimation using remote sensing data:
empirical modeling using pure statistics [15] and machine
learning models such as Support Vector Regression, Deep
Neural Networks, and LSTM networks [20]. However,
they suffer from being too simplistic (for statistical meth-
ods mostly), having minimal availability of in-situ measure-
ments of water quality, or not generalizing well to other ge-
ographic areas [24].

To address these issues, we propose using a novel Con-
volutional Neural Network (CNN) to estimate water quality
parameters based on multi-spectral satellite images of lakes.
In previous literature, CNN s for regression with water qual-
ity metrics have not been studied [24]. However, they of-
fer great potential for capturing nonlinear relationships be-
tween satellite image data and water quality measurements,
and allowing purely vision-based (hence scalable) and more
generalizable approach as the network learns from a large
and diverse dataset.



2. Related Work

The use of satellite data for remote water quality moni-
toring has been well-studied in recent years. Various meth-
ods have been researched in this domain, ranging from clas-
sical approaches that to fit a model to the data, to deep learn-
ing based approaches, that learn the model from a dataset.

2.1. Statistical Regression

While many researchers have found some success in the
application of statistical regression models to draw correla-
tions between satellite imagery and in-situ data, these mod-
els are often not generalizable. This means that the relation-
ship derived from the training data is not often transferable
to new data. While statistical regression models (e.g. lin-
ear regression and SVR) are relatively easy to implement,
nonlinear relationships between variables make simple lin-
ear regression less effective. Studies have shown that SVRs
are better equipped to capture these nonlinear relationships
in the data, but both lack the transferability and accuracy of
deep learning models [24].

2.2. Deep Learning for Regression

More recently, with the availability of training data and
computing power, the focus of this area of research has
shifted towards deep learning for remote water quality mon-
itoring [24]. Many studies have shown Long Short Term
Memory (LSTM) neural networks to perform well on tasks
of predicting water quality from time series data [34, 10,

, 37]. However, these methods face a drawback in that
their models take on-site measurements of water quality of
a lake as input, making it extremely difficult to scale and
generalize the prediction methodology. In order to develop
methods that can easily provide insights about water quality
without having to take in-situ measurements, recent studies
use multi-spectral satellite images to analyze and predict the
levels of various substances in a water body [24, 36, 29, 32].
Satellite images have been used to monitor water qual-
ity in the Tenmile Lake in Oregan [31], estimate levels of
chlorophyll-A in Lake Atitldn, Gautemala [4], and Lake
Taihu, China [22, 14], and detect water turbidity [13]. More
recently, small datasets have been created that associate
satellite data of lakes to in-situ measurements of water qual-
ity so as to facilitate the development of deep learning meth-
ods for water quality prediction [23]. Owing to these devel-
opments, we propose a novel CNN-based method that can
learn to estimate various parameters of water quality from
our dataset.

3. Dataset

Our approach plans to estimate five common qual-
ity metrics: visible depth (as measured by Secchi disk
method), dissolved oxygen (O3), pH, specific conductance,

and chlorophyll-A concentration (Chl-A). These statistics
are gathered from data available from the Minnesota Pol-
lution Control Agency (MN PCA)[2] and cover 9,149 as-
sessed lake-month pairs in the state. The data is from both
volunteer-gathered metrics and lab analysis of the water.
These metrics were normalized and transformed using the
Box-Cox method to transform them into a gaussian shape.

Geographic shapefiles covering these lakes are also pro-
vided by the MN PCA[1]. These shapefiles were used to
collect wideband satellite images from the US Geographi-
cal Survey Landsat-8 using Google Earth Engine [6]. The
Landsat data includes 8 bands covering shortwave infrared
to ultrablue portions of the electromagnetic spectrum, with
a resolution of 30 meters. These data have been atmospher-
ically corrected using LaSRC (Land Surface Reflectance
Code) [25] and includes a cloud, shadow, water and snow
mask produced using CFMASK (C Function of Mask), as
well as a per-pixel saturation mask [5]. We then pad to
square and resize the lake images to 128x128 resolution.

From these combined data, 9,149 lake-time combina-
tions were chosen by associating water quality data to
satellite images taken from the same month, between May
and September in the years 2013 (when Landsat-8 was
launched) to 2019. Using only summer months was cho-
sen to minimize the impact of ice on the satellite images.
The dataset includes 922 unique lakes.

3.1. Applicability of Data

The allowed values for the chosen water quality metrics
vary greatly between regions, individual lakes, and for what
purpose the lake is being evaluated, so it is difficult to give
a single metric on whether this data spans both acceptable
and unacceptable values. However, because these lakes are
sampled equally from all of Minnesota, including lakes con-
sidered to have one or more impairments by the MN PCA,
we can reasonably conclude that they are representative of
values for these metrics in Minnesota. Therefore, any model
trained on this dataset may have difficulty estimating these
values for lakes in other regions where the normal range of
values is different.

4. Baseline Methods

To determine the limitations of existing models, we im-
plemented and applied multiple methods from recent liter-
ature. The results of the best methods are summarized in
Table 1. While these methods are the best available in the
literature, they provide poor estimations of our water qual-
ity measurements. For the case of dissolved oxygen, these
results show that none of the regressors were able to estab-
lish a correlation with the available data.



Table 1: Summary of baseline method 72 values

Method Depth | Oy pH | Cond. | Chl-A
Linear 0.33 | -0.04 | 0.33 | 0.34 0.32
Ridge 029 | 0.01 | 0.31 | 0.35 0.29

AdaBoost 034 | -0.14 | 0.37 | 0.35 0.09
GradientBoost | 0.37 | -0.03 | 0.13 | 0.15 0.27
SVR 038 | 0.11 | 0.34 | 0.49 0.41
ANN 0.33 | 0.01 | 041 | 0.36 0.37

4.1. Statistical Regressors
Our implementation is inspired by [ 1 7] and applies a sep-

arate regression model for each parameter. All models use
a linear kernel. Before providing the data to the trainer,
the lake image is vectorized and principal component anal-
ysis is applied to reduce the dimensionality of the data. For
Support Vector Regression (SVR), we achieved much lower
r? values (on shared parameters) than either [17] or [24].
We also tried simple linear regression and ridge regression,
as well as two ensemble regressors (i.e. Adaptive Boost-
ing and Gradient Boosting), but none performed as well as
the SVR model. Furthermore, as we increased the size of
the dataset, these prediction accuracies were not improved.
This suggests that these regressors are not capable of accu-
rately extracting relationships from our robust dataset.

4.2. Artifical Neural Network

Our implementation uses a neural network with 5 hid-
den layers of 100 neurons each, inspired by [24]. A sep-
arate model was used to estimate each parameter. Before
providing the data to the trainer, the lake image is vector-
ized and principal component analysis is applied to reduce
the dimensionality of the data. All models used the tansig
activation function. This method achieved much lower 72
values (on shared parameters) than reported by [24].

5. Method

Convolutional Neural Networks (CNN) have been shown
to perform extremely well on tasks of image classification
and regression. Since CNNs provide a method to treat the
input as an image and consider various spatial dependencies
of the data in generating an output, they emerge as an ideal
choice in developing a network that can learn from the fea-
tures of the input satellite images. While extensive work has
been in developing CNNs for popular datasets such as Im-
ageNet, CIFAR-10 and CIFAR-100, very limited research
exists on developing CNNss for classification and regression
for water quality of water bodies. One study by Pu et. al.
uses CNNss to classify lakes on the basis of their water qual-
ity level using data from the Landsat-8 satellite [21], and
while other work has explored using CNN-LSTMs to make

short term predictions of water quality [3], they require in-
situ measurements of various water quality indicators as in-
put, which can be extremely time consuming and expensive
to collect. Hence, there is a need to develop CNN mod-
els that can predict the levels of various water quality met-
rics (and not just classify) and take multi-spectral satellite
images as input instead of in-situ measurements so as to
provide a more scalable and cost effective method of water
quality monitoring.

5.1. Existing Architectures

Prior to the development of LakeNet, we tested eight
CNN architectures that have been shown to perform well on
various tasks on image classification and regression. To that
end, we train the VGG [26], squeezenet [9], shufflenet [16],
alexnet [12], densenet [8], resnetl8 [7], resnext50 [33],
wideresnet50 [35] and mnasnet [27] on our dataset. We
preprocess the input by selecting the RGB channels of the
multi-spectral data available, removing small images from
the dataset, and resizing all images to a size of 100 x 100.
Since all of these existing models return output of the same
shape as the input, we add an additional linear transforma-
tion layer to reshape the output to batch_size X 5, so as to
generate a prediction of the five water quality parameters.
We then train the model on the average summed L2 loss
for each parameter. Results of the L2 loss on the validation
dataset for various epochs can be seen in Figure 2.
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Figure 2: L2 Loss for various epochs on the validation
dataset. Note that VGG and squeezenet performed poorly
enough that their values are much higher on the y axis to not
be visualized

The two models that performed the best on our dataset
are resnetl8 and mobilenet, both of which utilize residual
blocks in their network architecture. In contrast, the VGG
and squeezenet models - which were developed as lower-
complexity models with much fewer layers and parameters



than other CNN models with similar accuracy - perform ex-
tremely poorly on the dataset. Therefore, we deduced that a
suitable network architecture for our dataset would be dense
and deep, but not so much that a residual block would be re-
quired for adequate learning.

5.2. LakeNet

LakeNet is a novel regressor convolutional neural net-
work that consists of three convolutional blocks before a
fully connected layer, whose input is a 8 x 128 x 128 in-
put image (a 128 x 128 image with 8 channels) and whose
output is a single parameter estimation. Each convolutional
block consists of two pairs of convolutional and ReLu lay-
ers, followed by a single 2 X 2 max pooling layer. Except
for the first block (where the depth remains constant), each
block doubles the input depth. The LakeNet architecture is
shown in Figure 3 and the second block is shown in Figure
4. The model was implemented in PyTorch [19] and trained
using GPUs.

Prior to training the model, each band of each lake image
was normalized to a 0-1 range and each water quality metric
was standardized by subtracting the mean and dividing by
the standard deviation. Attempts were made to further pre-
process the images such as applying blurring effects and
supplementing the dataset with rotated images; however,
these were not shown to increase the performance of the
model.

Instead of using a single LakeNet model to estimate all
5 water quality metrics at once, we train LakeNet on each
metric individually, resulting in 5 separately trained mod-
els that can be used in tandem for water quality metric pre-
diction. We partitioned our dataset in a randomly stratified
manner based on the water quality metrics into 70% be-
ing used for training and 30% being used for testing. We
then trained the model using the Adam optimizer [1 1] with
a starting learning rate of 0.0001 and mini-batches of size
100 for 150 epochs. Mean-square error (MSE) was found
to perform the best for training the model after evaluating
multiple loss functions. All code used for the model can be
found in Appendix C.

5.3. Other Methods

During the development of LakeNet, other methods
were implemented and tested to accumulate a breadth of
study and provide our proposed approach with greater sig-
nificance. Notably, we represented each lake as a 16-
dimensional vector containing the means and standard devi-
ations of all eight bands. We then trained each of the base-
line regressors on this new representation, and found that
the GradientBoost regressor was the only method which
provided adequate results. Table 2 shows the 72 and MSE
values for each of the five water quality metrics using the
GradientBoost regressor. We hypothesize that this repre-

Table 2: Summary of GradientBoost on vectorized method
r2 values

Parameter r? MSE
Secchi Depth | 0.558 0.934
O 0.521 3.022
pH 0.549 3.712
Conductance | 0.372 | 10164.967
Chlorophyll-A | 0.112 103.979
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Figure 3: The LakeNet architecture
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Figure 4: Convolutional block 2

sentation may have led better results than the original due
to the reduction of noise in the data through this vector-
ization. However, this method is comparatively worse than
LakeNet for every metric except for dissolved oxygen (the
results for LakeNet are described in the following section).
It is unclear why this method performs so well in this met-
ric, which might be worth further study.

6. Results

The performance of LakeNet on the test set was evalu-
ated based on r2 and MSE values for all five metrics. These
values are provided in Table 3. A plot showing the true
and predicted values of conductance (sorted by true conduc-
tance value) is in Figure 5. As with the baseline methods,
LakeNet predicts dissolved Oy concentration poorly. This
may be because dissolved oxygen is not optically active,
leading to little information about it appearing in the surface
reflectance [24]. We hypothesize that LakeNet is instead
using correlations from other metrics to attempt to predict
O. Other metrics have possible physical interpretations-
Transparency depth can be determined optically, pH and
conductance are partially measures of dissolved material in
the water that may be optically active, and Chlorophyll-A
concentration is related to plant life in the lake.



Table 3: Summary of LakeNet method r? values

Parameter r? MSE
Secchi Depth | 0.672 | 0.322
O 0.435 | 0.322

pH 0.563 | 0.292
Conductance | 0.880 | 0.120
Chlorophyll-A | 0.559 | 0.410
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- Predicted value £
True value g

Z-score

o 500 1000 1500 2000 2500
Lake index

Figure 5: Predicted and true values for conductance in the
test dataset

6.1. Intermediate network analysis

Output from intermediate layers of CNNs can be ana-
lyzed to understand the rationale behind a network’s deci-
sions. As an example, Figure 6 shows the input channels
as well as the output channels from the first convolutional
block (Convl) of the trained Secchi depth regressor. Com-
paring each individual channel between the input and output
from Convl we find that the network has learned to almost
completely ignore the Green, Red, Shortwave, and Panchro-
matic bands. For these bands, the network ignores pixels in
the interior of the lake but only learns to focus on the pixel
values near the coast. Subsequently, the model also learns
to give importance to the Ultra Blue, Blue and Near Infrared
bands the most. For brevity, outputs for deeper layers and
other networks are not shown.

1 2 3 4 1 2 3 4
5 6 7 g 5 6 7 g

(b) Output from Convl

(a) Input Channels

Figure 6: Input channels and intermediate outputs

Table 4: Comparison of different loss functions for Secchi
Depth regression

Loss Function r2
MSE 0.658
L1 0.639

Table 5: Comparison of different optimizers for Secchi
Depth regression

Optimizer | 7?2 MSE Loss
Adam 0.649 0.344

RMSProp | 0.604 0.394

AdaGrad | -0.205 1.202

Table 6: Comparison of number of layers for Secchi Depth
regression

Layers | MSE | 7?2
2 0.342 | 0.677

3 0.357 | 0.662
4 0.351 | 0.667
5 0.368 | 0.652

6.2. Ablation Studies

In order to validate the performance of our proposed
model, we conducted various ablation studies while vary-
ing loss functions, optimizers, and the number of layers in
the convolutional network. Results from this ablation for
Secchi Depth are shown in tables 4, 5, and 6. Our combina-
tion of optimizer, loss function, and number of layers was
chosen to be the most general and strongest of these combi-
nations. Particularly in the case of choosing the number of
layers, 4 layers provided the most consistently high results
between dataset splits while not being prone to overfitting.

7. Conclusion and Future Work

Due to urbanization, climate change, a growing popu-
lation, and various other factors, it has become increas-
ingly necessary to monitor the quality of water for safe use.
Classical methods require experts to gather in-situ measure-
ments, but this large-scale procedure is expensive and inef-
ficient. Furthermore, statistical regression models provide
low accuracy estimations on our dataset, which limits their
viability for proper quality estimation.

Our work provides several contributions. The first is
LakeNet, the first regressor convolutional neural network
for predicting water quality metrics. LakeNet vastly outper-
formed all existing methods and the state of the art CNNs
for estimating the five water quality metrics on our data.
Along with this network, we provide a large dataset of satel-
lite images paired with each of their five water quality met-



rics. Finally, our quantitative analyses and ablation studies
provide insight into comparative abilities and resilience of
LakeNet.

Although LakeNet is an improvement on the state of the
art, we believe that further improvements can be made. This
could include the synchronization of data from other satel-
lites or the use of different network architectures. Moreover,
ensuring the quality of the metrics gathered for the training
of LakeNet is a vital step to take. Another possible direc-
tion of research could be attempting to perform regression
on each water pixel instead of each lake. This would cap-
ture the complexity of the water quality of larger lakes or
water bodies whose metrics might differ in distinct sections.
However, to do this in a supervised way would require many
complex measurements that could be infeasible to gather.

A. Contributions of Group Members

Our group did not define specific roles. A rough
overview of individual contributions is however provided. J.
Schatz and B. Wanner collected and refined the dataset. C.
Morse and T. Agarwal researched related work. C. Morse,
B. Wanner, and J. Schatz implemented and tested baseline
methods. T. Agarwal developed the prototype CNN and
researched architectures. All group members contributed
equally to developing the final LakeNet architecture, writ-
ing both reports, and creating both presentations.

B. Comments From Committee

We thank the committee members for their insightful
comments during the presentation. A paraphrasing of the
comments and our responses are provided.

B.1. Span of collected data

Q: Does the data you have collected span not only met-
rics for healthy lakes but also unhealthy lakes?

A: Allowable metrics for lake suitability vary greatly be-
tween region, individual lake, and the purpose for which
the lake is being assessed (aquatic life, recreation, micro-
bial life, etc.) Thus it is difficult to give an overarching or
complete answer, however we believe that our data is rep-
resentative and spans both healthy and unhealthy lakes as
described in section 3.1, which we have added in response
to this comment.

B.2. Physical basis of results

Q: Why are all methods significantly worse at predicting
035?

A: Dissolved oxygen is not optically active[24], and thus
does not directly affect the image in the available bands.
It is possible that our network is using detectable metrics
correlated with dissolved oxygen but do not follow exactly,

which simple regressors are likely worse at determining.
We have added discussion of this to section 6.

B.3. Interpretation of evaluation metric

Q: How do the 72 values capture the performance of your
model?

A: r? measures the ratio of the mean square of residuals
of the predictions to the variance of the true data:

N
% Zi (ypred,i - ytrue,i)2
Var(ytrue)

r2=1-
Thus an r2 of 1 is a perfect prediction (implying zero
residuals,) and an 72 of 0 or lower means that guessing the
mean would be a better guess than the model’s predictions.
In many cases, r? can be interpreted as the proportion of
variance that is captured by the model and is a common
metric used in the literature to evaluate regression models.

C. Dataset and Code

The created dataset and CNN implementation can be
found here. See the README document in the folder for
more information on the dataset structure and code.


https://z.umn.edu/csci5561lakenet
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